Synthesis of stemofoline analogues as acetylcholinesterase inhibitors

Kwankamol Sastraruji
University of Wollongong, kwankamol_sastraruji@uow.edu.au

Thanapat Sastraruji
University of Wollongong, thanapat@uow.edu.au

Alison T. Ung
University of Technology, Sydney, alison_ung@uow.edu.au

Renate Griffith
University of New South Wales

Araya Jatisatienr
Chiang Mai University

See next page for additional authors

Publication Details
Synthesis of stemofoline analogues as acetylcholinesterase inhibitors

Abstract
Thirty two new stemofoline analogues were prepared from didehydrostemofoline for studies as AChE inhibitors. C-3 side-chain modified amino, carbamate, triazole and oxazole stemofoline derivatives were prepared. In general the amine derivatives were found to be stronger inhibitors of AChE than their alcohol analogues that we previously reported. Compounds 5 and 26, with small C-3 side chain substituents, were two of the most active inhibitors. Preliminary molecular docking studies suggested that these compounds may inhibit AChE by binding horizontally along the passage of the active-site gorge and block access to acetylcholine.

Keywords
CMMB

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

Authors
Kwankamol Sastraruji, Thanapat Sastraruji, Alison T. Ung, Renate Griffith, Araya Jatisatienr, and Stephen G. Pyne

This journal article is available at Research Online: http://ro.uow.edu.au/scipapers/1143
Synthesis of Stemofoline Analogues as Acetylcholinesterase Inhibitors

Kwankamol Sastraruji, a Thanapat Sastraruji, a Alison T. Ung, b Renate Griffith, c Araya Jatisatien d and Stephen G. Pyne a *

a School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia,

b School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, 2007, Australia,

c School of Medical Sciences, #University of New South Wales, Sydney, 2052, Australia

d Department of Biology, Chiang Mai University, Chiang Mai 50202, Thailand.

Corresponding authors: Tel +61-2-42213511; fax: +61-2-42214287

E-mail address: spyne@uow.edu.au

ABSTRACT

Thirty two new stemofoline analogues were prepared from didehydrostemofoline for studies as AChE inhibitors. C-3 side-chain modified amino, carbamate, triazole and oxazole stemofoline derivatives were prepared. In general the amine derivatives were found to be stronger inhibitors of AChE than their alcohol analogues that we previously reported. Compounds 5 and 26, with small C-3 side chain substituents, were two of the most active inhibitors. Preliminary molecular docking studies suggested that these compounds may inhibit AChE by binding horizontally along the passage of the active-site gorge and block access to acetylcholine.
1. Introduction

One of the primary roles of acetylcholinesterase (AChE) is the hydrolysis of the neurotransmitter acetylcholine (ACh) to inactive choline and aceta te in cholinergic synapses. Thus AChE is essential for the rapid modulation of synaptic activity.¹ Hydrolysis of ACh occurs through a protease-like action of an active site serine residue. This site resides at the end of a relatively long and narrow gorge. Inhibitors of AChE can bind irreversibly (for example, some pesticides) or reversibly to the active site or at other sites in the gorge (for example, the peripheral anionic site (PAS)) and block the access of ACh to the active site.¹ Reversible AChE inhibitors, for example the alkaloid galantamine (reminyl), have been used in the treatment of patients with Alzheimer’s disease (AD) to alleviate the symptoms of reduced ACh concentration in the brain.² More recent AD drug development strategies involve targeting microtubule-associated τ-protein, metal ion dyshomeostasis and the various β-amyloid (Aβ) pathological mechanisms of this disease.²³ AChE colocalizes with Aβ which then promotes and accelerates Aβ aggregation.⁴⁻⁶ This has renewed an intense interest in AChE inhibitors, including dual binding AChE inhibitors⁷ and those that can be activated by AChE⁸ and have Aβ-antiaggregating action. We have recently reported that the *Stemona* alkaloids stemofoline and didehydrostemofoline and some of their C-3 side chain derivatives are inhibitors of AChE.⁹⁻¹¹ Such activity is most likely associated with the insecticidal activity of these alkaloids and the crude extracts of *Stemona* plants. Our earlier studies focused on C-3 hydroxyalkyl derivatives, including the synthesis of rare *Stemona* alkaloids, where it was found that the AChE inhibitory activity was dependent upon the length of the C-3 alkyl chain, the position of the hydroxyl group and in some cases the configuration of the carbinol carbon.¹⁰ This study also revealed that the butyrolactone ring of stemofoline was essential for AChE inhibitory activity.¹⁰ We report here the synthesis of several novel C-3
side-chain amino, carbamate, triazole and oxazole stemofoline derivatives and their activities as AChE inhibitors.

2. Results and discussion

2.1 Synthesis of compounds

In order to prepare the amine derivatives 3-19, the known aldehyde 2 was prepared from didehydrostemofoline 1 (Figure 1), following our previously described procedures and used as a key scaffold for reductive amination reactions to prepare the 17 amine derivatives as shown in Scheme 1.

![Figure 1. Didehydrostemofoline 1 and its aldehyde derivative 2](image)

Using the reductive amination procedure described by Abdel-Magid et al., the amines 3-19 were obtained in yields ranging from 25-93%. A further methylation reaction of the amine 6 (Scheme 2) gave the tertiary amine 20 in 94% yield. Carbamylation reactions of the amines 15-17 (Scheme 3) gave the carbamates 21-23 in yields ranging from 56-80%. The HCl salt of the guanidine derivative 25 was prepared in two steps via a key guanidination reaction of the amine 3 (Scheme 4).
R_i = Me; R₂ = H 3
R_i, R₂ = Me 4
R_i = i-Pr; R₂ = H 5
R_i = allyl; R₂ = H 6
R_i = N,N-dimethylaminoethyl; R₂ = H 7
R_i = CH₂CH₂OH; R₂ = H 8
R_i, R₂ = morpholinyl 9
R_i, R₂ = 4-ethoxycarbonylpiraceryl 10
R_i, R₂ = 4-methylpiraceryl 11
R_i = Phc; R₂ = H 12
R_i = Bn; R₂ = H 13
R_i = cyclopropylmethyl; R₂ = H 14
R_i = α-C₆H₅; R₂ = H 15
R_i = α-C₆H₅; R₂ = H 16
R_i = α-C₆H₅; R₂ = H 17
R_i = 2S-phenylethyl; R₂ = H 18
R_i = 2R-phenylethyl; R₂ = H 19

Scheme 1. Synthesis of amine derivatives 3-19. Reagents and conditions: (i) amine, NaBH(OAc)₃, CH₂Cl₂, 0.1% HOAc, rt, 24 h (yields 25-93%).

R_i = α-C₆H₅; R₂ = CO₂Et 21
R_i = α-C₆H₅; R₂ = CO₂Et 22
R_i = α-C₆H₅; R₂ = CO₂Et 23

Scheme 2. Synthesis of amine derivative 20. Reagents and conditions: (i) formaldehyde, NaBH(OAc)₃, dichloroethane, 0.1% HOAc, rt, 24 h (yield 94%).

Scheme 3. Synthesis of amine derivatives 21-23. Reagents and conditions: (i) ethyl chloroformate, THF/NaHCO₃ (2:1), 0 °C, 3 h (yields 56-80%).
Effectively obtained in 89% yield under Eglington coupling conditions.

The reduced product 25 was more effectively obtained in 89% yield under Eglington coupling conditions. The dimer 34 was more effectively obtained in 89% yield under Eglington coupling conditions. The Sonogashira product 33 was hydrogenated over Pd/C under a H₂ atmosphere for 24 h to give the reduced product 35 in 74% yield (Scheme 7 (iii)).

Another key scaffold, the alkyne 26, was prepared from a one-step alkynylation reaction of the aldehyde 2 using the Bestmann-Ohira reagent (dimethyl-1-diazo-2-oxopropylphosphonate) which was prepared as described by Ghosh et al. (Scheme 5).

The 1,3-dipolar cyclization (“click”) reactions of the alkyne 26 (Scheme 6) were examined under three different reaction conditions to provide the four triazoles 27-30 and the two isoxazoles 31-32 in yields ranging from 18-59%. The alkyne 26 was treated under Sonogashira coupling conditions to yield the phenyl substituted alkyne 33 in 62% yield and the self-condensation product 34 in 4% yield (Scheme 7 (i)). The dimer 34 was more effectively obtained in 89% yield under Eglington coupling conditions. The Sonogashira product 33 was hydrogenated over Pd/C under a H₂ atmosphere for 24 h to give the reduced product 35 in 74% yield (Scheme 7 (iii)).
Scheme 6. Click reactions of the alkyne 26. Reagents and conditions: (i) RBr, NaN₃, Cu powder, CuSO₄, ⁷BuOH/H₂O (1:1), MW 125 °C, 10 min (yields 18-23%); (ii) RN₃, Cu(OAc)₂, sodium ascorbate, MeOH/H₂O (1:1), rt, 4 h (yields 33-46%); (iii) RC(Cl)=NOH, Cu(OAc)₂, sodium ascorbate, EtOH/H₂O (1:1), NaOH, rt, 4 h (yield 59%).

Scheme 7. Synthesis of compounds 33-35. Reagents and conditions: (i) Phl, PdCl₂(PPh₃)₂, CuI, Et₃N, THF, N₂, rt, 24 h (yields 33: 62%, 34: 4%); (ii) Cu(OAc)₂, MeCN, argon gas, 40 °C, 4 h (yield 89%); (iii) Pd/C, H₂, EtOAc, rt, 24 h (yield 74%).

2.2 Biological assays

We initially used the TLC bioautographic method of Hostettmann²⁰ to determine the minimum inhibitory requirements (MIRs) of these compounds against electric eel AChE (eeAChE) using galanthamine as a positive control. The results are reported in Tables 1–3. In our assay, galanthamine had a MIR of 1 ng. This assay revealed that the carbamate 22 and the tertiary amino compound 4 (Table 1, entries 1 and 2) were essentially equipotent to galanthamine and more potent than their parent compound didehydrostemonofoline 1. The secondary amino compounds 19, 5 and 3 and the guanidine derivative 25 were equipotent to didehydrostemonofoline 1 (Table 1, entries 3–7). The carbamates 23 and 21 and the secondary amines, 13, 18, 16, 17 and 20 and the quaternary amines 9 and 20, all had MIR values of 10 ng (Table 1, entries 8–18). The dibasic-amine compounds 11 and 17 were the least active amine derivatives (Table 1, entries 22 and 23). None of the click products 27–32 (Table 2) were as potent as didehydrostemonofoline 1 or the amino derivatives in Table 1, entries 1–7. The N-benzyl-triazole derivative 27 was the most potent of this series of compounds while the others with longer and more flexible linkers (28 and 30) or no linker (29, 31 and 32)
between the heterocyclic triazole or isoxazole moiety and the aryl substituent were significantly less active.

The terminal alkyne 26 and the phenylethyl derivative 35 were essentially equipotent to galanthamine and didehydrostemofoline 1, respectively (Table 3, entries 1 and 2). Substitution of the terminal alkyne CH of 26 with a phenyl group, as in compound 33, had an adverse effect on inhibitory activity. The dimer of 26 had very poor activity (Table 3). Compared to our earlier results,10 this study showed that in general the amine derivatives were more active than our previously reported alcohol derivatives.10

We attempted to determine the IC\textsubscript{50} values of many of the more active compounds, and some of the alcohol analogues we reported earlier,10 against eeAChE and human AChE (hAChE) using Ellman’s assay.21 We found however, that the majority of these compounds were not soluble in the assay medium (DMSO, pH 7.0 phosphate buffer). The IC\textsubscript{50} results determined on those that were soluble in the assay medium are shown in Table 4. In our assay, galanthamine had IC\textsubscript{50} values of 0.912 \(\mu\text{M}\) and 0.597 \(\mu\text{M}\) against eeAChE and hAChE, respectively (Table 4, entry 1). Didehydrostemofoline 1 and compound 5, which both had MIRs of 5 ng against eeAChE, showed similar IC\textsubscript{50} values (ca 12–25 \(\mu\text{M}\)) against eeAChE and hAChE, which indicated they were significantly less potent than galanthamine (Table 4, entries 2 and 3). Compounds 36,10 8, 9 and 37,10 all with MIRs of 10 ng against eeAChE, were less active than compounds 1 and 5 (Table 4, entries 4–7). Their IC\textsubscript{50} values against eeAChE however, did not correlate as well to their corresponding MIR values. However, their IC\textsubscript{50} values against hAChE were relatively similar (ca 37–52 \(\mu\text{M}\)).
Table 1 AChE inhibitory activities of didehydrostemofoline 1 and the amine derivatives 3-23 and 25 against eeAChE.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Side chain</th>
<th>Minimum inhibitory requirements(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ng</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>![Image]</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>![Image]</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>![Image]</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>![Image]</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>![Image]</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>![Image]</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>![Image]</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>![Image]</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>![Image]</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>![Image]</td>
<td>50</td>
</tr>
<tr>
<td>21</td>
<td>14</td>
<td>![Image]</td>
<td>50</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
<td>![Image]</td>
<td>100</td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>![Image]</td>
<td>100</td>
</tr>
</tbody>
</table>

\(^a\)Galanthamine was used as a positive control having a MIR of 1 ng or 0.003 nmol.

\(^b\)Entries listed in order of decreasing activity.
Table 2 AChE inhibitory activities of the click products 27-32 against eeAChE.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Side chain</th>
<th>Minimum inhibitory requirementsb</th>
<th>ng</th>
<th>nmol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td></td>
<td>10</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
<td>50</td>
<td>0.085</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td></td>
<td>50</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td></td>
<td>50</td>
<td>0.102</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td></td>
<td>50</td>
<td>0.105</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>29</td>
<td></td>
<td>100</td>
<td>0.211</td>
<td></td>
</tr>
</tbody>
</table>

aGalanthamine was used as a positive control having a MIR of 1 ng or 0.003 nmol.
bEntries listed in order of decreasing activity.

Table 3 AChE inhibitory activities of miscellaneous derivatives against eeAChE.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Side chain</th>
<th>Minimum inhibitory requirementsb</th>
<th>ng</th>
<th>nmol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td></td>
<td>1</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td></td>
<td>5</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td></td>
<td>50</td>
<td>0.116</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td></td>
<td>100</td>
<td>0.141</td>
<td></td>
</tr>
</tbody>
</table>

aGalanthamine was used as a positive control having a MIR of 1 ng or 0.003 nmol.
bEntries listed in order of decreasing activity.
Table 4. Acetylcholinesterase inhibitory activity of stemofoline derivatives.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Minimum inhibitory requirements</th>
<th>IC₅₀ values µM (R²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ng nmol eeAChE hAChE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>galanthamine</td>
<td>1 0.003</td>
<td>0.902±0.04 (0.9953)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5 0.013</td>
<td>19.20±0.26 (0.8749)</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5 0.012</td>
<td>12.94±0.08 (0.9883)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10 0.025</td>
<td>302.3±0.29 (0.9245)</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>10 0.025</td>
<td>52.45±0.14 (0.9668)</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>10 0.025</td>
<td>77.19±0.22 (0.9274)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>10 0.028</td>
<td>108.1±0.15 (0.9659)</td>
</tr>
</tbody>
</table>

To inhibit AChE, inhibitors can bind to one or more sites of the enzyme. AChE has been reported to have at least two binding sites, the active site and the peripheral anionic site (PAS).²² The active site is buried at the bottom of a 20 Å deep narrow gorge²³ and includes four catalytic subsites, the esteractic site (which contains Ser200, His440 and Glu327), the oxyanion hole (which contains Gly118, Gly119 and Ala201), the acyl pocket (which contains Phe288 and Phe290) and the anionic subsite (which contains Trp84, Phe330 and Glu199).²⁴ In contrast, the PAS which consists of Tyr70, Asp72, Tyr121, Tyr334 and Trp279, is located at the entrance of the active-site gorge. The binding of ligands to the PAS may block the passage of ACh or change the conformation of the active site allosterically and inhibit its function.²⁴ Preliminary molecular docking studies using GOLD suite versions 4.1 and 5.0 (CCDC, Cambridge, UK)²⁵ indicated that the more potent derivatives 5 and 26, having small side chains, fitted “horizontally” in the active site while those with longer side chains (for example, 33) fitted only “vertically” into the active-site gorge (Figure 1). Further studies to understand the mode of action of these compounds are in progress.
Figure 1. Overlay of the alkyne 26 (yellow carbons, ‘horizontal’ binding near the active site at the base of the active site gorge) and the phenyl alkyne derivative 33 (green carbons, ‘vertical’ binding, along the walls of the gorge) docked into the active site gorge of Torpedo californica AChE (TcAChE). The amino acid residues at the binding sites of TcAChE are coloured pink for the active site and blue for the PAS. This view is expanded in the lower figure.

In conclusion, thirty two new stemofoline analogues were prepared to study as AChE inhibitors. In general the amine derivatives were found to be stronger inhibitors of AChE than their alcohol analogues that we previously reported. Three compounds (tertiary amine 4,
carbamate 22 and the terminal alkyne 26) were found to be as active as galanthamine using the TLC bioautographic method while Ellman’s assay, against eeAChE and human AChE (hAChE), identified didehydrostemofoline 1 and compound 5 as the most active of the compounds tested with IC$_{50}$ values in the range of 12–25 µM against eeAChE and hAChE. These activities were significantly less than that of galanthamine.

Experimental

3.1 **General experimental procedures.** All reactions, unless otherwise stated, were performed in oven dried, single-necked round bottom flasks under an atmosphere of dry nitrogen. Reagents and analytical grade solvents were purchased from commercial sources. Progress of reactions was monitored by TLC using aluminium backed Merck F$_{254}$ sorbent silica gel with UV detection at 254 nm and/or Dragendorff’s reagent. Compounds were purified by column chromatography using Merck flash silica gel (40 − 63 µm). Purity of compounds was determined by 1H NMR spectroscopy and HPLC (see supporting information for details), and was always ≥ 95%. 1H and 13C NMR spectra were recorded on a Varian Inova-500 spectrometer (500 MHz 1H, 125 MHz 13C) in deuterochloroform (CDCl$_3$), unless otherwise specified. NMR assignments were based on gCOSY, gHSQC, gHMBC and DEPT or APT experiments. 1H and 13C NMR assignments are based on the numbering system used for stemofoline and not on the systematic name and numbering used in the naming of many stemofoline derivatives and analogues in the experimental section. Low resolution mass spectra were obtained on a Waters LCZ single quadropole (ESI). High-resolution mass spectra were obtained on a Waters QTOF (ESI). The microwave reactions were performed on a CEM Discovery Microwave Synthesis System (NC, USA).

3.1.1 **General reaction procedure and preparation of (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-hexahydro-7b-1-(N-methylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (3).** To a solution of aldehyde 2 (26.4 mg, 0.074 mmol) in dry dichloroethane (2.0 mL) and acetic acid (0.2 mL) at rt was added methylamine (8.03 M in MeOH, 16.3 µL, 0.147 mmol) and then NaBH(OAc)$_3$ (46.7 mg, 0.220 mmol). The reaction mixture was left to stir for 24 h. The mixture was quenched with saturated aqueous NaHCO$_3$ solution (10 mL) and was directly extracted with CH$_2$Cl$_2$ (3 × 20 mL). The combined organic extracts were washed with brine and dried (MgSO$_4$) before being concentrated in
vacuo. The concentrated residue was purified by column chromatography using gradient elution from CH$_2$Cl$_2$ to CH$_2$Cl$_2$/MeOH (9:1) to give the amine 3 (13.8 mg, 0.037 mmol, 60% yield) as a yellow gum. $R_f = 0.10$ in MeOH/CH$_2$Cl$_2$ (1:9). $[\alpha]_{D}^{25} +311.1$ (c 0.92, CHCl$_3$). IR ν_{max} 3350, 2941, 2880, 2794, 1756, 1623 cm$^{-1}$. 1H NMR δ 4.42 (s, 1H, H-2), 4.12 (s, 3H, O-CH$_3$), 3.44 (br s, 1H, H-9a), 3.12-3.07 (m, 2H, H-5a, H-10), 3.02-2.98 (m, 1H, H-5b), 2.70 (s, 2H, H-1'), 2.67 (d, J 6.5 Hz, 1H, H-7), 2.45 (s, 3H, H-3'), 2.06 (s, 3H, H-16), 1.94 (d, J 12.0 Hz, 1H, H-1b), 1.92-1.87 (m, 1H, H-6a), 1.85-1.80 (m, 2H, H-6b, H-9), 1.70 (d, J 12.0 Hz, 1H, H-1a), 1.58 (br s, 1H, NH), 1.36 (d, J 7.0 Hz, 3H, H-17). 13C NMR δ 169.8 (C-15), 163.0 (C-13), 148.5 (C-12), 128.0 (C-11), 112.6 (C-8), 98.7 (C-14), 82.8 (C-3), 79.0 (C-2), 61.3 (C-9a), 59.0 (O-CH$_3$), 52.6 (C-1'), 49.8 (C-7), 48.0 (C-9), 47.8 (C-5), 37.2 (N-CH$_3$), 34.7 (C-10), 33.7 (C-1), 27.2 (C-6), 18.4 (C-17), 9.3 (C-16). ESIMS m/z 375.0 (100%) [M+H]$^+$, 376.1 (20%). HRESIMS m/z 375.1938 [M+H]$^+$, calcd for C$_{20}$H$_{27}$N$_2$O$_5$ 375.1920.

3.1.2 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-(N,N-dimethylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (4). Prepared using the general method described above, using the aldehyde 2 (16.6 mg, 0.046 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), dimethylamine (2.0 M in THF, 47 μL, 0.092 mmol) and NaBH(OAc)$_3$ (29.4 mg, 0.139 mmol). The purified product was obtained as a yellow gum (7.0 mg, 0.018 mmol, 39% yield). $R_f = 0.26$ in MeOH/CH$_2$Cl$_2$ (1:9). $[\alpha]_{D}^{25} +281.3$ (c 0.47, CHCl$_3$). IR ν_{max} 2936, 2768, 2356, 2337, 1743, 1620 cm$^{-1}$. 1H NMR δ 4.38 (s, 1H, H-2), 4.13 (s, 3H, O-CH$_3$), 3.45 (br s, 1H, H-9a), 3.17-.311 (m, 1H, H-5a), 3.11-3.06 (m, 1H, H-10), 3.03-2.97 (m, 1H, H-5b), 2.78 (d, J 6.0 Hz, 1H, H-7), 2.48 (d, J 13.5 Hz, 1H, H-1'), 2.35 (d, J 13.5 Hz, 1H, H-1'), 2.30 (s, 6H, N-CH$_3$), 2.06 (s, 3H, H-16), 1.95 (d, J 11.5 Hz, 1H, H-1a), 1.91-1.86 (m, 1H, H-6a), 1.84-1.81 (m, 1H, H-6b), 1.79-1.76 (m, 1H, H-9), 1.76-1.74 (m, 1H, H-1b), 1.36 (d, J 7.0 Hz, 3H, H-17). 13C NMR δ 169.8 (C-15), 163.0 (C-13), 148.6 (C-12), 128.0 (C-11), 112.7 (C-8), 98.8 (C-14), 83.2 (C-3), 79.0 (C-2), 60.8 (C-9a), 59.9 (C-1'), 59.0 (O-CH$_3$), 49.7 (C-7), 47.9 (C-5, C-9), 47.3 (N-CH$_3$), 34.7 (C-10), 33.3 (C-1), 27.1 (C-6), 18.5 (C-17), 9.3 (C-16). ESIMS m/z 389.0 (100%) [M+H]$^+$, 390.2 (20%). HRESIMS m/z 389.2059 [M+H]$^+$, calcd for C$_{21}$H$_{29}$N$_2$O$_5$ 389.2076.

methoxy-3-methyl-2(5H)-furanone (5). Prepared using the general method described above, using the aldehyde 2 (24.3 mg, 0.068 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), isopropylamine (11.6 µL, 0.135 mmol) and NaBH(OAc)$_3$ (43.0 mg, 0.203 mmol). The purified product was obtained as a colourless gum (21.1 mg, 0.052 mmol, 78% yield). $R_f = 0.23$ in MeOH/CH$_2$Cl$_2$ (1:9). $[\alpha]^D_{25} +246.9$ (c 1.26, CHCl$_3$). IR ν_{max} 3383, 2961, 2885, 2356, 2337, 1742, 1621 cm$^{-1}$. 1H NMR δ 4.43 (br s, 1H, H-2), 4.13 (s, 3H, O-CH$_3$), 3.45 (br s, 1H, H-9a), 3.12-3.06 (m, 2H, H-5, H-10), 3.02-2.97 (m, 1H, H-5), 2.77-2.74 (m, 1H, H-1”), 2.74 (d, J 10.0 Hz, 1H, H-1’), 2.69 (d, J 10.0 Hz, 1H, H-1’), 2.67 (d, J 5.0 Hz, 1H, H-7), 2.06 (s, 3H, H-16), 1.94 (d, J 11.5 Hz, 1H, H-1a), 1.91-1.87 (m, 1H, H-9), 1.85-1.81 (m, 2H, H-6), 1.71 (d, J 12.0 Hz, 1H, H-1b), 1.50 (br s, 1H, NH), 1.37 (d, J 7.0 Hz, 3H, H-17), 1.05 (d, J 6.5 Hz, 3H, H-2”). 13C NMR δ 169.9 (C-15), 163.0 (C-13), 148.6 (C-12), 128.0 (C-11), 112.6 (C-8), 98.7 (C-14), 82.9 (C-3), 79.1 (C-2), 61.3 (C-9a), 59.0 (O-CH$_3$), 49.9 (C-7), 49.4 (C-1”), 48.0 (C-1’), 47.8 (C-5), 34.7 (C-10), 33.7 (C-1, C-9), 27.2 (C-6), 23.4 (C-2”), 22.8 (C-4’), 18.5 (C-17), 9.3 (C-16). ESIMS m/z 403.0 (100%) [M+H]$^+$, 404.1 (20%). HRESIMS m/z 403.2233 [M+H]$^+$, calcd for C$_{22}$H$_{31}$N$_2$O$_5$ 403.2233.

3.1.4 (5Z)-5-[(2S,2aR,6S,7S,7bR,8R,9S)-Hexahydro-7b-1-(N-allyaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (6). Prepared using the general method described above, using the aldehyde 2 (24.0 mg, 0.067 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), allylamine (10.0 µL, 0.134 mmol) and NaBH(OAc)$_3$ (42.5 mg, 0.200 mmol). The purified product was obtained as a yellow gum (18.7 mg, 0.047 mmol, 70% yield). $R_f = 0.11$ in MeOH/EtOAc (2:8). $[\alpha]^D_{25} +437.6$ (c 1.25, CHCl$_3$). IR ν_{max} 3402, 2952, 2925, 2880, 2847, 1742, 1619 cm$^{-1}$. 1H NMR δ 5.89-5.81 (m, 1H, H-2”), 5.15 (dd, J 16.0 Hz, 1.5 Hz, 1H, H-3”(E)), 5.08 (dd, J 10.0 Hz, 1.0 Hz, 1H, H-3”(Z)), 4.44 (br s, 1H, H-2), 4.12 (s, 3H, O-CH$_3$), 3.44 (br s, 1H, H-9a), 3.29-3.22 (m, 2H, H-1”), 3.11-3.06 (m, 2H, H-5b, H-10), 3.02-2.96 (m, 1H, H-5a), 2.71 (ABq, J 10.0 Hz, 2H, H-1”), 2.66 (d, J 6.0 Hz, 1H, H-7), 2.05 (s, 3H, H-16), 1.94 (d, J 12.0 Hz, 1H, H-1a), 1.90-1.86 (m, 1H, H-6b), 1.84-1.79 (m, 2H, H-6a, H-9), 1.71 (dt, J 12.0 Hz, 3.0 Hz, 1H, H-1b), 1.63 (br s, 1H, NH), 1.36 (d, J 6.5 Hz, 3H, H-17). 13C NMR δ 169.8 (C-15), 163.0 (C-13), 148.5 (C-12), 136.9 (C-2”), 128.0 (C-11), 116.1 (C-3”), 112.6 (C-8), 98.7 (C-14), 82.9 (C-3), 79.0 (C-2), 61.3 (C-9a), 59.0 (O-CH$_3$), 52.8 (C-1”), 49.8 (C-7), 49.5 (C-1’), 48.0 (C-9), 47.8 (C-5), 34.6 (C-10), 33.7 (C-1), 27.2 (C-6), 18.4 (C-17), 9.3 (C-16). ESIMS m/z 403.0 (100%) [M+H]$^+$, 404.1 (20%). HRESIMS m/z 403.2233 [M+H]$^+$, calcd for C$_{22}$H$_{31}$N$_2$O$_5$ 403.2233.
9.3 (C-16). ESIMS m/z 401.0 (100%) [M+H]$^+$, 402.1 (20%). HRESIMS m/z 401.2073 [M+H]$^+$, calcd for C$_{22}$H$_{29}$N$_2$O$_5$ 401.2076.

3.1.5 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-[N-(2-(dimethylamino)ethyl)aminomethyl]-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (7). Prepared using the general method described above, using the aldehyde 2 (23.9 mg, 0.067 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), 2-(dimethylamino)ethylamine (15.3 µL, 0.133 mmol) and NaBH(OAc)$_3$ (42.3 mg, 0.200 mmol). The purified product was obtained as a colourless gum (8.2 mg, 0.019 mmol, 28% yield). $R_f = 0.17$ in MeOH/CH$_2$Cl$_2$ (4:6). $[\alpha]_{D}^{25} +178.5$ (c 0.55, CHCl$_3$). IR ν_{max} 3384, 2962, 2932, 2860, 1740, 1618 cm$^{-1}$. 1H NMR (300 MHz) δ 4.43 (br s, 1H, H-2), 4.13 (s, 3H, O-CH$_3$), 3.46 (br s, 1H, H-9a), 3.16-3.06 (m, 2H, H-5, H-10), 3.04-2.95 (m, 1H, H-5), 2.75 (s, 2H, H-1”), 2.74 (t, J 6.0 Hz, 2H, H-1”), 2.69 (d, J 5.4 Hz, 1H, H-7), 2.44 (t, J 6.0 Hz, 2H, H-2”), 2.25 (s, 6H, N-CH$_3$), 2.20 (br s, 1H, NH), 2.06 (s, 3H, H-16), 1.94 (d, J 12.0 Hz, 1H, H-1a), 1.90-1.84 (m, 2H, H-6), 1.79 (dd, J 10.2 Hz, 3.6 Hz, 1H, H-9), 1.73 (dt, J 12.3 Hz, 3.3 Hz, 1H, H-1b), 1.36 (d, J 6.6 Hz, 3H, H-17). 13C NMR (75 MHz) δ 169.9 (C-15), 163.0 (C-13), 148.5 (C-12), 128.0 (C-11), 112.6 (C-8), 98.7 (C-14), 82.9 (C-3), 78.9 (C-2), 61.2 (C-9a), 59.0 (O-CH$_3$), 58.9 (C-2”), 50.3 (C-1”), 49.8 (C-7), 48.3 (C-9), 47.9 (C-5, C-1”), 45.6 (N-CH$_3$), 34.6 (C-10), 33.6 (C-1), 27.1 (C-6), 18.4 (C-17), 9.3 (C-16). ESIMS m/z 432.0 (100%) [M+H]$^+$, 433.2 (20%). HRESIMS m/z 432.2487 [M+H]$^+$, calcd for C$_{23}$H$_{34}$N$_3$O$_5$ 432.2498.

3.1.6 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-[N-(2-hydroxyethyl)aminomethyl]-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (8). Prepared using the general method described above, using the aldehyde 2 (18.6 mg, 0.052 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), ethanolamine (8.5 µL, 0.104 mmol) and NaBH(OAc)$_3$ (32.9 mg, 0.155 mmol). The purified product was obtained as a colourless gum (10.0 mg, 0.025 mmol, 48% yield). $R_f = 0.20$ in MeOH/CH$_2$Cl$_2$ (1:9). $[\alpha]_{D}^{25} +267.7$ (c 0.67, CHCl$_3$). IR ν_{max} 3392, 2961, 2936, 1740, 1618, 1143 cm$^{-1}$. ESIMS m/z 405.0 (100%) [M+H]$^+$, 406.1 (15%). HRESIMS m/z 405.2015 [M+H]$^+$, calcd for C$_{21}$H$_{29}$N$_3$O$_6$ 405.2026. 1H NMR δ 4.42 (br s, 1H, H-2), 4.13 (s, 3H, O-CH$_3$), 3.66-3.58 (m, 2H, H-2”), 3.48 (br s, 1H, H-
9a), 3.16-3.12 (m, 1H, H-5a), 3.11-3.06 (m, 1H, H-10), 3.04-2.99 (m, 1H, H-5b), 2.87-2.83 (m, 1H, H-1′), 2.84 (d, J 12.0 Hz, 1H, H-1″), 2.81-2.76 (m, 1H, H-1′′), 2.76 (d, J 12.0 Hz, 1H, H-1″), 2.75 (d, J 6.0 Hz, 1H, H-7), 2.11 (br s, 1H, NH), 2.06 (s, 3H, H-16), 1.96 (d, J 12.0 Hz, 1H, H-1a), 1.94-1.88 (m, 1H, H-6a), 1.88-1.85 (m, 1H, H-6b), 1.84-1.81 (m, 1H, H-9), 1.74 (d, J 12.0 Hz, 1H, H-1b), 1.37 (d, J 6.0 Hz, 3H, H-17). \(^{13}C \) NMR δ 169.9 (C-15), 163.0 (C-13), 148.4 (C-12), 128.1 (C-11), 112.5 (C-8), 98.8 (C-14), 83.2 (C-3), 78.9 (C-2), 61.2 (C-9a, C-2″), 59.0 (O-CH\(_3\)), 51.8 (C-1″), 49.7 (C-7), 49.6 (C-1′), 48.0 (C-9), 47.8 (C-5), 34.6 (C-10), 33.6 (C-1), 27.1 (C-6), 18.4 (C-17), 9.3 (C-16). ESIMS \(m/z \) 405.0 (100%) [M+H]+, 406.1 (15%). HRESIMS \(m/z \) 405.2015 [M+H]+, calcd for C\(_{21}\)H\(_{29}\)N\(_2\)O\(_6\) 405.2026.

3.1.7 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-morpholinomethyl-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (9). Prepared using the general method described above, using the aldehyde 2 (24.8 mg, 0.069 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), morpholine (12.2 µL, 0.138 mmol) and NaBH(OAc)\(_3\) (43.9 mg, 0.207 mmol). The purified product was obtained as a colourless gum (18.7 mg, 0.043 mmol, 63% yield). \(R_f \) = 0.28 in MeOH/CH\(_2\)Cl\(_2\) (1:9). \([\alpha]^{25}_D \) +317.6 (c 0.99, CHCl\(_3\)). IR \(\nu_{\text{max}} \) 2951, 2932, 2359, 2337, 1740, 1620 cm\(^{-1}\). \(^1H \) NMR δ 4.35 (br s, 1H, H-2), 4.13 (s, 3H, O-CH\(_3\)), 3.69-3.63 (m, 4H, H-2′′), 3.42 (br s, 1H, H-9a), 3.16-3.11 (m, 1H, H-5b), 3.09-3.05 (m, 1H, H-10), 3.01-2.96 (m, 1H, H-5a), 2.79 (br s, 2H, H-3″), 2.75 (d, J 5.5 Hz, 1H, H-7), 2.49-2.43 (m, 2H, H-1′), 2.40-2.37 (m, 2H, H-3″), 2.06 (s, 3H, H-16), 1.94 (d, J 12.5 Hz, 1H, H-1a), 1.92-1.86 (m, 1H, H-6b), 1.83-1.80 (m, 1H, H-6a), 1.79-1.75 (m, 1H, H-9), 1.71 (br s, 1H, H-1b), 1.36 (d, J 6.5 Hz, 3H, H-17). \(^{13}C \) NMR δ 169.8 (C-15), 163.0 (C-13), 148.4 (C-12), 128.1 (C-11), 112.5 (C-8), 98.8 (C-14), 83.2 (C-3), 78.9 (C-2), 61.2 (C-9a, C-2″), 59.0 (O-CH\(_3\)), 51.8 (C-1″), 49.7 (C-7), 49.6 (C-1′), 48.0 (C-9), 47.8 (C-5), 34.6 (C-10), 33.6 (C-1), 27.1 (C-6), 18.4 (C-17), 9.3 (C-16). ESIMS \(m/z \) 431.2 (100%) [M+H]+, 432.3 (5%). HRESIMS \(m/z \) 431.2163 [M+H]+, calcd for C\(_{23}\)H\(_{31}\)N\(_2\)O\(_6\) 431.2182.

3.1.8 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-[(4-ethoxycarboxyl piperazine)methyl]-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (10). Prepared using the general method described above, using the aldehyde 2 (26.6 mg, 0.074 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), ethyl 1-piperazinecarboxylate (22.0 µL, 0.148
mmol) and NaBH(OAc)$_3$ (47.1 mg, 0.222 mmol). The purified product was obtained as a colourless gum (28.9 mg, 0.058 mmol, 78% yield). $R_f = 0.33$ in MeOH/CH$_2$Cl$_2$ (1:9). $[\alpha]_D^{25} +236.7$ (c 1.93, CHCl$_3$). IR ν_{max} 2964, 2932, 2356, 2337, 1743, 1694, 1620 cm$^{-1}$. 1H NMR δ 4.34 (br s, 1H, H-2), 4.12 (s, 3H, O-CH$_3$), 4.11-4.08 (m, 2H, NCO$_2$CH$_2$CH$_3$), 3.42 (br s, 5H, H-9a, H-3”), 3.14-3.04 (m, 2H, H-5a, H-10), 3.00-2.95 (m, 1H, H-5b), 2.76 (br s, 2H, H-2”), 2.72 (d, J 6.0 Hz, 1H, H-7), 2.46 (s, 2H, H-1’), 2.34-2.32 (m, 2H, H-2”), 2.05 (s, 3H, H-16), 1.93 (d, J 12.0 Hz, 1H, H-1a), 1.89-1.84 (m, 1H, H-6a), 1.82-1.78 (m, 1H, H-6b), 1.75 (dd, J 10.0 Hz, 2.5 Hz, 1H, H-9), 1.69 (d, J 12.0 Hz, 1H, H-1b), 1.35 (d, J 7.0 Hz, 3H, H-17), 1.23 (d, J 7.5 Hz, 3H, NCO$_2$CH$_2$CH$_3$). 13C NMR δ 169.8 (C-15), 162.9 (C-13), 155.6 (NCO$_2$CH$_2$CH$_3$), 148.4 (C-12), 128.0 (C-11), 112.7 (C-8), 98.6 (C-14), 83.2 (C-3), 79.0 (C-2), 61.4 (NCO$_2$CH$_2$CH$_3$), 60.8 (C-9a), 59.0 (O-CH$_3$), 58.5 (C-1’), 54.4 (C-2”), 49.7 (C-7), 47.8 (C-5, C-9), 44.0 (C-3”), 34.6 (C-10), 33.3 (C-1), 27.2 (C-6), 18.4 (C-17), 14.8 (NCO$_2$CH$_2$CH$_3$), 9.3 (C-16). ESIMS m/z 502.0 (100%) [M+H]$^+$, 503.1 (20%). HRESIMS m/z 502.2546 [M+H]$^+$, calcd for C$_{26}$H$_{36}$N$_3$O$_5$ 502.2553.

3.1.9 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-[(4-methyl piperazine)methyl]-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (11). Prepared using the general method described above, using the aldehyde 2 (26.0 mg, 0.072 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), 1-methylpiperazine (16.2 µL, 0.145 mmol) and NaBH(OAc)$_3$ (46.0 mg, 0.217 mmol). The purified product was obtained as a colourless gum (20.7 mg, 0.047 mmol, 64% yield). $R_f = 0.09$ in MeOH/CH$_2$Cl$_2$ (1:9). $[\alpha]_D^{25} +279.4$ (c 1.38, CHCl$_3$). IR ν_{max} 2961, 2939, 2356, 2325, 1742, 1618 cm$^{-1}$. 1H NMR δ 4.42 (br s, 1H, H-2), 4.12 (s, 3H, O-CH$_3$), 3.41 (br s, 1H, H-9a), 3.16-3.10 (m, 1H, H-5a), 3.08-3.04 (m, 1H, H-10), 3.00-2.94 (m, 1H, H-5b), 2.80 (br s, 4H, H-2”), 2.75 (d, J 6.0 Hz, 1H, H-7), 2.46 (s, 2H, H-1’), 2.42 (br s, 4H, H-3”), 2.26 (s, 3H, N-CH$_3$), 2.05 (s, 3H, H-16), 1.92 (d, J 12.0 Hz, 1H, H-1a), 1.89-1.85 (m, 1H, H-6a), 1.81-1.77 (m, 1H, H-6b), 1.75 (dd, J 9.0 Hz, 2.5 Hz, 1H, H-9), 1.70 (d, J 12.0 Hz, 1H, H-1b), 1.35 (d, J 6.5 Hz, 3H, H-17). 13C NMR δ 169.8 (C-15), 162.9 (C-13), 148.5 (C-12), 128.0 (C-11), 112.8 (C-8), 98.6 (C-14), 83.2 (C-3), 79.0 (C-2), 60.8 (C-9a), 59.0 (O-CH$_3$), 58.4 (C-1’), 55.4 (C-3”), 54.5 (C-2”), 49.5 (C-7), 47.9 (C-5), 47.8 (C-9), 46.0 (N-CH$_3$), 34.6 (C-10), 33.2 (C-1), 27.2 (C-6), 18.4 (C-17), 9.3 (C-16). ESIMS m/z 444.0 (100%) [M+H]$^+$, 445.2 (10%). HRESIMS m/z 444.2501 [M+H]$^+$, calcd for C$_{26}$H$_{36}$N$_3$O$_5$ 444.2498.
3.1.10 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-anilinomethyl-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (12). Prepared using the general method described above, using the aldehyde 2 (15.9 mg, 0.044 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), aniline (13.2 µL, 0.089 mmol) and NaBH(OAc)$_3$ (28.2 mg, 0.133 mmol). The purified product was obtained as a colourless gum (3.0 mg, 0.007 mmol, 25% yield). $R_f = 0.74$ in MeOH/CH$_2$Cl$_2$ (1:9). $[\alpha]_D^{25} +272.1$ (c 0.51, CHCl$_3$). IR ν_{max} 3380, 2964, 2923, 2363, 2331, 1742, 1621 cm$^{-1}$.

1H NMR δ 7.18 (t, J 7.5 Hz, 2H, ArH), 6.73 (t, J 7.5 Hz, 1H, ArH), 6.66 (d, J 7.5 Hz, 2H, ArH), 4.42 (s, 1H, H-2), 4.14 (s, 3H, O-CH$_3$), 3.62 (br s, 1H, H-9a), 3.45 (d, J 10.5 Hz, 1H, H-1$'$), 3.19-3.16 (m, 2H, H-5a, H-1$'$), 3.14-3.10 (m, 2H, H-5b, H-10), 2.84 (d, J 6.0 Hz, 1H, H-7), 2.07 (s, 3H, H-16), 2.02 (d, J 12.5 Hz, 1H, H-1a), 2.05-1.98 (m, 1H, H-6a), 1.94-1.90 (m, 1H, H-6b), 1.89 (d, J 3.5 Hz, 1H, H-9), 1.86-1.84 (m, 1H, H-1b), 1.40 (d, J 7.0 Hz, 3H, H-17). 13C NMR δ 169.8 (C-15), 162.8 (C-13), 148.2 (C-12, ArC-N), 129.4 (ArCH), 128.2 (C-11), 118.2 (ArCH), 113.4 (ArCH), 112.4 (C-8), 98.9 (C-14), 83.1 (C-3), 79.0 (C-2), 61.7 (C-9a), 59.0 (O-CH$_3$), 49.9 (C-7), 48.0 (C-9), 47.8 (C-5), 44.2 (C-1$'$), 34.6 (C-10), 33.7 (C-1), 26.9 (C-6), 18.5 (C-17), 9.3 (C-16). ESIMS m/z 437.0 (100%) [M+H]$^+$, 438.1 (20%). HRESIMS m/z 437.2077 [M+H]$^+$, calcd for C$_{25}$H$_{29}$N$_2$O$_4$ 437.2076.

3.1.11 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-(N-benzylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (13). Prepared using the general method described above, using the aldehyde 2 (26.0 mg, 0.072 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), N-benzylamine (16.0 µL, 0.145 mmol) and NaBH(OAc)$_3$ (46.0 mg, 0.217 mmol). The purified product was obtained as a yellow gum (27.9 mg, 0.062 mmol, 86% yield). $R_f = 0.46$ in MeOH/CH$_2$Cl$_2$ (1:9). $[\alpha]_D^{25} +196.9$ (c 1.86, CHCl$_3$). IR ν_{max} 3388, 2958, 2945, 2356, 2337, 1736, 1625 cm$^{-1}$. 1H NMR (300 MHz) δ 7.34-7.29 (m, 4H, ArH), 7.25-7.23 (m, 1H, ArH), 4.33 (br s, 1H, H-2), 4.13 (s, 3H, O-CH$_3$), 3.82 (s, 2H, H-1$''$), 3.45 (br s, 1H, H-9a), 3.11-3.08 (m, 1H, H-10), 3.06-2.95 (m 2H, H-5), 2.74 (q, J 12.0 Hz, 1H, H-1$'$), 2.69 (d, J 12.0 Hz, 1H, H-1$'$), 2.65 (d, J 6.0 Hz, 1H, H-7), 2.06 (s, 3H, H-16), 1.95 (d, J 12.0 Hz, 1H, H-1a), 1.82-1.79 (m, 3H, H-6, H-9), 1.74 (dt, J 12.0 Hz, 3.0 Hz, 1H, H-1b), 1.37 (d, J 6.0 Hz, 3H, H-17). 13C NMR (75 MHz, one ArCH was not observed due to peak overlap) δ 169.8 (C-15), 163.0.
(C-13), 148.5 (C-12), 140.4 (ArC), 128.5 (ArCH), 128.0 (C-11), 127.0 (ArCH), 112.6 (C-8), 98.6 (C-14), 82.9 (C-3), 79.1 (C-2), 61.3 (C-9a), 59.0 (O-CH₃), 54.1 (C-1′′), 49.7 (C-7), 49.2 (C-1′), 48.0 (C-9), 47.8 (C-5), 34.6 (C-10), 33.7 (C-1), 27.2 (C-6), 18.4 (C-17), 9.2 (C-16). ESIMS m/z 451.0 (100%) [M+H]+, 452.3 (20%). HRESIMS m/z 451.2245 [M+H]+, calcd for C₂₆H₃₁N₂O₅ 451.2233.

3.1.12 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-(N-cyclopropylmethylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (14). Prepared using the general method described above, using the aldehyde 2 (24.8 mg, 0.069 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), (aminomethyl)cyclopropane (12.4 µL, 0.138 mmol) and NaBH(OAc)₃ (43.9 mg, 0.207 mmol). The purified product was obtained as a colourless gum (17.3 mg, 0.042 mmol, 60% yield). Rf = 0.28 in MeOH/CH₂Cl₂ (1:9). [α]D +276.5 (c 1.15, CHCl₃). IR νmax 3347, 2999, 2951, 2359, 2337, 1742, 1619 cm⁻¹. ¹H NMR δ 4.45 (br s, 1H, H-2), 4.12 (s, 3H, O-CH₃), 3.46 (br s, 1H, H-9a), 3.12-3.06 (m, 2H, H-5b, H-10), 3.02-2.97 (m, 1H, H-5a), 2.77 (s, 2H, H-1′), 2.68 (d, J 6.0 Hz, 1H, H-7), 2.54 (dd, J 12.5 Hz, 6.5 Hz, 1H, H-1″a), 2.44 (dd, J 12.5 Hz, 6.5 Hz, 1H, H-1″b), 2.05 (s, 3H, H-16), 1.99 (br s, 1H, NH), 1.94 (d, J 12.5 Hz, 1H, H-1a), 1.91-1.86 (m, 1H, H-6a), 1.84-1.79 (m, 2H, H-6b, H-9), 1.73 (dt, J 12.5 Hz, 3.5 Hz, 1H, H-1b), 1.36 (d, J 6.5 Hz, 3H, H-17), 0.96-0.89 (m, 1H, H-2″), 0.46-0.45 (m, 2H, H-3″), 0.10-0.08 (m, 2H, H-3″). ¹³C NMR δ 169.8 (C-15), 163.0 (C-13), 148.5 (C-12), 128.0 (C-11), 112.6 (C-8), 98.7 (C-14), 83.9 (C-3), 79.0 (C-2), 61.3 (C-9a), 59.0 (O-CH₃), 55.5 (C-1″), 49.9 (C-1′), 49.8 (C-7), 48.0 (C-9), 47.8 (C-5), 34.6 (C-10), 33.7 (C-1), 27.2 (C-6), 18.4 (C-17), 11.1 (C-2″), 9.3 (C-16), 3.6 (C-3″), 3.4 (C-3″). ESIMS m/z 415.1 (100%) [M+H]+, 416.2 (10%). HRESIMS m/z 415.2252 [M+H]+, calcd for C₂₃H₃₁N₂O₅ 415.2233.

3.1.13 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-(N-cyclopropylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (15). Prepared using the general method described above, using the aldehyde 2 (21.6 mg, 0.060 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), cyclopropylamine (8.2 µL, 0.120 mmol) and NaBH(OAc)₃ (38.3 mg, 0.181 mmol). The purified product was obtained as a yellow gum (22.4 mg, 0.056 mmol, 93% yield). Rf = 0.36 in MeOH/CHCl₃ (1:9). [α]D +281.4 (c 0.25,
CHCl₃). IR νmax 3364, 2961, 2356, 1742, 1620 cm⁻¹. ¹H NMR δ 4.42 (br s, 1H, H-2), 3.97 (br s, 1H, H-9a), 3.10-3.01 (m, 2H, H-5a, H-10), 2.99-2.93 (m, 1H, H-5b), 2.81 (d, J 12.0 Hz, 1H, H-1’), 2.75 (d, J 12.0 Hz, 1H, H-1”), 2.63 (d, J 6.0 Hz, 1H, H-7), 2.03 (apparent sept, J 3.0 Hz, 1H, H-1”), 2.00 (s, 3H, H-16), 1.89-1.83 (m, 1H, H-6b), 1.86 (d, J 12.0 Hz, 1H, H-1a), 1.80-1.74 (m, 2H, H-6b, H-9), 1.63 (d, J 12.0 Hz, 1H, H-1b), 1.30 (d, J 6.5 Hz, 3H, H-17), 0.36 (d, J 6.5 Hz, 2H, H-2”), 0.23-0.21 (m, 1H, H-2”). ¹³C NMR δ 169.9 (C-15), 163.0 (C-13), 148.5 (C-12), 128.0 (C-11), 112.5 (C-8), 98.6 (C-14), 82.9 (C-3), 78.9 (C-2), 61.2 (C-9a), 49.7 (C-1”), 49.6 (C-7), 47.9 (C-9), 47.8 (C-5), 34.6 (C-10), 33.5 (C-1), 31.0 (C-1”), 27.0 (C-6), 18.4 (C-17), 9.2 (C-16), 6.4 (C-2”). ESIMS m/z 400.7 (100%) [M+H]+, 401.9 (25%). HRESIMS m/z 401.2083 [M+H]+, calcd for C₂₂H₂₉N₂O₅ 401.2076.

3.1.14 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-(N-cyclopentylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (16). Prepared using the general method described above, using the aldehyde 2 (22.6 mg, 0.063 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), cyclopentylamine (12.9 µL, 0.126 mmol) and NaBH(OAc)₃ (40.0 mg, 0.189 mmol). The purified product was obtained as a yellow gum (24.4 mg, 0.057 mmol, 90% yield). Rf = 0.21 in MeOH/CHCl₃ (1:9). [α]₂⁵D +206.6 (c 0.35, CHCl₃). IR νmax 3351, 2951, 2359, 2337, 1743, 1620 cm⁻¹. ¹H NMR δ 4.38 (br s, 1H, H-2), 4.07 (s, 3H, O-CH₃), 3.39 (br s, 1H, H-9a), 3.06-3.00 (m, 2H, H-5, H-10), 2.98-2.94 (m, 2H, H-5, H-1”), 2.67 (s, 2H, H-1’), 2.61 (d, J 6.0 Hz, 1H, H-7), 2.18 (br s, 1H, NH), 1.99 (s, 3H, H-16), 1.87 (d, J 12.0 Hz, 1H, H-1a), 1.84-1.81 (m, 1H, H-6a), 1.76-1.74 (m, 3H, H-6b, H-2”), 1.65 (d, J 12.0 Hz, 1H, H-1b), 1.60-1.56 (m, 2H, H-3”), 1.48-1.44 (m, 2H, H-3”), 1.30 (d, J 6.5 Hz, 3H, H-17), 1.28-1.21 (m, 2H, H-2”). ¹³C NMR δ 169.8 (C-15), 162.9 (C-13), 148.5 (C-12), 127.9 (C-11), 112.5 (C-8), 98.5 (C-14), 82.8 (C-3), 79.0 (C-2), 61.2 (C-9a), 60.2 (C-1”), 58.9 (O-CH₃), 49.7 (C-7), 48.7 (C-1”), 47.9 (C-9), 47.7 (C-5), 34.6 (C-10), 33.6 (C-1), 33.1 (C-2”), 33.0 (C-2”), 27.1 (C-6), 24.1 (C-3”), 24.0 (C-3”), 18.4 (C-17), 9.2 (C-16). ESIMS m/z 428.9 (100%) [M+H]+. HRESIMS m/z 429.2414 [M+H]+, calcd for C₂₄H₃₃N₂O₅ 429.2389.

methoxy-3-methyl-2(5H)-furanone (17). Prepared using the general method described above, using the aldehyde 2 (23.2 mg, 0.065 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), cyclohexylamine (15.0 µL, 0.129 mmol) and NaBH(OAc)$_3$ (41.1 mg, 0.194 mmol). The purified product was obtained as a yellow gum (24.6 mg, 0.056 mmol, 86% yield). $R_f = 0.30$ in MeOH/CHCl$_3$ (1:9). $[\alpha]_{D}^{25} +250.9$ (c 1.05, CHCl$_3$). IR ν_{max} 3377, 2929, 2856, 2363, 2337, 1743, 1621 cm$^{-1}$. 1H NMR δ 4.43 (br s, 1H, H-2), 4.12 (s, 3H, O-CH$_3$), 3.45 (br s, 1H, H-9a), 3.11-3.06 (m, 2H, H-5b, H-10), 3.02-2.96 (m, 1H, H-5a), 2.79 (d, $J_{12.0}$ Hz, 1H, H-1$^{\prime}$), 2.72 (d, $J_{12.0}$ Hz, 1H, H-1$^{\prime}$), 2.67 (d, $J_{6.0}$ Hz, 1H, H-7), 2.42-2.38 (m, 1H, H-6a, 2$^{\prime}$), 1.73-1.69 (m, 3H, H-1b, H-3$^{\prime}$), 1.58 (d, $J_{12.0}$ Hz, 1H, H-4$^{\prime}$), 1.36 (d, $J_{6.0}$ Hz, 3H, H-17), 1.28-1.21 (m, 2H, H-3$^{\prime\prime}$), 1.18-1.11 (m, 1H, H-4$^{\prime\prime}$), 1.09-1.04 (m, 2H, H-2$^{\prime\prime}$). 13C NMR δ 169.8 (C-15), 163.0 (C-13), 148.5 (C-12), 128.0 (C-11), 112.6 (C-8), 98.7 (C-14), 83.0 (C-3), 79.1 (C-2), 61.3 (C-9a), 59.0 (O-CH$_3$), 57.5 (C-1$^{\prime\prime}$), 49.8 (C-7), 48.1 (C-9), 47.8 (C-5), 47.3 (C-1$^{\prime}$), 34.6 (C-10), 33.7 (C-2$^{\prime\prime}$), 33.6 (C-1), 33.3 (C-2$^{\prime}$), 27.2 (C-6), 26.3 (C-4$^{\prime\prime}$), 25.1 (C-3$^{\prime}$), 25.0 (C-3$^{\prime\prime}$), 18.4 (C-17), 9.3 (C-16). ESIMS m/z 443.0 (100%) [M+H]$^+$. HRESIMS m/z 443.2555 [M+H]$^+$, calcd for C$_{25}$H$_{35}$N$_2$O$_5$ 443.2546.

Prepared using the general method described above, using the aldehyde 2 (29.7 mg, 0.083 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), (S)-1-aminoethylbenzene (21.3 µL, 0.165 mmol) and NaBH(OAc)$_3$ (105.2 mg, 0.496 mmol). The purified product was obtained as a yellow gum (31.1 mg, 0.067 mmol, 81% yield). $R_f = 0.38$ in MeOH/CHCl$_3$ (1:9). $[\alpha]_{D}^{25} +166.0$ (c 2.07, CHCl$_3$). IR ν_{max} 3015, 2958, 2359, 2334, 1742, 1621 cm$^{-1}$. 1H NMR δ 7.34-7.30 (m, 2H, ArH), 7.26 (s, 2H, ArH), 7.25-7.20 (m, 1H, ArH), 4.45 (br s, 1H, H-2), 4.12 (s, 3H, O-CH$_3$), 3.71 (d, $J_{6.0}$ Hz, 1H, H-1$^{\prime\prime}$a), 3.44 (br s, 1H, H-9a), 3.09 (br s, 1H, H-10), 2.93 (br s, 2H, H-5), 2.64 (d, $J_{12.0}$ Hz, 1H, H-1$^{\prime}$), 2.62 (d, $J_{6.0}$ Hz, 1H, H-7), 2.53 (d, $J_{12.0}$ Hz, 1H, H-1$^{\prime}$), 2.06 (s, 3H, H-16), 1.98-1.93 (m, 1H, H-1a), 1.80-1.72 (m, 4H, H-1b, H-6a,b, H-9), 1.36 (d, $J_{6.0}$ Hz, 3H, H-1$^{\prime\prime}$), 1.33 (d, $J_{6.0}$ Hz, 3H, H-1$^{\prime\prime\prime}$-CH$_3$). 13C NMR δ 169.8 (C-15), 162.9 (C-13), 148.5 (C-12), 145.9 (ArC), 128.5 (ArCH), 127.9 (C-11), 126.9 (ArCH), 126.4 (ArCH), 112.5 (C-8), 98.6 (C-14), 82.8 (C-3), 79.1 (C-2), 61.2 (C-9a), 59.0 (O-CH$_3$), 58.5

21
(C-1’’), 49.6 (C-7), 47.8 (C-5, C-9, C-1’’), 34.6 (C-10), 33.6 (C-1), 27.1 (C-6), 24.3 (1’’-CH$_3$), 18.4 (C-17), 9.2 (C-16). ESIMS m/z 464.6 (100%) [M+H]$^+$, 465.2 (25%). HRESIMS m/z 465.2398 [M+H]$^+$, calcd for C$_{27}$H$_{33}$N$_2$O$_5$ 465.2389.

3.1.17 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-[N-(2R-phenylethyl)aminomethyl]-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (19). Prepared using the general method described above, using the aldehyde 2 (30.9 mg, 0.086 mmol), dichloroethane (2.0 mL), acetic acid (0.2 mL), (R)-1-aminoethylbenzene (21.0 µL, 0.172 mmol) and NaBH(OAc)$_3$ (109.5 mg, 0.517 mmol). The purified product was obtained as a yellow gum (24.7 mg, 0.053 mmol, 62% yield). R$_f$ = 0.41 in MeOH/CHCl$_3$ (1:9). $\alpha$$_{25}^\circ$ $+100.9$ (c 1.65, CHCl$_3$). IR ν_{max} 3030, 2961, 2936, 2356, 2340, 1742, 1620 cm$^{-1}$. 1H NMR δ 7.34-7.28 (m, 2H, H-6’’), 7.30 (d, J 2.5 Hz, 2H, ArH), 7.24-7.20 (m, 1H, ArH), 4.38 (br s, 1H, H-2), 4.12 (s, 3H, O-CH$_3$), 3.74 (q, J 6.5 Hz, 1H, H-1’’b), 3.46 (br s, 1H, H-9a), 3.10-3.04 (m, 2H, H-5, H-10), 3.00-2.95 (m, 1H, H-5), 2.62 (d, J 12.0 Hz, 1H, H-1’’), 2.55 (d, J 4.5 Hz, 1H, H-7), 2.46 (d, J 12.0 Hz, 1H, H-1’), 2.04 (s, 3H, H-16), 1.95 (d, J 13.0 Hz, 1H, H-1a), 1.79-1.77 (m, 4H, H-1b, H-6, H-9), 1.36 (d, J 6.5 Hz, 3H, H-17), 1.31 (d, J 6.5 Hz, 3H, 1’’-CH$_3$). 13C NMR δ 170.0 (C-15), 163.1 (C-13), 148.7 (C-12), 145.9 (ArC), 128.8 (ArCH), 128.0 (C-11), 127.2 (ArCH), 126.8 (ArCH), 112.7 (C-8), 98.7 (C-14), 83.1 (C-3), 79.1 (C-2), 61.3 (C-9a), 59.1 (O-CH$_3$), 59.0 (C-1’’), 49.8 (C-7), 48.1 (C-9, C-1’), 47.9 (C-5), 34.8 (C-10), 33.8 (C-1), 27.2 (C-6), 25.2 (1’’-CH$_3$), 18.5 (C-17), 9.4 (C-16). ESIMS m/z 464.8 (100%) [M+H]$^+$, 465.9 (25%). HRESIMS m/z 465.2390 [M+H]$^+$, calcd for C$_{27}$H$_{33}$N$_2$O$_5$ 465.2389.

3.1.18 Methylation reaction: Preparation of (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-[N-(methyl-N-allylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (20). Prepared using the general method described above, using formaldehyde solution (ca. 400g/L, 3.75 µL, 0.245 mmol) as the aldehyde component, dichloroethane (2.0 mL), acetic acid (0.2 mL), the amine 6 (9.8 mg, 0.024 mmol) as the amine component and NaBH(OAc)$_3$ (31.2 mg, 0.147 mmol). The reaction was left for 16 h. The purified product was obtained as a yellow gum (9.5 mg, 0.023 mmol, 94% yield). R$_f$ = 0.37 in MeOH/CH$_2$Cl$_2$ (1:9). $\alpha$$_{25}^\circ$ $+263.6$ (c 0.63, CHCl$_3$). IR ν_{max} 2955, 2920, 2847, 2359, 1743, 1621 cm$^{-1}$. 1H NMR (300 MHz) δ 5.89-5.75 (m, 1H, H-2’’), 5.15 (d, J 17.0 Hz, 1H, H-
3\(^{(E)}\), 5.10 (d, \(J\ 9.0\ Hz, 1H, H-3''(Z)\)), 4.38 (br s, 1H, H-2), 4.13 (s, 3H, O-CH\(_3\)), 3.44 (br s, 1H, H-9a), 3.23 (dd, \(J\ 13.8\ Hz, 6.3\ Hz, 1H, H-1''b\)), 3.18-3.14 (m, 1H, H-5a), 3.13-3.06 (m, 1H, H-10), 3.03-2.98 (m, 1H, H-5b), 2.92 (dd, \(J\ 13.8\ Hz, 6.6\ Hz, 1H, H-1''a\)), 2.76 (d, \(J\ 5.7\ Hz, 1H, H-7\)), 2.53 (d, \(J\ 13.8\ Hz, 1H, H-1'\)), 2.42 (d, \(J\ 13.8\ Hz, 1H, H-1'\)), 2.30 (s, 3H, N-CH\(_3\)), 2.06 (s, 3H, H-16), 1.94 (d, \(J\ 12.0\ Hz, 1H, H-1a\)), 1.91-1.81 (m, 2H, H-6), 1.79-1.72 (m, 2H, H-1b, H-9), 1.36 (d, \(J\ 6.6\ Hz, 3H, H-17\)). \(^{13}\)C NMR (75 MHz) \(\delta\ 169.9\ (C-15), 163.0\ (C-13), 148.6\ (C-12), 136.0\ (C-2''), 128.0\ (C-11), 117.6\ (C-3''), 112.8\ (C-8), 98.7\ (C-14), 83.4\ (C-3), 79.0\ (C-2), 62.4\ (C-1''), 60.8\ (C-9a), 59.0\ (O-CH\(_3\)), 56.9\ (C-1''), 49.7\ (C-7), 47.9\ (C-5, C-9), 44.2\ (N-CH\(_3\)), 34.7\ (C-10), 33.3\ (C-1), 27.1\ (C-6), 18.5\ (C-17), 9.3\ (C-16). ESIMS \(m/z\ 415.2\ (100\%\) \[M+H\]^+\), 416.3\ (10\%). HRESIMS \(m/z\ 415.2220\ [M+H]^+\), calcld for C\(_{23}\)H\(_{31}\)N\(_2\)O\(_5\) 415.2233.

3.1.19 Carbamylation reaction: Preparation of (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-(N-ethoxycarbonyl-N-cyclopropylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (21). To a solution of the amine \(15\) (11.2 mg, 0.028 mmol) in THF/saturated aqueous NaHCO\(_3\) solution (2:1) (3.0 mL) at 0 °C was added ethyl chloroformate (4.5 \(\mu\)L, 0.056 mmol) and the reaction was left to stir for 3 h. The mixture was quenched with saturated aqueous NaHCO\(_3\) solution (10 mL) and was directly extracted with CH\(_2\)Cl\(_2\) (3 × 20 mL). The combined organic extracts were washed with brine and dried (MgSO\(_4\)) before being concentrated in vacuo. The concentrated residue was purified by column chromatography using gradient elution from CH\(_2\)Cl\(_2\) to CH\(_2\)Cl\(_2\)/MeOH (9:1) to give 21 as a colourless gum (10.0 mg, 0.021 mmol, 76% yield). \(R_f = 0.45\) in MeOH/CHCl\(_3\) (1:9). \([\alpha]_{D}^{25} +164.0\) (c 0.91, CHCl\(_3\)). IR \(\nu_{\text{max}}\) 2961, 2932, 2359, 1744, 1690, 1621 cm\(^{-1}\). \(^1\)H NMR \(\delta\ 4.63\ (br\ s, 1H, H-2), 4.16\ (q, \(J\ 7.5\ Hz, 2H, NCO_2CH_2CH_3)), 4.13\ (s, 3H, O-CH\(_3\)), 3.62\ (d, \(J\ 13.0\ Hz, 1H, H-1'\)), 3.44\ (br\ s, 1H, H-9a), 3.29\ (d, \(J\ 13.0\ Hz, 1H, H-1'\)), 3.28-3.22\ (m, 1H, H-5a), 3.10-2.99\ (m, 2H, H-5b, H-10), 2.77\ (d, \(J\ 6.0\ Hz, 1H, H-7\)), 2.64\ (br\ s, 1H, H-1''), 2.10-2.02\ (m, 1H, H-6a), 2.05\ (s, 3H, H-16), 1.94\ (d, \(J\ 12.0\ Hz, 1H, H-1a\)), 1.84-1.80\ (m, 2H, H-6b, H-9), 1.72\ (d, \(J\ 12.0\ Hz, 1H, H-1b\)), 1.36\ (d, \(J\ 6.5\ Hz, 3H, H-17\)), 1.26\ (t, \(J\ 7.5\ Hz, 3H, NCO_2CH_2CH_3\)), 0.88-0.82\ (m, 1H, H-2''), 0.78-0.74\ (m, 1H, H-2''), 0.74-0.67\ (m, 1H, H-2'''), 0.65-0.56\ (m, 1H, H-2'''). \(^{13}\)C NMR (the carbamate C=O signal was not observed) \(\delta\ 169.7\ (C-15), 162.9\ (C-13), 148.3\ (C-12), 128.1\ (C-11), 112.5\ (C-8), 98.8\ (C-14), 83.5\ (C-3), 78.2\ (C-2), 60.7\ (C-9a), 61.7\ (NCO_2CH_2CH_3), 59.0\ (O-CH\(_3\)), 49.1\ (C-7), 48.2\ (C-5), 47.7\ (C-9), 47.0\ (C-1''), 34.6\ (C-10), 33.0\ (C-1), 29.3\ (C-1''), 27.1\ (C-6), 18.4\ (C-17), 14.7\ (NCO_2CH_2CH_3), 10.0\ (C-2'''), 9.3
3.1.20 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-(N-ethoxycarboxyl-N-cyclopentylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (22). Prepared using the general method described above, using the amine 16 (11.2 mg, 0.026 mmol) and ethyl chloroformate (5.0 µL, 0.052 mmol). The purified product was obtained as a yellow gum (7.3 mg, 0.015 mmol, 56% yield).

\[R_f = 0.45 \text{ in MeOH/CHCl}_3 (1:9). \]

\[[\alpha]_{D}^{25} +205.6 (c 0.61, \text{CHCl}_3). \]

IR \(\nu_{\text{max}} \) 2958, 2888, 2362, 2337, 1737, 1675, 1616 cm\(^{-1}\). \(^1H \) NMR \(\delta 4.50 \) (br s, 1H, H-2), 4.18-4.10 (m, 2H, NCO\(_2\)CH\(_2\)CH_3), 4.13 (s, 3H, O-CH_3), 3.70-3.63 (m, 2H, H-1\(^{1}\), H-1\(^{1}\)), 3.46 (br s, 1H, H-9a), 3.24 (d, J 15.5 Hz, 1H, H-1\(^{1}\)), 3.22-3.16 (m, 1H, H-5), 3.09-3.00 (m, 2H, H-5, H-10), 2.82 (d, J 5.5 Hz, 1H, H-7), 2.10-2.02 (m, 1H, H-6a), 2.06 (s, 3H, H-16), 1.93 (d, J 11.5 Hz, 1H, H-1a), 1.84-1.72 (m, 7H, H-1b, H-6b, H-9, H-2\(^{**}\)), 1.48 (br s, 4H, H-3\(^{**}\)), 1.36 (d, J 6.0 Hz, 3H, H-16), 1.26 (t, J 6.0 Hz, 3H, NCO\(_2\)CH\(_2\)CH_3). \(^{13}C \) NMR (the carbamate C=O signal was not observed) \(\delta 169.8 \) (C-15), 162.9 (C-13), 148.4 (C-12), 128.0 (C-11), 112.6 (C-8), 98.8 (C-14), 83.7 (C-3), 77.6 (C-2), 62.6 (C-1\(^{1}\)), 61.4 (NCO\(_2\)CH\(_2\)CH_3), 60.9 (C-9a), 59.0 (O-CH_3), 49.4 (C-7, C-1\(^{1}\)), 48.2 (C-5), 47.8 (C-9), 34.7 (C-10), 33.0 (C-1), 27.1 (C-6), 24.9 (C-2\(^{**}\)), 24.8 (C-3\(^{**}\)), 18.4 (C-17), 14.8 (NCO\(_2\)CH\(_2\)CH_3), 9.3 (C-16). ESIMS m/z 500.7 (100%) [M+H]\(^+\), 501.9 (20%). HRESIMS m/z 501.2622 [M+H]\(^+\), calcd for C\(_{25}\)H\(_{33}\)N\(_2\)O\(_4\) 501.2601.

3.1.21 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-(N-ethoxycarboxyl-N-cyclohexylaminomethyl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (23). Prepared using the general method described above, using the amine 17 (11.1 mg, 0.025 mmol), 2:1 THF/saturated aqueous NaHCO\(_3\) solution (3.0 mL) and ethyl chloroformate (4.0 µL, 0.050 mmol). The purified product was obtained as a yellow gum (10.2 mg, 0.020 mmol, 80% yield).

\[R_f = 0.45 \text{ in MeOH/CHCl}_3 (1:9). \]

\[[\alpha]_{D}^{25} +192.6 (c 0.78, \text{CHCl}_3). \]

IR \(\nu_{\text{max}} \) 2929, 2366, 1744, 1684, 1621 cm\(^{-1}\). \(^1H \) NMR \(\delta 4.50 \) (br s, 1H, H-2), 4.18-4.10 (m, 2H, NCO\(_2\)CH\(_2\)CH_3), 4.13 (s, 3H, O-CH_3), 3.64 (br s, 1H, H-1\(^{1}\)), 3.46 (br s, 1H, H-9a), 3.41 (s, 1H, H-1\(^{1}\)), 3.20 (d, J 15.0 Hz, 1H, H-5), 3.12-3.01 (m, 2H, H-5, H-10), 2.82 (d, J 6.0 Hz, 1H, H-7), 2.07 (s, 3H, H-16), 1.94 (d, J 12.5 Hz, 1H, H-1a), 1.87-1.72 (m, 11H, H-1b, H-6, H-9, H-3\(^{**}\), H-4\(^{**}\)), 1.61
(apparent d, J 9.0 Hz, 1H, H-2”), 1.37 (d, J 6.5 Hz, 3H, H-17), 1.27 (t, J 7.0 Hz, 3H, NCO₂CH₂CH₃), 1.22 (apparent d, J 13.0 Hz, 2H, H-3”), 1.14-1.08 (m, 1H, H-2”). ¹³C NMR (the carbamate C=O signal was not observed) δ 169.8 (C-15), 162.9 (C-13), 148.4 (C-12), 128.0 (C-11), 112.7 (C-8), 98.8 (C-14), 83.7 (C-3), 77.6 (C-2), 70.8 (C-1”), 61.4 (C-9a), 61.2 (NCO₂CH₂CH₃), 59.0 (O-CH₃), 48.5 (C-1’), 48.2 (C-5, C-7), 47.8 (C-9), 34.7 (C-10), 33.0 (C-1), 27.2 (C-4”), 26.6 (C-6, C-3”), 25.6 (C-2”), 18.4 (C-17), 14.8 (NCO₂CH₂CH₃), 9.3 (C-16). ESIMS m/z 514.5 (100%) [M+H]^+, 515.3 (40%). HRESIMS m/z 515.2726 [M+H]^+, calcd for C₂₈H₃₉N₂O₇ 515.2757.

3.1.2 Guanidination reaction: Preparation of (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-hexahydro-7b-1-[[[(1,1-dimethylethoxy)carbonyl]amino][((1,1-dimethylethoxy)carbonyl)imino]methylamino]methyl]-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene]furo[2,3,4-g]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (24). To a solution of the amine 3 (8.8 mg, 0.024 mmol) in dry CH₂Cl₂ (2.0 mL) was added 1,3-di-Boc-2-(trifluoromethylsulfonyl)-guanidine (9.2 mg, 0.024 mmol) at rt and the reaction mixture was left to stir for 24 h. The mixture was quenched with saturated aqueous NaHCO₃ solution (10 mL) and then extracted with CH₂Cl₂ (3 x 20 mL). The combined organic extracts were washed with brine and dried (MgSO₄) before being concentrated in vacuo. The concentrated residue was purified by column chromatography using gradient elution from CH₂Cl₂ to CH₂Cl₂/MeOH (9:1) to give a white gum (7.9 mg, 0.013 mmol, 54% yield). Rᶠ = 0.45 in MeOH/CH₂Cl₂ (1:9). ¹H NMR δ 4.44 (br s, 1H, H-2), 4.15 (s, 3H, O-CH₃), 3.73 (d, J 13.5 Hz, 2H, H-1’), 3.54 (br s, 1H, H-9a), 3.28-3.22 (m, 1H, H-5a), 3.12-3.04 (m, 2H, H-5b, H-10), 3.08 (s, 3H, N-CH₃), 2.74 (d, J 5.5 Hz, 1H, H-7), 2.08 (s, 3H, H-16), 2.01 (d, J 12.5 Hz, 1H, H-1a), 1.99-1.89 (m, 2H, H-6), 1.83 (dd, J 10.0 Hz, 3.5 Hz, 1H, H-9), 1.75 (d, J 12.0 Hz, 1H, H-1b), 1.67 (br s, 1H, NH), 1.47 (s, 18H, CO₂C(CH₃)₃), 1.39 (d, J 6.5 Hz, 3H, H-17). ¹³C NMR (The signals for C-1’’ and the Boc carbonyls were not observed.) δ 169.6 (C-15), 162.6 (C-13), 147.6 (C-12), 128.0 (C-11), 112.0 (C-8), 98.7 (C-14), 83.8 (C-3), 76.5 (C-2), 60.2 (C-9a), 58.9 (O-CH₃), 52.4 (C-1’), 50.4 (C-7), 47.8 (C-5), 47.5 (C-9), 40.0 (N-CH₃), 34.2 (C-10), 33.4 (C-1), 28.2 (CO₂C(CH₃)₃), 26.4 (C-6), 18.2 (C-17), 9.1 (C-16). ESIMS m/z 616.6 (100%) [M+H]^+, 617.4 (80%). HRESIMS m/z 617.3188 [M+H]^+, calcd for C₃₁H₄₅N₄O₉ 617.3187.
3.1.23 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-[[aminoiminomethyl]methylamino]methyl]-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanoyl hydrochloride (25). To a solution of 24 (7.9 mg, 0.013 mmol) in dry CH$_2$Cl$_2$ (1.0 mL) was added TFA (1.0 mL) at rt and the reaction mixture was left to stir for 3 h. The solvent was removed under vacuum. To the residue was added hydrogen chloride in ether (2.0 mL, 1 M) and concentrated under vacuum. The desired product was isolated as its hydro chloride salt by dissolution in MeOH and precipitation by the addition of diethyl ether as a white solid salt (4.3 mg, 0.010 mmol, 52% yield). $\alpha$$_{D}^{25}$ +191.2 (c 0.23, CH$_3$OH).

1H NMR (CD$_3$OD, a very broad spectrum was observed, therefore only the methyl signals are reported) δ 4.23 (s, 3H, O-CH$_3$), 3.25 (s, 3H, N-CH$_3$), 2.07 (s, 3H, H-16), 1.47 (d, J 6.0 Hz, 3H, H-17).

13C NMR (CD$_3$OD) The signals for carbons at C-3, C-5, C-9 and C-9a were not observed. δ 172.0 (C-15), 164.8 (C-13), 160.0 (C-1′′), 149.7 (C-12), 129.4 (C-11), 112.5 (C-8), 99.6 (C-14), 76.5 (C-2), 58.9 (O-CH$_3$), 51.0 (C-7), 47.3 (C-1′), 38.8 (C-10), 34.3 (N-CH$_3$), 32.2 (C-1), 24.4 (C-6), 16.8 (C-17), 7.9 (C-16). ESIMS m/z 416.7 (100%) [M+H]$^+$. HRESIMS m/z 417.2155 [M+H]$^+$, calcd for C$_{21}$H$_{29}$N$_4$O$_5$ 417.2138.

3.1.24 Alkynylation reaction: Preparation of (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-hexahydro-7b-1-ethynyl-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (26). To a mixture of the aldehyde 2 (151 mg, 0.420 mmol) and K$_2$CO$_3$ (69.7 mg, 0.504 mmol) in MeOH:MeCN (1:3) (8.0 mL) at rt was added the Bestmann-Ohira reagent (97 mg, 0.504 mmol) and the reaction mixture was left to stir for 24 h. The mixture was quenched with saturated aqueous NaHCO$_3$ solution (10 mL) and was extracted with diethyl ether (3 × 20 mL). The combined organic extracts were washed with brine and dried over MgSO$_4$ before being concentrated in vacuo. The concentrated residue was purified by column chromatography using gradient elution from CH$_2$Cl$_2$ to CH$_2$Cl$_2$/MeOH (98:2) to give 26 as a white gum (113.2 mg, 0.319 mmol, 76% yield). A small sample was crystallized from CH$_2$Cl$_2$. Mp 174-176 °C (decomposed). R_f = 0.30 in MeOH/EtOAc (1:9). $\alpha$$_{D}^{25}$ +292.8 (c 0.66, CHCl$_3$). IR ν_{max} 3249, 2958, 2917, 2366, 1744, 1627 cm$^{-1}$. 1H NMR (CDCl$_3$) δ 4.57 (br s, 1H, H-2), 4.13 (s, 3H, O-CH$_3$), 3.51 (br s, 1H, H-9a), 3.40-3.34 (m, 1H, H-5a), 3.11-3.05 (m, 2H, H-5b, H-10), 3.04 (d, J 6.0 Hz, 1H, H-7), 2.54 (s, 1H, H-2′), 2.17-2.10 (m, 1H, H-6a), 2.06 (s, 3H, H-16), 2.00 (d, J 12.5 Hz, 1H, H-1a), 1.91 (dt, J 12.5 Hz, 3.0 Hz, 1H, H-1b), 1.89-1.84 (m, 1H, H-6b), 1.77 (dd, J 10.0 Hz, 1
3.0 Hz, 1H, H-9), 1.36 (d, J 6.5 Hz, 3H, H-17). 13C NMR (CDCl$_3$) δ 169.7 (C-15), 162.8 (C-13), 147.8 (C-12), 128.2 (C-11), 112.0 (C-8), 98.9 (C-14), 81.2 (C-3), 80.9 (C-2), 75.2 (C-1′), 74.6 (C-2′), 60.7 (C-9a), 59.0 (O-C$_3$H$_5$), 54.4 (C-7), 48.6 (C-5), 47.3 (C-9), 34.6 (C-10), 33.5 (C-1), 27.0 (C-6), 18.3 (C-17), 9.3 (C-16). ESIMS m/z 356.1 (100%) [M+H]$^+$. HRESIMS m/z 356.1459 [M+H]$^+$, calcd for C$_{20}$H$_{22}$NO$_5$ 356.1498.

3.1.25 Click reaction method A: Preparation of (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-hexahydro-7b-1-(1-benzyl-1H-1,2,3-triazol-4-yl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (27). A mixture of the alkyne 26 (12.7 mg, 0.034 mmol), benzylbromide (4.8 µL, 0.040 mmol), sodium azide (2.6 mg, 0.040 mmol) and copper powder (2.0 mg) in tBuOH:H$_2$O (1:1) (1.0 mL) was treated with 1M aqueous CuSO$_4$ (0.1 mL). The mixture was stirred and heated in a microwave reactor at 125 °C for 10 min (10 W). The mixture was quenched with saturated aqueous NaHCO$_3$ solution (10 mL) and was directly extracted with diethyl ether (3×20 mL). The combined organic extracts were washed with brine and dried (MgSO$_4$) before being concentrated in vacuo. The concentrated residue was purified by column chromatography using gradient elution from CH$_2$Cl$_2$ to CH$_2$Cl$_2$/MeOH (9:1) to give a yellow gum (3.8 mg, 0.008 mmol, 23% yield). R_f = 0.11 in MeOH/EtOAc (5:95). [α]$^\circ_D$ +207.6 (c 0.25, CHCl$_3$). 1H NMR δ 7.34 (s, 1H, C-5′), 7.32-7.28 (m, 3H, ArH), 7.22-7.21 (m, 2H, ArH), 5.44 (d, J 2.5 Hz, 2H, C-1″′), 4.41 (br s, 1H, H-2), 4.07 (s, 3H, O-CH$_3$), 3.51 (br s, 1H, H-9a), 3.30 (d, J 5.5 Hz, 1H, H-7), 3.09-3.04 (m, 1H, H-10), 3.03-2.99 (m, 2H, H-5), 2.00 (s, 3H, H-16), 1.96 (d, J 12.0 Hz, 1H, H-1a), 1.92-1.86 (m, 3H, H-1b, H-6a, H-9), 1.84-1.81 (m, 1H, H-6b), 1.33 (d, J 6.5 Hz, 3H, H-17). 13C NMR δ 169.8 (C-15), 162.9 (C-13), 148.3 (C-12), 147.8 (ArC), 134.5 (C-4′), 129.2 (ArCH), 128.9 (ArCH), 128.3 (ArCH), 128.1 (C-11), 120.9 (C-5′), 112.7 (C-8), 98.7 (C-14), 81.0 (C-2), 79.9 (C-3), 61.1 (C-9a), 59.0 (O-C$_3$H$_5$), 54.4 (C-1″′), 52.1 (C-7), 48.6 (C-5), 47.7 (C-9), 34.6 (C-10), 33.3 (C-1), 27.2 (C-6), 18.4 (C-17), 9.2 (C-16). ESIMS m/z 489.1 (100%) [M+H]$^+$. HRESIMS m/z 489.2121 [M+H]$^+$, calcd for C$_{27}$H$_{29}$N$_4$O$_5$ 489.2138.

3.1.26 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-[1-(3-phenylpropyl)-1H-1,2,3-triazol-4-yl]-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (28). Prepared using method A, from the alkyne 26 (15.0 mg, 0.042 mmol), bromopropylbenzene (9 µL, 0.060 mmol), sodium azide
(3.9 mg, 0.060 mmol), copper powder (2.5 mg), 'BuOH/H2O (1:1) (1.0 mL) and 1 M aqueous CuSO4 (0.1 mL). The mixture was heated in a microwave reactor at 125 °C for 10 min (10 W). The product was obtained as a white gum (4.0 mg, 0.008 mmol, 18% yield). \(R_f = 0.22 \) in MeOH/EtOAc (2:8). \([\alpha]^{25}_D +178.4 \) (c 0.27, CHCl3).

1H NMR \(\delta \) 7.40 (s, 1H, H-5\(^{\prime}\)), 7.21 (d, \(J 8.0 \) Hz, 2H, ArH), 7.09 (d, \(J 7.5 \) Hz, 1H, ArH), 4.42 (br s, 1H, H-2), 4.27 (t, \(J 7.0 \) Hz, 2H, H-1\(^{\prime}\)), 4.08 (s, 3H, O-CH\(_3\)), 3.53 (br s, 1H, H-9a), 3.30 (d, \(J 6.0 \) Hz, 1H, H-7), 3.10-3.06 (m, 1H, H-10), 3.06-3.02 (m, 2H, H-5), 2.60 (t, \(J 7.5 \) Hz, 2H, H-3\(^{\prime}\)), 2.18 (quint, \(J 7.5 \) Hz, 2H, H-2\(^{\prime}\)), 2.00 (s, 3H, H-16), 1.99 (d, \(J 14.0 \) Hz, 1H, H-1a), 1.90-1.87 (m, 2H, H-1b, H-6a), 1.86-1.82 (m, 2H, H-6b, H-9), 1.34 (d, \(J 6.5 \) Hz, 3H, H-17).

13C NMR \(\delta \) 169.8 (C-15), 163.0 (C-13), 148.3 (C-12), 137.1 (ArC), 129.9 (ArCH), 128.9 (C-11), 128.2 (C-4\(^{\prime}\)), 120.6 (ArCH), 121.0 (C-5\(^{\prime}\)), 112.7 (C-8), 98.6 (C-14), 81.0 (C-2), 79.8 (C-3), 61.1 (C-9a), 59.0 (O-CH\(_3\)), 52.1 (C-7), 49.7 (C-1\(^{\prime}\)), 47.7 (C-9), 47.5 (C-5), 34.6 (C-10), 33.3 (C-1), 32.6 (C-3\(^{\prime}\)), 31.6 (C-2\(^{\prime}\)), 27.2 (C-6), 18.3 (C-17), 9.2 (C-16). ESIMS \(m/z \) 517.4 (100%) [M+H]\(^+\). HRESIMS \(m/z \) 517.2439 [M+H]\(^+\), calcd for C\(_{29}\)H\(_{33}\)N\(_4\)O\(_5\) 517.2451.

3.1.27 Click reaction Method B: Preparation of (5Z)-5-[(2S,2aR,6S,7aS,7bS,8R,9S)-hexahydro-7b-1-(1-phenyl-1H-1,2,3-triazol-4-yl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-\(gh\)]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (29). To a solution of the alkyne 26 (16.2 mg, 0.046 mmol), Cu(OAc)\(_3\) (0.8 mg, 0.005 mmol) and sodium ascorbate (13.6 mg, 0.068 mmol) in MeOH:H\(_2\)O (1:1) (1.0 mL) at rt was added 0.09 M phenylazide in MeOH (1.0 mL) and the reaction mixture was left to stir for 3 h. The mixture was quenched with saturated aqueous NaHCO\(_3\) solution (10 mL) and was directly extracted with CH\(_2\)Cl\(_2\) (3 \(\times \) 20 mL). The combined organic extracts were washed with brine and dried (MgSO\(_4\)) before being concentrated in vacuo. The concentrated residue was purified by column chromatography using gradient elution from CH\(_2\)Cl\(_2\) to CH\(_2\)Cl\(_2\)/MeOH (9:1) to give a yellow gum (7.2 mg, 0.015 mmol, 33% yield). \(R_f = 0.37 \) in MeOH/CH\(_2\)Cl\(_2\) (1:9). \([\alpha]^{25}_D +229.9 \) (c 0.48, CHCl3).

1H NMR \(\delta \) 7.95 (s, 1H, H-5\(^{\prime}\)), 7.74 (d, \(J 8.0 \) Hz, 2H, ArH), 7.54-7.51 (m, 2H, ArH), 7.44 (t, \(J 7.5 \) Hz, 1H, ArH), 4.58 (s, 1H, H-2), 4.16 (s, 3H, O-CH\(_3\)), 3.64 (br s, 1H, H-9a), 3.50 (d, \(J 5.5 \) Hz, 1H, H-7), 3.24-3.12 (m, 3H, H-5, H-10), 2.12-2.07 (m, 1H, H-1a), 2.09 (s, 3H, H-16), 2.05-2.02 (m, 2H, H-1b, H-6a), 2.00-1.98 (m, 1H, H-6b), 1.97-1.93 (m, 1H, H-9), 1.43 (d, \(J 7.0 \) Hz, 3H, H-17). \(13^C \) NMR (one ArCH was not observed due to peak overlap) \(\delta \) 169.8 (C-15), 163.0 (C-13), 148.3 (C-12), 137.1 (ArC), 129.9 (ArCH), 128.9 (C-11), 128.2 (C-4\(^{\prime}\)), 120.6 (ArCH), 119.4 (C-5\(^{\prime}\)), 112.7
(C-8), 98.9 (C-14), 81.2 (C-2), 80.0 (C-3), 61.3 (C-9a), 52.3 (C-7), 48.7 (C-5), 47.9 (C-9), 34.7 (C-10), 33.4 (C-1), 27.3 (C-6), 18.5 (C-17), 9.3 (C-16). ESIMS m/z 475.1 (100%) [M+H]^+. HRESIMS m/z 475.1972 [M+H]^+, calcd for C_{26}H_{27}N_{4}O_{5} 475.1981.

3.1.28 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-[3-(2-propyisoindoline-1,3-dionyl)-1H-1,2,3-triazol-4-yl]-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (30). Prepared using method B, from the alkyne 26 (12.1 mg, 0.034 mmol), N-propylphthalimide azide (0.50 mL, 0.187 M in THF, 0.068 mmol), sodium ascorbate (10 mg, 0.051 mmol) and Cu(OAc)_2 (0.6 mg, 0.003 mmol). The product was obtained as a colourless gum (9.1 mg, 0.016 mmol, 46% yield). R_f = 0.15 in MeOH/EtOAc (1:9). [α]_D^{25} +131.4 (c 0.61, CHCl_3). 1H NMR δ 7.76-7.74 (m, 2H, ArH), 7.67-7.66 (m, 2H, ArH), 7.65 (s, 1H, H-5′), 4.41 (br s, 1H, H-2), 4.34 (t, J 7.0 Hz, 2H, H-1′′′), 4.08 (s, 3H, O-CH_3), 3.66 (t, J 6.5 Hz, 2H, H-3′′′), 3.53 (br s, 1H, H-9a), 3.26 (d, J 6.0 Hz, 1H, H-7), 3.10-3.00 (m, 3H, H-5, H-10), 2.27 (quint, J 6.5 Hz, 2H, H-2′′′), 1.98 (s, 3H, H-16), 1.93-1.89 (m, 1H, H-1b), 1.85-1.80 (m, 4H, H-1a, H-6, H-9), 1.33 (d, J 6.5 Hz, 3H, H-17). 13C NMR δ 169.5 (C-15), 168.0 (C-1′′, C-3′′), 162.7 (C-13), 148.1 (C-12), 147.0 (C-4′), 134.0 (ArCH), 131.6 (ArC), 127.6 (C-11), 123.1 (ArCH), 121.6 (C-5′), 112.4 (C-8), 98.2 (C-14), 80.7 (C-2), 79.5 (C-3), 60.8 (C-9a), 58.7 (O-CH_3), 51.8 (C-7), 48.2 (C-5), 47.6 (C-1′′′), 47.3 (C-9), 34.8 (C-3′′′), 34.4 (C-10), 33.0 (C-1), 29.0 (C-2′′′), 26.9 (C-6), 18.0 (C-17), 8.9 (C-16). ESIMS m/z 586.4 (100%) [M+H]^+. HRESIMS m/z 586.2318 [M+H]^+, calcd for C_{31}H_{32}N_{5}O_{7} 586.2302.

3.1.29 Click reaction Method C: Preparation of (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-hexahydro-7b-1-(3-phenylisoxazol-5-yl)-9-methyl-4H-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-gh]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5H)-furanone (31). To a solution of the alkyne 26 (15.1 mg, 0.042 mmol), Cu(OAc)_2 (3.1 mg, 0.017 mmol) and sodium ascorbate (12.6 mg, 0.064 mmol) in EtOH:H_2O (1:1) (1.0 mL) at rt was added N-hydroxybenzenecarboximidoyl chloride (10 mg, 0.064 mmol) and sodium hydroxide (2.6 mg, 0.064 mmol). The reaction was left to stir for 3 h. The mixture was quenched with saturated aqueous NaHCO_3 solution (10 mL) and was directly extracted with CH_2Cl_2 (3 × 20 mL). The combined organic extracts were washed with brine and dried (MgSO_4) before being concentrated in vacuo. The concentrated residue was purified by column chromatography using gradient elution from CH_2Cl_2 to CH_2Cl_2/MeOH (9:1) to give a
white gum (11.9 mg, 0.025 mmol, 59% yield). \(R_f = 0.37 \) in MeOH/EtOAc (1:9). \([\alpha]_D^{25} +203.4 \) (c 0.79, CHCl\(_3\)). \(^1\text{H} \text{NMR} \delta 7.82-7.79 \) (m, 2H, ArH), 7.45 (br s, 3H, ArH), 6.56 (s, 1H, H-4'), 4.62 (s, 1H, H-2), 4.16 (s, 3H, O-CH\(_3\)), 3.65 (br s, 1H, H-9a), 3.43 (d, J 5.5 Hz, 1H, H-7), 3.29-3.24 (m, 1H, H-5b), 3.19-3.14 (m, 2H, H-5a, H-10), 2.11-2.08 (m, 1H, H-1a), 2.09 (s, 3H, H-16), 2.03-1.96 (m, 3H, H-1a, H-6), 1.93 (dd, J 9.5 Hz, 2.5 Hz, 1H, H-9), 1.43 (d, J 6.0 Hz, 3H, H-17). \(^{13}\text{C} \text{NMR} \delta 171.2 \) (C-5'), 169.7 (C-15), 162.8 (C-13), 162.6 (C-3'), 147.8 (C-12), 130.3 (ArC), 128.9 (ArC), 128.8 (ArC), 128.3 (C-11), 127.5 (ArC), 112.5 (C-8), 100.2 (C-4'), 99.0 (C-14), 80.6 (C-3), 80.1 (C-2), 61.3 (C-9a), 59.0 (O-CH\(_3\)), 52.3 (C-7), 49.0 (C-5), 47.7 (C-9), 34.6 (C-10), 33.3 (C-1), 27.2 (C-6), 18.4 (C-17), 9.3 (C-16). ESIMS \(m/z \) 475.1 (100%) [M+H]. HRESIMS \(m/z \) 475.1871 [M+H], calcd for C\(_{27}\)H\(_{27}\)N\(_2\)O\(_6\) 475.1869.

3.1.30 (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-Hexahydro-7b-1-[3-(4-fluorophenyl)isoxazol-5-yl]-9-methyl-4\(\text{H}\)-2,2,6-(epoxy[1]propanyl[3]ylidene)furo[2,3,4-\(g\)h]pyrrolizin-10-ylidene]-4-methoxy-3-methyl-2(5\(\text{H}\))-furanone (32). Prepared using method C, from the alkyne 26 (10.6 mg, 0.030 mmol), N-hydroxy-4-fluorobenzenecarboximidoyl chloride (20 mg, 0.153 mmol), sodium ascorbate (8.8 mg, 0.045 mmol), sodium hydroxide (1.8 mg, 0.045 mmol) and Cu(OAc)\(_2\) (2.2 mg, 0.012 mmol). The product was obtained as a yellow gum (6.3 mg, 0.013 mmol, 43% yield). \(R_f = 0.62 \) in MeOH/EtOAc (2:8). \([\alpha]_D^{25} +236.1 \) (c 0.36, CHCl\(_3\)). \(^1\text{H} \text{NMR} \delta 7.80-7.77 \) (m, 2H, ArH), 7.15 (t, J 8.5 Hz, 2H, ArH), 6.52 (s, 1H, H-4'), 4.61 (br s, 1H, H-2), 4.16 (s, 3H, O-CH\(_3\)), 3.65 (br s, 1H, H-9a), 3.42 (d, J 5.5 Hz, 1H, H-7), 3.29-3.23 (m, 1H, H-5), 3.19-3.12 (m, 2H, H-5, H-10), 2.11 (s, 1H, H-1a), 2.09 (s, 3H, H-16), 2.04-1.96 (m, 3H, H1b, H-6), 1.93 (dd, J 10.0 Hz, 3.0 Hz, 1H, H-9), 1.42 (d, J 6.5 Hz, 3H, H-17). \(^{13}\text{C} \text{NMR} \delta 171.5 \) (C-5'), 169.7 (C-15), 164.0 (ArC-F, d, J\(_{C-F}\) 250 Hz), 162.8 (C-13), 161.7 (C-3'), 147.8 (C-12), 128.9 (ArCH d, J\(_{C-F}\) 9.8 Hz), 128.8 (ArCH), 128.3 (C-11), 125.1 (ArC, d, J\(_{C-F}\) 3.3 Hz), 116.3 (ArCH, d, J\(_{C-F}\) 22.0 Hz), 116.1 (ArCH), 112.4 (C-8), 100.1 (C-4'), 99.0 (C-14), 80.6 (C-3), 80.1 (C-2), 61.3 (C-9a), 59.0 (O-CH\(_3\)), 52.3 (C-7), 49.0 (C-5), 47.7 (C-9), 34.6 (C-10), 33.3 (C-1), 27.2 (C-6), 18.4 (C-17), 9.3 (C-16). ESIMS \(m/z \) 492.9 (100%) [M+H]. HRESIMS \(m/z \) 493.1789 [M+H], calcd for C\(_{27}\)H\(_{26}\)N\(_2\)O\(_6\)F 493.1775.

3.1.31 Sonogashira coupling: Preparation of (5Z)-5-[(2S,2aR,6S,7aS,7bR,8R,9S)-hexahydro-7b-1-(2-phenylethyn-1-yl)-9-methyl-4\(\text{H}\)-2,2,6-

A solution mixture of the alkyne 26 (13.4 mg, 0.038 mmol), iodobenzene (4.2 µL, 0.038 mmol), PdCl$_2$(PPh$_3$)$_2$ (0.5 mg, 0.001 mmol), CuI (0.3 mg, 0.002 mmol) and Et$_3$N (19 mg, 0.189 mmol) in THF (1.0 mL) in a glass tube was bubbled with argon gas and then the tube was sealed. The reaction was left to stir at rt for 24 h. The mixture was extracted with EtOAc (3 X 20 mL). The combined organic phase was dried (Na$_2$SO$_4$). The crude residue was purified by PTLC with MeOH/CH$_2$Cl$_2$ (1:99) as a mobile phase to give a phenyl alkyne product 33 as a yellow gum (10.0 mg, 0.023 mmol, 62% yield) and the dimeric by-product 34 (0.6 mg, 0.0001 mmol, 4% yield) which was directly prepared via the Eglington coupling reaction. R_f = 0.42 in MeOH/EtOAc (1:9). [α]$_{D}^{25}$ +235.9 (c 0.44, CHCl$_3$). 1H NMR δ 7.45-7.44 (m, 2H, ArH), 7.31-7.30 (m, 3H, ArH), 4.66 (br s, 1H, H-2), 4.15 (s, 3H, O-CH$_3$), 3.56 (br s, 1H, H-9a), 3.56-3.50 (m, 2H, H-5b, H-10), 2.23-2.17 (m, 1H, H-6a), 2.08 (s, 3H, H-16), 2.06 (d, J 12.0 Hz, 1H, H-1a), 1.98 (d, J 12.0 Hz, 1H, H-1b), 1.93-1.88 (m, 1H, H-6b), 1.83 (d, J 10.0 Hz, 1H, H-9), 1.39 (d, J 6.5 Hz, 3H, H-17). 13C NMR δ 169.8 (C-15), 162.9 (C-13), 148.0 (C-12), 131.9 (ArCH), 128.6 (ArCH), 128.4 (ArCH), 128.2 (C-11), 122.5 (ArC), 112.2 (C-8), 98.9 (C-14), 86.3 (C-2'), 86.1 (C-1'), 81.2 (C-2), 76.0 (C-3), 60.8 (C-9a), 59.0 (O-CH$_3$), 54.6 (C-7), 48.7 (C-5), 47.4 (C-9), 34.6 (C-10), 33.6 (C-1), 27.1 (C-6), 18.4 (C-17), 9.3 (C-16). ESI-MS m/z 432.1 (100%) [M+H]$^+$. HRESI-MS m/z 432.1821 [M+H]$^+$, calcd for C$_{26}$H$_{26}$NO$_5$ 432.1811.

A solution of the alkyne 26 (13.5 mg, 0.038 mmol) and Cu(OAc)$_2$ (35 mg, 0.190 mmol) in dry MeCN (1.0 mL) in a sealed tube was bubbled with argon gas and then the tube was sealed. The reaction mixture was heated and stirred at 40 °C for 4 h. The mixture was cooled to rt and filtered through a thin pad of Celite. The filtrate was treated with an aqueous solution of NaHCO$_3$ and extracted with CH$_2$Cl$_2$ (3 × 20 mL). The combined organic phase was washed with brine and dried (MgSO$_4$). The evaporated residue was purified by PTLC with MeOH/CH$_2$Cl$_2$ (2:98) as a mobile phase to give a dimer 34 as a yellow gum (12.0 mg, 0.017 mmol, 89% yield). R_f = 0.50 in MeOH/CH$_2$Cl$_2$ (1:9). [α]$_{D}^{25}$ +286.3 (c 0.39, CHCl$_3$). 1H NMR δ 4.56 (br s, 2H, H-2), 4.13 (s, 6H, O-CH$_3$), 3.50 (br s, 2H, H-9a), 3.37-3.31 (m, 2H, H-
5a), 3.10-3.02 (m, 4H, H-5b, H-10), 3.05 (d, J 6.0 Hz, 2H, H-7), 2.14-2.08 (m, 2H, H-6a), 2.06 (s, 6H, H-16), 2.00 (d, J 12.0 Hz, 2H, H-1a), 1.89-1.86 (m, 2H, H-1b), 1.85-1.83 (m, 2H, H-6b), 1.76 (dd, J 10.5 Hz, 3.5 Hz, 2H, H-9), 1.35 (d, J 6.5 Hz, 6H, H-17).

13C NMR δ 169.7 (C-15), 162.8 (C-13), 147.6 (C-12), 128.2 (C-11), 111.9 (C-8), 99.0 (C-14), 80.9 (C-2), 77.4 (C-3), 75.8 (C-1’), 70.4 (C-2’), 60.8 (C-9a), 59.0 (O-CH3), 54.8 (C-7), 48.9 (C-5), 47.3 (C-9), 34.6 (C-10), 33.6 (C-1), 27.0 (C-6), 18.3 (C-17), 9.3 (C-16). ESIMS m/z 709.5 (100%) [M+H]+. HRESIMS m/z 709.2791 [M+H]+, calcd for C40H41N2O10 709.2761.

To a mixture of the phenyl alkyne 33 (4.7 mg, 0.011 mmol) and Pd/C (0.5 mg, 0.002 mmol) in EtOAc (1.0 mL) at rt, a hydrogen gas was bubbled into the solution and the reaction was let to stir for 24 h. The reaction mixture was then filtered through a thin pad of Celite. The concentrated residue was purified by PTLC with MeOH/EtOAc (1:99) as a mobile phase to give a product as a white gum (3.5 mg, 0.008 mmol, 74% yield). Rf = 0.32 in MeOH/CH2Cl2 (1:9). [α]D 25 +248.4 (c 0.23, CHCl3). 1H NMR δ 7.20 (d, J 7.0 Hz, 2H, ArH), 7.13-7.10 (m, 3H, ArH), 4.24 (br s, 1H, H-2), 4.06 (s, 3H, O-CH3), 3.43 (br s, 1H, H-9a), 3.12-3.06 (m, 1H, H-5), 3.05-3.00 (m, 1H, H-10), 2.99-2.93 (m, 1H, H-5), 2.72 (td, J 11.5 Hz, 5.0 Hz, 1H, H-1’), 2.66 (d, J 6.0 Hz, 1H, H-7), 2.50 (td, J 13.5 Hz, 5.5 Hz, 1H, H-1’), 2.00 (s, 3H, H-16), 1.90 (d, J 12.0 Hz, 1H, H-6a), 1.90-1.79 (m, 3H, H-1a, H-9, H-2’), 1.78-1.74 (m, 2H, H-6b, H-2’), 1.67 (dt, J 12.0 Hz, 3.5 Hz, 1H, H-1b), 1.31 (d, J 6.5 Hz, 3H, H-17). 13C NMR δ 169.8 (C-15), 162.9 (C-13), 148.5 (C-12), 141.7 (ArC), 128.6 (ArCH), 128.3 (ArCH), 128.0 (C-11), 126.1 (ArCH), 112.7 (C-8), 98.6 (C-14), 82.7 (C-3), 78.5 (C-2), 61.0 (C-9a), 58.9 (O-CH3), 50.4 (C-7), 47.7 (C-5, C-9), 34.6 (C-10), 33.7 (C-2’), 33.4 (C-1), 31.4 (C-1’), 26.7 (C-6), 18.4 (C-17), 9.2 (C-16). ESIMS m/z 436.1 (100%) [M+H]+. HRESIMS m/z 436.2118 [M+H]+, calcd for C26H30NO5 436.2124.

3.1.34 AChE inhibition studies

3.1.34.1 TLC Bioautographic method

The AChE used in this assay was extracted from electric eels and purchased from Sigma Aldrich (EC 3.1.1.7). The enzyme stock solution was prepared from a solution of AChE (1000 U) in 0.05 M tris-hydrochloric acid buffer (150 mL) at pH 7.8 to which was added bovine serum albumin (150 mg) to stabilize the enzyme. The stock solution was kept at 4 °C.
TLC plates used for the bioautography were washed with acetone and then thoroughly dried. The samples were prepared as solutions in MeOH at concentrations of 1000, 100, 10, 1 and 0.1 ppm. The samples were applied to the TLC plates in varying quantities using Camag Nanomat 4 TLC spotter with 0.5 µL capillaries and sprayed with AChE enzyme stock solution and thoroughly dried again. The plates were laid flat on plastic plugs in a covered water bath (to avoid the plates from contacting the H₂O directly) and then incubated in a humid atmosphere at 37 °C for 20 min. The plates were taken out and sprayed with a freshly prepared indicator solution which was a mixture of two solutions, a solution of 1-naphthyl acetate (25 mg) in EtOH (10 mL) and a solution of Fast Blue B salt (40 mg) in H₂O (16 mL). After 1-2 min, a purple coloration on the TLC plates appeared and white spots indicated inhibition of AChE by the samples.

3.1.33.2 Spectroscopic-based method

Acetylthiocholine iodide (ATChI) was used as a substrate while 5,5′-dithiobis[2-nitrobenzoic acid] (DTNB) was used as a reagent. Two stock solutions were used in this assay, buffer solution and substrate solution. The pH 7.0 phosphate buffer solution was prepared from a mixture of 37.2 mM NaH₂PO₄·H₂O and 62.7 mM Na₂HPO₄·2H₂O, in Milli Q H₂O. The substrate solution was prepared as a 4.73 mM ATChI solution in phosphate buffer pH 7.0. The reagent solution was prepared as a 3.15 mM DTNB solution in phosphate buffer pH 7.0. The assay was performed in 96-well plates. In each well, 120 µL of phosphate buffer pH 7.0 was mixed with 20 µL of reagent and 20 µL of substrate, then 20 µL of AChE (0.75 U/mL) in phosphate buffer pH 7.0 was added with 20 µL of the sample (which was prepared in concentrations of 5,000, 1,000, 200, 40, 8, 1.6 and 0.32 µM in DMSO). The final concentrations were 500, 100, 20, 4, 0.8, 0.16 and 0.032, respectively. Then the well plate was directly put into the microplate reader which was thermostated at 25 °C. The absorbances were read using a SPECTRAmax® PLUS384 microplate thermostated spectrophotometer (California, USA) at 412 nm, every 15 sec for 30 min continuously. Enzyme activity was calculated as a percentage compared to an assay using a buffer without any inhibitor. The AChE inhibitory data were analyzed with the software package GraphPad Prism® (Graph Pad Inc., San Diego, USA). IC₅₀ values are means ± SD of three individual determinations each performed in triplicate.

Acknowledgments
We thank the Australian Research Council and the University of Wollongong for financial support.

Supplimentary data
Compound purity analysis by HPLC, synthesis of the Bestmann-Ohira reagent and the coupling components for the Click reactions.

References and notes
Graphical Abstract

Synthesis of Stemofoline Analogues as Acetylcholinesterase Inhibitors

Kwankamol Sastraruji, Thanapat Sastraruji, Alison T. Ung, Renate Griffith, Araya Jatisatienr and Stephen G. Pyne*