1997

Minimal Critical Set of a Room Square of order 7

Ghulam R. Chaudhry

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Publication Details
Minimal Critical Set of a Room Square of order 7

Abstract
A Room square R of order r is an $r \times r$ array each of whose cells may either be empty or contain an unordered pair of objects $0, 1, 2, \ldots, r$, subject to the following conditions:

(i) each of the objects $0, 1, 2, \ldots, r$ occurs precisely once in each row of R and precisely once in each column of R, and

(ii) every possible unordered pair of objects occurs precisely once in the whole array.

Disciplines
Physical Sciences and Mathematics

Publication Details
Minimal Critical Set of a Room Square of order 7

Ghulam R Chaudhry and Jennifer Seberry
Department of Computer Science
University of Wollongong, AUSTRALIA

A Room square \(R \) of order \(r \) is an \(r \times r \) array each of whose cells may either be empty or contain an unordered pair of objects \(0, 1, 2, \ldots, r \), subject to the following conditions:

(i) each of the objects \(0, 1, 2, \ldots, r \) occurs precisely once in each row of \(R \) and precisely once in each column of \(R \); and

(ii) every possible unordered pair of objects occurs precisely once in the whole array.

A critical set \(Q = [Q_1, Q_2, Q_3, \ldots, Q_c] \), \(|Q| = c \), in a Room square \(R \) of order \(r \), is a set of quadruples \(Q_i = [i, j, k, l] \) such that if any \(Q_i \) is removed from the set, it can no longer be uniquely completed. In \(Q_i \), \((i, j) \) shows the position of the pair \((k, l) \) in the square. A minimal critical set (min. cs) of a Room square \(R \) of order \(r \) is a critical set of minimum cardinality.

Through computer search, we have found a critical set of size 10 for a Room square of order 7. We believe that critical set of size 10 given below is the minimal because critical set of size 9 could not be found. We also note that its size is less than \(r^2/4 \).

Example A minimal critical set in a Room square of order 7 and its completion.

<table>
<thead>
<tr>
<th>07</th>
<th>**</th>
<th>34</th>
<th>56</th>
<th>**</th>
<th>**</th>
<th>**</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>17</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>35</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>27</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td>15</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>03</td>
<td>**</td>
<td>40</td>
<td>06</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

07 34 56 ** 12
7 46 17 -- -- -- --
** 27 01 -- -- -- --
** 27 -- 37 15 -- 04
** 03 -- 24 06 15 --
** 03 -- -- -- 23 14 16

where "**" shows the unknown pair positions and "--" shows empty positions in the Room square.

References

Bulletin of the ICA, Volume 20 (1997) 90