Alkaloids from the Roots of Stemona aphylla

Pitchaya Mungkornasawakul
University of Wollongong, pitchaya@uow.edu.au

Sukanda Chaiyong
Chiang Mai University, Thailand

Thanapat Sastraruji
Chiang Mai University, Thailand

Araya Jatisatienr
Chiang Mai University, Thailand

Chaiwat Jatisatienr
Chiang Mai University, Thailand

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/scipapers

Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
Mungkornasawakul, Pitchaya; Chaiyong, Sukanda; Sastraruji, Thanapat; Jatisatienr, Araya; Jatisatienr, Chaiwat; Pyne, Stephen G.; Ung, Alison T.; Korth, Jurgen; and Lie, Wilford: Alkaloids from the Roots of Stemona aphylla 2009.
https://ro.uow.edu.au/scipapers/1137

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Alkaloids from the Roots of Stemona aphylla

Abstract
Three known compounds, stemofoline, (2'S)-hydroxystemofoline, and (11Z)-1',2'-didehydrostemofoline, along with two new alkaloids, stemaphylline and stemaphylline-N-oxide, have been isolated from a root extract of Stemona aphylla. The structures of these alkaloids were determined on the basis of their spectroscopic data. The analysis of the crude dichloromethane extract by GC-MS in the EIMS mode showed the presence of alkaloids 1-4, the alkaloid 11, and stilboestem R. The crude dichloromethane extract and 4 were tested for their comparative biological activities. The results of their acetylcholinesterase (AChE) inhibitory activities showed that the crude extract had higher activity than that of 4. The insecticidal properties of the crude extract and 4, using a topical application, showed that 4 had an activity similar to the positive control, methomyl, whereas the crude extract had much lower activity. Their antimicrobial activity against Escherichia coli ATCC 25922, Staphylococcus allrei ATCC 25923, Pseudomonas aU'l'lginosa ATCC 27853, and Candida albicans ATCC 90028 was weak (MIC 62.5-125 /tg/mL, MBC 125-250 ltg/mL, MFC 125 ltg/mL) but much higher than that of the crude extract.

Keywords
CMMB

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

Authors
Pitchaya Mungkornasawakul, Sukanda Chaiyong, Thanapat Sastraruji, Araya Jatisatienr, Chaiwat Jatisatienr, Stephen G. Pyne, Alison T. Ung, Jurgen Korth, and Wilford Lie

This journal article is available at Research Online: https://ro.uow.edu.au/scipapers/1137
Alkaloids from the Roots of Stemona aphylla

Pichaya Mungkornasawakul, Sukanda Chaiyong, Thanapat Sastraruji, Araya Jatisatien, Chaiwat Jatisatien, Stephen G. Pyne, Alison T. Ung, John Korth, and Wilford Lie

Department of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia; Division of Environmental Sciences, Chiang Mai University, Chiang Mai 50202, Thailand; Department of Biology, Chiang Mai University, Chiang Mai 50202, Thailand; and Department of Chemistry, Chiang Mai University, Chiang Mai 50202, Thailand

Received January 19, 2009

Three known compounds, stemofoline (1), (2’S)-hydroxystemofoline (2), and (11Z)-1’2’didehydrostemofoline (3), along with two new alkaloids, stemaphylline (4) and stemaphylline-N-oxide (5), have been isolated from a root extract of Stemona aphylla. The structures of these alkaloids were determined on the basis of their spectroscopic data. The analysis of the crude dichloromethane extract by GC-MS in the EIMS mode showed the presence of alkaloids 1–4, the alkaloid 11, and stilbesterin R (12). The crude dichloromethane extract and 4 were tested for their comparative biological activities. The results of their acetylcholinesterase (AChE) inhibitory activities showed that the crude extract had higher activity than that of 4. The insecticidal properties of the crude extract and 4, using a topical application, showed that 4 had an activity similar to the positive control, methomyl, whereas the crude extract had much lower activity. Their antimicrobial activity against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 90028 was weak (MIC 62.5–125 µg/mL, MBC 125–250 µg/mL, MFC 125 µg/mL) but much higher than that of the crude extract.

More than 100 Stemona alkaloids have been isolated from the Stemona genus. These alkaloids are structurally classified into eight different groups. The pyrrolo[1,2-a]azepine nucleus is common to all compounds in six of these groups. More recently, the structures of Stemona alkaloids with a pyridol[1,2-a]azepine nucleus were discovered. A miscellaneous group comprising a small number of alkaloids lacking these two basic nuclei has also been reported; these alkaloids however arise from the aforementioned alkaloids via oxidation or rearrangement processes. The pure alkaloids derived from the leaves and roots of Stemona species have insect toxicity, antifeedant, and repellent activities. We report here the isolation of the known alkaloids 1–3 and isolation and structure determination of two new Stemona alkaloids, 4 and 5, from the root extracts of Stemona aphylla (Stemonaceae) that were collected at Mae Hong Son, Thailand. No phytochemical work has been done on this Stemona species.

Results and Discussion

A crude EtOH extract (25 g) of the roots of S. aphylla was partitioned between a mixture of MeOH/H2O (1:1) and CHCl3. The CHCl3 fraction was evaporated to afford 3.5 g of crude extract. Successive purification of this material by column chromatography and TLC gave pure samples of stemofoline (1), (2’S)-hydroxystemofoline (2), (11Z)-1’2’didehydrostemofoline (3), stemaphylline (4), and stemaphylline-N-oxide (5). The former three known alkaloids were identified by comparison of their spectroscopic data (NMR and MS) with those reported. Compounds 4 and 5 are new compounds; we have named them stemaphylline and stemaphylline-N-oxide, respectively, based on their botanical origin. Examination of the crude CHCl3 extract by TLC, 1H NMR, and MS analyses showed the absence of compound 5, indicating that this compound was most likely being produced via oxidation during the purification process. The HREIMS (m/z 279.2207 [M]1) of 4 showed a molecular formula of C11H12NO4. The EIMS showed a fragment ion at m/z 180 ([M – C6H11O2]1). The loss of C6H11O2 is typical for an α-methyl-γ-butyrolactone moiety found often in Stemona alkaloids. The 13C/DEPT NMR spectrum displayed signals for two methyls, nine methylenes, five methines, and one quaternary carbon. The quaternary carbon signal at 179.6 and the methine signal at δ 78.4 were assigned to the carbonyl (C-15) and the oxyethyne (C-12) carbons, respectively, of the γ-butyrolactone moiety. The 1H NMR spectrum indicated the presence of two methyl groups that are attached to a methine at δ 1.26 (d, J = 7.0 Hz, 3H) and 0.98 (d, J = 6.5 Hz, 3H). The HMB spectrum showed that C-12 (δ 78.4) correlated with H-13 (δ 1.48), H-11 (δ 2.00), and H-10 (δ 1.70); C-10 (δ 3.25) to H-9 (δ 1.62), H-8 (δ 1.58), and H-11 (δ 1.64); and C-9 (δ 4.59) to H-17 (δ 0.98). These data indicated that a 1-methyl-2-(3-methyl-2-oxo-tetrahydrofuran-5-yl) ethyl moiety was attached to C-9 of the pyrrolo[1,2-a]azepine nucleus (Figure 1). The 1D-NOESY correlation of Me-17 with H-12 suggested the β-orientation of H-12, while that of H-14 with H-12 suggested an α-orientation of Me-16. The full 1H and 13C NMR spectra assignments for 4 based on COSY, NOESY, HMB, and
Table 1. 1H NMR (500 MHz) and 13C NMR (125 MHz) Data for Compounds 4 and 5 in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_{H} (4)</th>
<th>δ_{C} (4)</th>
<th>δ_{H} (5)</th>
<th>δ_{C} (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.79 (m)</td>
<td>2.06 (m)</td>
<td>28.1 (CH$_3$)</td>
<td>25.0 (CH$_3$)</td>
</tr>
<tr>
<td>2</td>
<td>1.72 (m)</td>
<td>2.22 (m)</td>
<td>23.8 (CH$_3$)</td>
<td>19.3 (CH$_3$)</td>
</tr>
<tr>
<td>3</td>
<td>3.01 (m)</td>
<td>3.57 (m)</td>
<td>54.3 (CH$_3$)</td>
<td>71.0 (CH$_3$)</td>
</tr>
<tr>
<td>5</td>
<td>2.94 (m)</td>
<td>3.33 (m)</td>
<td>52.3 (CH$_3$)</td>
<td>67.2 (CH$_3$)</td>
</tr>
<tr>
<td>6</td>
<td>1.50 (m)</td>
<td>2.34 (m)</td>
<td>25.9 (CH$_3$)</td>
<td>20.7 (CH$_3$)</td>
</tr>
<tr>
<td>7</td>
<td>1.80 (m)</td>
<td>1.60 (m)</td>
<td>27.7 (CH$_3$)</td>
<td>25.2 (CH$_3$)</td>
</tr>
<tr>
<td>8</td>
<td>1.33 (m)</td>
<td>1.52 (m)</td>
<td>28.2 (CH$_3$)</td>
<td>25.4 (CH$_3$)</td>
</tr>
<tr>
<td>9</td>
<td>1.62 (m)</td>
<td>2.66 (m)</td>
<td>45.9 (CH$_3$)</td>
<td>35.8 (CH$_3$)</td>
</tr>
<tr>
<td>9a</td>
<td>2.93 (m)</td>
<td>6.05 (m)</td>
<td>64.8 (CH$_3$)</td>
<td>81.6 (CH$_3$)</td>
</tr>
<tr>
<td>10</td>
<td>1.70 (m)</td>
<td>1.80 (m)</td>
<td>32.5 (CH$_3$)</td>
<td>34.9 (CH$_3$)</td>
</tr>
<tr>
<td>11</td>
<td>2.00 (m)</td>
<td>1.70 (m)</td>
<td>39.5 (CH$_3$)</td>
<td>40.6 (CH$_3$)</td>
</tr>
<tr>
<td>12</td>
<td>1.64 (m)</td>
<td>1.58 (m)</td>
<td>78.4 (CH$_3$)</td>
<td>76.8 (CH$_3$)</td>
</tr>
<tr>
<td>13</td>
<td>4.39 (m)</td>
<td>3.52 (m)</td>
<td>37.8 (CH$_3$)</td>
<td>37.8 (CH$_3$)</td>
</tr>
<tr>
<td>14</td>
<td>2.61 (m)</td>
<td>2.61 (m)</td>
<td>35.8 (CH$_3$)</td>
<td>35.2 (CH$_3$)</td>
</tr>
<tr>
<td>15</td>
<td>179.6 (C)</td>
<td>179.8 (C)</td>
<td>179.6 (C)</td>
<td>179.8 (C)</td>
</tr>
<tr>
<td>16</td>
<td>1.26 (d, 7.0)</td>
<td>1.23 (d, 7.5)</td>
<td>15.0 (CH$_3$)</td>
<td>15.0 (CH$_3$)</td>
</tr>
<tr>
<td>17</td>
<td>0.98 (d, 6.5)</td>
<td>0.87 (d, 7.0)</td>
<td>19.2 (CH$_3$)</td>
<td>17.3 (CH$_3$)</td>
</tr>
</tbody>
</table>

The HRESI mass spectrum of 5 showed a protonated molecular ion [M + H]$^+$ at m/z 296.2223 (calcd for C$_7$H$_2$NO$_2$, 296.2226), in agreement with the molecular formula C$_7$H$_2$NO$_2$. The molecular formula indicated that 5 had one more oxygen atom than that of 4. The full 1H and 13C NMR spectroscopic assignments for 5 based on 2D-NMR experiments are shown in Table 1 and indicated that 5 had the same skeleton as 4. Comparison of the 13C/DEPT NMR spectra of 5 with those of 4 showed that the main differences between them were the chemical shifts of the NMR signals for C-3, C-5, and C-9a. The chemical shifts of these carbons for 4 were δ 54.3, 52.3, and 64.8, respectively, whereas the chemical shifts in 5 were δ 71.0 (C-3), 67.2 (C-5), and 81.6 (C-9a), consistent with an N-oxide structure for compound 5. The structure of 5 was further confirmed by the HMBC correlations (see Supporting Information).

As a further structural proof, compound 5 was synthesized by oxidation of 4 with H$_2$O$_2$ and Na$_2$WO$_4$ in MeOH. The TLC mobility and 1H NMR data of synthetic 5 were identical to those of natural 5.

The crude CH$_3$Cl$_2$ extract was analyzed by GC-MS with the MS operating in the EIMS mode (see Supporting Information for GC-MS trace and EIMS details). Six peaks could be identified by their molecular ion peaks and EIMS fragmentation patterns. Four of these peaks correspond to the isolated alkaloids 1–4. The EIMS fragmentation pattern found for stemaphylline (4) is shown diagrammatically in Figure 1a. The EIMS of one other peak showed a molecular ion of two mass units less than that of 4 and a fragment ion at m/z 180, as found in 4. Its MS fragmentation pattern was consistent with the structure 11, a dehydro derivative of 4, in which one degree of unsaturation resided in the γ-butyrolactone ring (Figure 1b). Our attempts to isolate alkaloid 11 in pure form by column chromatography were unsuccessful, and only a partially purified sample was obtained. Attempts to purify this compound resulted in further decomposition. The 1H NMR spectrum of partially purified 11 indicated the presence of an α,γ-unsaturated γ-lactone moiety. The signals for an olefinic proton at δ 7.07 (br s) and an allylic methyl at δ 1.94 (s) suggested the presence of an α-methyl-γ,β-unsaturated γ-lactone moiety in its structure. Moreover, the signal at δ 4.94 (dd, J = 1.3, 3.3 Hz, H-12) was consistent with an oxymethylene proton of the lactone moiety. Examination of the crude CH$_3$Cl$_2$ extract by TLC indicated the presence of compound 11, showing that it is a natural product. GC-MS analysis also identified the presence of the known natural product silbostemin R (12).

Biological activity studies were performed on the crude CH$_3$Cl$_2$ extract and on the pure sample of 4. These samples were screened by TLC bioautography for their acetylcholinesterase (AChE) inhibitory activities using physostigmine as the positive control (see Supporting Information). Both samples exhibited low activities.
when compared with the positive control. The crude extract showed a higher AChE inhibitory activity than that of 4. This is most likely due to the higher activity associated with the more prominent compound in the crude extract, stemofoline. The insecticidal activity of 10% samples was also determined by a topical application assay against Plutella xylostella. The results showed compound 4 had insecticidal activity very similar (LC₅₀ 1.824 μg/mL) to the positive control (methomyl, LC₅₀ 1.840 μg/mL), while the crude extract showed lower insecticidal activity, with an LC₅₀ of 13 766 μg/mL. The antimicrobial activities of the crude CH₃Cl extract and compound 4 against two Gram-negative bacteria, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and a Gram-positive bacterium, Staphylococcus aureus ATCC 25923, and the antifungal activity against Candida albicans ATCC 90028 were determined using the assay and procedures recommended in the literature (Supporting Information). Two antibiotic agents, gentamycin and amphotericin B, were used as the positive controls for the antibacterial activity and antifungal activity, respectively. The crude CH₃Cl extract and 4 showed very weak activities (Supporting Information).

In summary, two new alkaloids, stemaphyline (4) and stemaphylondine-N-oxide (5), have been isolated from a root extract of S. aphilla, along with three known compounds, stemofoline (1), (2S)-hydroxyestromefoline (2), and (11Z)-1,2-didehydroestromefoline (3). The tentative structure of the new alkaloid 11 was based on GC-MS analysis. The AChE inhibitory, insecticidal, and antimicrobial activities of the crude CH₃Cl extract and compound 4 were also determined.

Experimental Section

General Experimental Procedures. Optical rotations were measured using a JASCO DIP-370 polarimeter. IR spectra were obtained on a Nicolet-AVATAR 360 FTIR spectrophotometer. ¹H (500 MHz), ¹³C (125 MHz), and 2D NMR spectra were recorded on a Varian Unity INOVA 500 MHz spectrometer with a nanoprobe. High-resolution ESI-MS was recorded on an Agilent 6530 Q-TOF mass spectrometer (70 eV). High-resolution ESIMS were obtained with a Micromass QTOF 2 mass spectrometer using a cone voltage of 30 V and polymethyl methacrylate (PMMA) as an internal reference. TLC was performed on aluminum-backed Merck 60 GF₂₅₄ silica gel, and bands were detected by UV light (254 nm) and Dragendorff’s reagent. Column chromatography was performed using Merck GF₂₅₄ flash silica gel (40–63 μm). Physisogimine (escirine) and acetylcyclonistene (906 U/mg, from electric eel) were purchased from Sigma-Aldrich.

Plant Materials. The roots of S. aphilla were collected in Mae Hong Son, Thailand, in May 2008. A voucher specimen (number 029779) was deposited at the herbarium of the Department of Biology, Chiang Mai University. Plant material was identified by Mr. James F. Maxwell from the Department of Biology, Chiang Mai University.

Extraction and Isolation. The dry, ground roots of S. aphilla (1 kg) were extracted with 95% EtOH (3 × 800 mL) over 3 days at room temperature. The EtOH solution was evaporated to give a dark residue (130 g). A 25 g sample of this extract was partitioned between a mixture of MeOH/H₂O (1:1) (150 mL) and CHCl₃ (200 mL) to afford a crude extract (3.5 g). A portion (2 g) of this material was chromatographed on silica gel (100 mL) using gradient elution from 100% CH₂Cl₂ to MeOH/CH₂Cl₂/conc aq ammonia (10:90:1) as eluent. On the basis of TLC analysis these fractions were pooled to give seven fractions. Fraction 2 (138.9 mg) was rechromatographed by preparative TLC (CH₂Cl₂/MeOH/conc aq ammonia, 98:2:1) to give 9.3 mg of pure 11Z-1,2-didehydroestromefoline (3) and 89.7 mg of stemofoline (1). Fraction 3 (172.7 mg) was rechromatographed on silica gel using gradient elution from 100% EtOAc to MeOH/EtOAc/conc aq ammonia (90:10:1) as eluent to give 120.7 mg of pure stemofoline (1) and 29.5 mg of pure (2S)-dihydroestromefoline (2), respectively. Fraction 6 (10.5 mg) was rechromatographed using gradient elution from 100% CH₂Cl₂ to MeOH/EtOAc/conc aq ammonia (10:90:1) as eluent to give 4 mg of a mixture containing compound 11. Fraction 7 (51.8 mg) was rechromatographed using gradient elution from 100% CH₂Cl₂ to MeOH/CH₃CN/conc aq ammonia (10:90:1) as eluent. Stemaphyline (4) (30.5 mg) and stemaphylondine-N-oxide (5) (10.2 mg) were obtained. The ¹H and ¹³C NMR data of 1, 2, and 3 were identical to those reported, while those of 4 and 5 are shown in Table 1.

Stemaphyline (4): pale yellow gum; [α]₁₉°D = +36.7 (c 0.54, CHCl₃); IR (KBr) νmax 2928, 1767, 1634, 1449, 1388, 1189, 1171, 998, 927 cm⁻¹; EIMS (see Table 2); HR ESI-MS m/z 279.2207[M⁺]⁺, calcd for C₁₃H₂₅NO₅; 279.2198.

Stemaphylondine-N-oxide (5): yellow-brown gum; [α]₁₉°D = -43.0 (c 0.32, CHCl₃); IR (film) νmax 3385, 2985, 2934, 2873, 1761, 1460, 1190, 1176, 1011, 927, 749 cm⁻¹; HR ESI-MS m/z 296.2231[M + H⁺], calcd for C₁₄H₂₆N₂O₆; 296.2226.

Oxidation of Stemaphylline. To a solution of stemaphyline (4) (10.2 mg) and Na₂WO₄ (3.6 mg) in MeOH (2 mL) at 0 °C was added dropwise H₂O₂ (approximately 0.2 mL). The mixture was left to stir at room temperature for 5 h 15 min. To the reaction was added MeOH (approximately 5.0 mg), and a check was made using starch paper until no H₂O₂ remained. The mixture was then filtered through a small pad of Celite and washed with more MeOH. The solvent was removed under reduced pressure, and the crude product was purified using gradient elution from 100% CH₂Cl₂ to MeOH/CH₃CN/conc aq ammonia (5:95:1) as eluent to give compound 5 as a yellow-brown gum (3.0 mg).

GC-MS. The GC-MS analyses were performed using a QP5050A GC-MS system (Shimadzu, Japan). The column used was a Rxi-5 ms fused-silica capillary column (30 m × 0.25 mm), coated with a 0.25 μm film (Restek, Bellefonte, PA.). Conditions applied were as follows: injection port temperature 280 °C, split ratio 1:15, helium as carrier gas, temperature program 80 °C (1 min) to 300 °C (15 min) at 6 °C/min, pressure program 27.1 kPa (1 min) to 100 kPa (15.2 minute) at 2 kPa/min. Data were collected (over the mass range 35–450 Da) in the positive ion El mode (70 eV). The ion source and interface temperature were set at 280 and 290 °C, respectively.

Bioassay Procedure. TLC bioassay was performed using the method described by Hostettmann et al. TLC plates were prepared for bioassay by washing with acetone and were then thoroughly dried. The samples were applied to the plate in varying quantities and sprayed with AChE enzyme stock solution (prepared from acetylcholinesterase (906 U/mg) as described in the literature). The plates were incubated at 37 °C for 20 min and then sprayed with freshly prepared indicator solution (from 1-naphthylacetate and Fast Blue B salt prepared according to the literature) to give the plate a purple coloration after 1–2 min. A white spot indicates inhibition of AChE by the sample.

Antimicrobial Activity Procedure. A series of dilutions of compounds in trypitcose soy broth ranging from 500 to 1.95 μg/mL were tested against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 90028 using broth dilution techniques. The solutions were incubated at 37 °C for 24 h. The minimum inhibitory concentration (MIC) was determined as the lowest concentration of culture tube without visible growth of organisms.

Acknowledgment. We are grateful to the Australian Research Council, the Endeavour Fellowship Scheme (to P.M.), and the University of Wollongong for supporting this project, and to Miss S. Buntam, the Land Development Department, Ministry of Agriculture and Cooperatives, for providing the plant material.

Supporting Information Available: Copies of the ¹H NMR spectra of alkaloids 4 and 5, table of HMB correlations for 4 and 5, the GC-MS trace of the crude CH₃Cl extract and EIMS details, and tables of the biological activities of the crude CH₃Cl extract and 4. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

NP900030Y