2008

Effect of sintering temperature on structural defects and superconducting properties in MgB2 + C4H6O5

Mohammad Hossain
University of Wollongong, shahriar@uow.edu.au

Jung Ho Kim
University of Wollongong, jhk@uow.edu.au

Xun Xu
University of Wollongong, xun@uow.edu.au

Xiaolin Wang
University of Wollongong, xiaolin@uow.edu.au

S. X. Dou
University of Wollongong, shi@uow.edu.au

http://ro.uow.edu.au/engpapers/1119

Publication Details
Effect of sintering temperature on structural defects and superconducting properties in MgB$_2$ + C$_6$H$_6$O$_5$

M S A Hossain1, J H Kim1, X Xu1, X L Wang1 and S X Dou1

1Institute for Superconducting and Electronic Materials, University of Wollongong, Northfields Ave., Wollongong, New South Wales 2522, Australia

* Electronic e-mail: msah853@uow.edu.au

Abstract. We report a systematic study on the effect of sintering temperature on the lattice parameters, amount of carbon (C) substitution, microstructure, critical temperature (T_c), critical current density (J_c), upper critical field (H_{c2}) and irreversibility field (H_{irr}) of 10 wt% Malic acid (C$_6$H$_6$O$_5$) doped MgB$_2$ superconductors. All the samples were heat treated at temperatures ranging from 600 to 900 °C. With increasing the sintering temperature both the a-axis lattice parameter and T_c are decreased compared to un-doped samples, indicating that the C released from C$_6$H$_6$O$_5$ substituted into Boron (B) position resulting in the enhancement of J_c, H_{c2} and H_{irr}.

1. Introduction

The discovery of superconductivity at 39 K [1] in MgB$_2$ can be applied to a cryogen-free magnet at an operating temperature of around 20 K [2]. The improvements in critical current density (J_c), upper critical field (H_{c2}) and irreversibility field (H_{irr}) have been the key topics of research efforts. Gurevich et al. have reported very high H_{c2}, up to 50 T, for MgB$_2$ films with high resistivities [3]. They found a correlation between the resistivity and H_{c2} and showed that the remarkable H_{c2} enhancement can be explained in the framework of the two gap superconductivity in MgB$_2$, which provides special opportunities for further enhancement in H_{c2} by tuning the impurity scattering. A significant enhancement in the electromagnetic properties of MgB$_2$ has been achieved through a doping with various forms of carbon (C). For example, the addition of SiC [4-6], C [7, 8], carbon nanotubes (CNTs) [9], carbohydrate (CH) [10] and a liquid additive, silicone oil [20] have been found to be effective in improving the J_c-H characteristics of MgB$_2$. In particular, C can enter the MgB$_2$ structure by substituting for B, which leads to increased impurity scattering in the two-band MgB$_2$, and hence significantly increases J_c and the H_{c2}. However, the C doping effect for MgB$_2$ superconductor has been limited by the local agglomeration of nano-sized dopant particles. In that case un-reacted C remains in the MgB$_2$ matrix and reacts with Mg or B powders, resulting in the formation of impurity phases. To overcome these properties, it is necessary to study the homogeneity of mixing as well as the activity of the reactions between B and C materials so as to achieve a full reaction. The various methods have been studied by many groups. Mickelson et al. [11] first reported that B$_x$C was considered to be one of the more reactive C-containing compounds because free C was liberated from B$_x$C. However, using B$_x$C compound meant that a higher sintering temperature up to 1200
\(^{\circ}\)C was needed, as well as a longer sintering time. Dou et al. [12] studied the effects of SiC doping on MgB\textsubscript{2} superconductor to overcome the same problems. Even though SiC was much more effective at enhancing the \(J_c\) at a low sintering temperature (\(-650\,^{\circ}\)C), there were agglomerations of nano-particles in the MgB\textsubscript{2} matrix, resulting in blocking of current flow. C and CNT as dopants also require a higher sintering temperature of 900 \(^{\circ}\)C for C substitution to take place. In addition, because of the high aspect ratio, the CNTs were much more easily entangled [13], reducing homogeneity.

In our group we have already shown that \(J_c\) enhancement by more than one order of magnitude in high magnetic field can be achieved with only a slight reduction in \(T_c\) for MgB\textsubscript{2} + C\textsubscript{6}H\textsubscript{12}O\textsubscript{5} [10] sintered at 900 \(^{\circ}\)C. To further explore the potential as a C source of C\textsubscript{6}H\textsubscript{12}O\textsubscript{5} low temperature sintering also has significant advantages for commercial MgB\textsubscript{2} conductors such as MgB\textsubscript{2}+SiC. Recently, Fujii \textit{et al.} [14] prepared Fe-containing MgB\textsubscript{2} tapes at low temperature of 600 \(^{\circ}\)C using MgH\textsubscript{2} instead of Mg powder. The \(H_c^2\) and \(H_m\) enhancement at low sintering temperature is crucial for the selection of various sheath materials and reduction of production costs. For these reasons, C\textsubscript{6}H\textsubscript{12}O\textsubscript{5} is one of the main candidate materials for low sintering temperature processing at 600 \(^{\circ}\)C, as this C source can be fully decomposed at temperatures as low as 300\(^{\circ}\)C.

\section{Experimental}

MgB\textsubscript{2} pellets were prepared by an in-situ process with the addition of 10 wt\% C\textsubscript{6}H\textsubscript{12}O\textsubscript{5}. The fabrication processing of pellet and wire is described in elsewhere [10, 15]. All samples were sintered in a tube furnace at temperatures ranging from 650 to 900\(^{\circ}\)C for 30 min, and at 600 \(^{\circ}\)C for 4 hours under high purity argon gas. The heating rate was 5 \(^{\circ}\)/min. All samples were characterized by X-ray diffraction (XRD), field emission gun-scanning electron microscopy (FEG-SEM), \(T_c\), \(H_m\), and \(H_c^2\). The lattice parameters were obtained from Rietveld refinement. \(T_c\) was defined as the onset temperature at which diamagnetic properties were observed. In addition, \(H_c^2\) and \(H_m\) were defined as \(H_c^2 = 0.9R(T_c)\) and \(H_m = 0.1R(T_c)\) from the resistance (R) versus temperature (T) curve.

\section{Result and discussion}

As shown in Figure. 1, the \(\alpha\)-axis lattice parameter decreases from 3.0851 \(\AA\) for a well developed un-doped sample sintered at 900\(^{\circ}\)C for 30 min to 3.0749, 3.0753, 3.0722, 3.0734, 3.0764 \(\AA\) for MgB\textsubscript{2} + 10 wt\% C\textsubscript{6}H\textsubscript{12}O\textsubscript{5} samples sintered at 600 \(^{\circ}\)C for 4 hours and 650, 700, 800, and 900\(^{\circ}\)C for 30 min, respectively. Even though there are some fluctuations in the changes of the \(\alpha\)-axis lattice parameter for the samples with different sintering temperatures, the amount of C substitution seemed to be saturated in Figure. 2, with an average value of \(x \sim 0.0242\) in the Mg (B\textsubscript{1-x}C\textsubscript{x})\textsubscript{2}, at all sintering temperatures [16]. In general, the shrinkage of the \(\alpha\)-axis is attributed to the substitution of C for B. These results indicate that significant C substitution can be achieved for MgB\textsubscript{2} + 10 wt\% C\textsubscript{6}H\textsubscript{12}O\textsubscript{5}, even with a low sintering temperature regime. Thus the decomposition of C\textsubscript{6}H\textsubscript{12}O\textsubscript{5} produces highly reactive C, allowing it to achieve relatively higher C substitution levels at lower temperature, compared to nano-C, B\textsubscript{4}C, and carbon nano-tube [17].

Figure. 3 shows the \(T_c\) for both doped and un-doped samples which increases with increasing sintering temperatures. This indicates that small grains and imperfect crystallinity exist in samples processed at lower temperatures. Yamamoto \textit{et al.} [18] reported that \(H_m\) can be enhanced by degradation of crystallinity due to a low temperature solid-solid reaction. That is, low crystallinity is primarily responsible for larger \(H_m\) and \(H_c^2\). It should be noted that the \(T_c\) of MgB\textsubscript{2} + 10wt\% C\textsubscript{6}H\textsubscript{12}O\textsubscript{5} samples are relatively lower than those of un-doped MgB\textsubscript{2} over the whole sintering range. This result is related to the lattice disorder due to C substitution into B sites.
Figure 5 shows the magnetic J_c of the un-doped sample and the 10 wt% malic acid-added MgB$_2$ samples as a function of the heat-treatment temperatures. It can be seen that the J_c values of the un-doped sample heat-treated at 900 °C for 30 min are higher than those of the C-doped samples in a low magnetic field region at 20 K but slightly lower at 5 K. As the applied magnetic field increases, a crossover between the un-doped and doped samples exists, and the J_c values of the doped samples were much higher than those of the un-doped sample in the high field ranges, indicating an enhanced flux pinning strength. Meanwhile, it was observed that the magnetic J_c values of the doped samples did not show a significant difference among the different heat-treatment temperatures. This is because C substitution was saturated at high temperature region. Fig. 4 also shows the transport J_c at 4.2 K for un-doped and MgB$_2$ + 10 wt% C$_6$H$_{12}$O$_6$ wires with different heat-treatment temperatures. MgB$_2$ + 10 wt% C$_6$H$_{12}$O$_6$ at 600°C for 4 hrs showed the highest J_c due to poor crystallinity and C substitution.

The temperature dependence of H_{ir} and H_{c2} for all the un-doped and MgB$_2$ + 10wt% C$_6$H$_{12}$O$_6$ samples sintered at different sintering temperatures are shown in Figure 6. We observed that H_{ir} and H_{c2} were depressed systematically as the sintering temperature increased to 900 °C. This indicates that degradation of crystallinity at low temperature can be the driving force for larger H_{ir} and H_{c2}, as mentioned above. In addition, the significant C substitution into B sites at a sintering temperature as low as 600 °C may induce disorder on the lattice sites, which can lead to the enhancement of the H_{ir} and H_{c2}.

Electrical resistivity (ρ) values at 40 K and 300 K and Residual resistivity ratios (RRR, ρ300 K/ρ40 K) for the un-doped and MgB$_2$ + 10wt% C$_6$H$_{12}$O$_6$ samples are summarized in Table 1. The higher ρ values for the doped MgB$_2$ samples indicate that the impurity scattering is stronger due to a greater C substitution into the B sites [10]. As the heat-treatment temperature increased from 600 °C to 900 °C, the RRR values increased from 1.54 to 1.62. The RRR for the un-doped sample had a higher value of 2.15 than those of the C$_6$H$_{12}$O$_6$ doped samples representing a good crystallinity. For a polycrystalline MgB$_2$, the RRR value reflects a sample’s quality. This may also be related to the grain connectivity factor as well. Rowell [19] suggested that the $\Delta\rho$ (ρ300 K - ρ40 K) values are very effective in revealing a connectivity factor.

4. Conclusion

We investigated the effects of the heat-treatment temperature on the superconducting properties, structural defects, lattice parameters, actual C substitution amount, T_c, J_c, H_{c2} and H_{ir} for 10 wt% C$_6$H$_{12}$O$_6$ doped MgB$_2$ bulk and wires. With increasing the sintering temperature, both the a-axis lattice parameter and T_c are decreased compared to un-doped samples, indicating that the C released from C$_6$H$_{12}$O$_6$ substituted into B position resulting in the enhancement of J_c, H_{c2} and H_{ir}.

5. Acknowledgement

This work was supported by the Australian Research Council, Australian Research Network for Advanced Materials, Hyper Tech Research Inc., USA, Alphatech International Ltd., NZ, and the University of Wollongong.

References:

Table 1. Measured resistivity data for un-doped MgB$_2$ and 10wt% C$_6$H$_4$O$_3$ samples with different sintering conditions.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Sintering Conditions (°C)</th>
<th>ρ40 K (µΩcm)</th>
<th>ρ300 K (µΩcm)</th>
<th>$RRR = \rho$300 K/ ρ40 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-doped</td>
<td>650 °C × 30min</td>
<td>41.8</td>
<td>89.87</td>
<td>2.15</td>
</tr>
<tr>
<td>Un-doped</td>
<td>900 °C × 30min</td>
<td>24.8</td>
<td>52.08</td>
<td>2.10</td>
</tr>
<tr>
<td>MgB$_2$ + C$_6$H$_4$O$_3$</td>
<td>600 °C × 4 hrs</td>
<td>137.1</td>
<td>210.63</td>
<td>1.54</td>
</tr>
<tr>
<td>MgB$_2$ + C$_6$H$_4$O$_3$</td>
<td>650 °C × 30min</td>
<td>116.6</td>
<td>152.89</td>
<td>1.31</td>
</tr>
<tr>
<td>MgB$_2$ + C$_6$H$_4$O$_3$</td>
<td>700 °C × 30min</td>
<td>88.9</td>
<td>136.48</td>
<td>1.53</td>
</tr>
<tr>
<td>MgB$_2$ + C$_6$H$_4$O$_3$</td>
<td>800 °C × 30min</td>
<td>94.8</td>
<td>144.67</td>
<td>1.52</td>
</tr>
<tr>
<td>MgB$_2$ + C$_6$H$_4$O$_3$</td>
<td>900 °C × 30min</td>
<td>90.2</td>
<td>146.50</td>
<td>1.62</td>
</tr>
</tbody>
</table>
Figure 1. The α-axis lattice parameters for referenced un-doped MgB$_2$ sintered from 650 °C to 900 °C for 30 min and MgB$_2$ + 10wt% C$_6$H$_5$O$_5$ samples sintered from 600 (4 hrs) to 900 °C (30 min).

Figure 2. The amount of C substitution (x) in the Mg (B$_{1-x}$C$_x$)$_2$ for MgB$_2$ + 10wt% C$_6$H$_5$O$_5$ samples sintered from 600 (4 hrs) to 900 °C (30 min).

Figure 3. The T_c for referenced un-doped MgB$_2$ sintered from 650 °C to 900 °C for 30 min and MgB$_2$ + 10wt% C$_6$H$_5$O$_5$ samples sintered from 600 (4 hrs) to 900 °C (30 min).

Figure 4. The transport J_c at 4.2 K for referenced un-doped MgB$_2$ wire sintered at 650 °C for 30 min and MgB$_2$ + 10wt% C$_6$H$_5$O$_5$ wires sintered at 600 (4 hrs) and 650 °C (30 min).
Figure 5. The J_c at 5 K and 20 K for referenced un-doped MgB$_2$ sintered at 900 °C for 30 min and MgB$_2$ + 10wt% Ca$_2$H$_2$O$_5$ samples sintered from 600 (4 hrs) to 900 °C (30 min).

Figure 6. Temperature dependence of normalized H_{c2} and H_{c1} for referenced un-doped MgB$_2$ sintered at 900 °C for 30 min and MgB$_2$ + 10wt% Ca$_2$H$_2$O$_5$ samples sintered from 600 (4 hrs) to 900 °C (30 min).