Relating Nonlinearity to Propagation Characteristics

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Xian-Mo Zhang
University of Wollongong, xianmo@uow.edu.au

Yuliang Zheng
University of Wollongong, yuliang@uow.edu.au

Publication Details
Relating Nonlinearity to Propagation Characteristics

Abstract
The connections among the various nonlinearity criteria is currently an important topic in the area of designing and analyzing cryptographic functions. In this paper we show a quantitative relationship between propagation characteristics and nonlinearity, two critical indicators of the cryptographic strength of a Boolean function. We also present a tight lower bound on the nonlinearity of a cryptographic function that has propagation characteristics.

Disciplines
Physical Sciences and Mathematics

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/infopapers/1119
Relating Nonlinearity to Propagation Characteristics

Jennifer Seberry
Xian-Mo Zhang

Department of Computer Science
The University of Wollongong
Wollongong, NSW 2522, AUSTRALIA
E-mail: {jennie,xianmo}@cs.uow.edu.au

Yuliang Zheng

School of Computing and Information Technology
Monash University
McMahons Road, Frankston
Melbourne, VIC 3199, AUSTRALIA
E-mail: yuliang@fcit.monash.edu.au

March 24, 1995

Abstract

The connections among the various nonlinearity criteria is currently an important topic in the area of designing and analyzing cryptographic functions. In this paper we show a quantitative relationship between propagation characteristics and nonlinearity, two critical indicators of the cryptographic strength of a Boolean function. We also present a tight lower bound on the nonlinearity of a cryptographic function that has propagation characteristics.

Keywords

Cryptography, Boolean functions, Encryption functions, Nonlinearity, Propagation Characteristics, SAC, S-boxes.

1 Introduction

Data Encryption Standard or DES is a cryptographic algorithm most widely used by industrial, financial and commercial sectors all over the world [NBS77]. DES is also the root of many other data encryption algorithms proposed in the past decade, including LOKI [BKPS93], FEAL [Miy91] and IDEA [LM91, LaSM91, Lai92]. A core component of
these encryption algorithms are the so-called S-boxes or substitution boxes, each essentially a tuple of nonlinear Boolean functions. In most cases, these boxes are the only nonlinear component in an underlying encryption algorithm. The same can be said with one-way hashing algorithms which are commonly employed in the process of signing and authenticating electronic messages [ZPS93, Riv92, NIST93]. These all indicate the vital importance of the design and analysis of nonlinear cryptographic Boolean functions.

Encryption and authentication require cryptographic (Boolean) functions with a number of critical properties that distinguish them from linear (or affine) functions. Among these properties are high nonlinearity, high degree of propagation, few linear structures, high algebraic degree etc. These properties are often called nonlinearity criteria. An important topic is to investigate relationships among the various nonlinearity criteria. Progress in this direction has been made in [SZZ94d], where connections have been revealed among the strict avalanche characteristic, differential characteristics, linear structures and nonlinearity, of quadratic functions.

In this paper we carry on the investigation initiated in [SZZ94d] and bring together non-linearity and propagation characteristic of a function (quadratic or non-quadratic). These two cryptographic criteria are seemingly quite separate, in the sense that the former indicates the minimum distance between a Boolean function and all the affine functions whereas the latter forecasts the avalanche behavior of the function when some input bits to the function are complemented.

In particular we show that if \(f \), a function on \(V_n \), satisfies the propagation criterion with respect to all but a subset \(\mathcal{R} \) of \(V_n \), then the nonlinearity of \(f \) satisfies \(N_f \geq 2^n - 2^{n-\frac{1}{2}\rho-1} \), where \(\rho \) is the maximum dimension a linear sub-space contained in \(\{0\} \cup (V_n - \mathcal{R}) \) can achieve.

We also show that \(2^{n-2} \) is the tight lower bound on the nonlinearity of \(f \) if \(f \) satisfies the propagation criterion with respect to at least one vector in \(V_n \). As an immediate consequence, the nonlinearity of a function that fulfills the SAC or strict avalanche criterion is at least \(2^{n-2} \).

Two techniques are employed in the proofs of our main results. The first technique is in regard to the structure of \(\mathcal{R} \), the set of vectors where the function \(f \) does not satisfy the propagation criterion. By considering a linear sub-space with the maximum dimension contained in \(\{0\} \cup (V_n - \mathcal{R}) \), together with its complementary sub-space, we will be able to identify how the vectors in \(\mathcal{R} \) are distributed. The second technique is based on a novel idea of refining Parseval’s equation, a well-known relationship in the theory of orthogonal transforms. A combination of these two techniques together with some careful analyses proves to be a powerful tool in examining the relationship among nonlinearity criteria.

The organization of the rest of the paper is as follows: Section 2 introduces basic notations and conventions, while Section 3 presents background information on the Walsh-Hadamard transform. The distribution of vectors where the propagation criterion is not satisfied is discussed in Section 4. This result is employed in Section 5 where a quantitative relationship between nonlinearity and propagation characteristics is derived. This relationship is further developed in Section 6 to identify a tight lower bound on nonlinearity of functions with propagation characteristics. The paper is closed by some concluding remarks in Section 7.
2 Basic Definitions

We consider Boolean functions from V_n to $GF(2)$ (or simply functions on V_n), V_n is the vector space of n-tuples of elements from $GF(2)$. The truth table of a function f on V_n is a $(0,1)$-sequence defined by $(f(0), f(1), \ldots, f(2^n-1))$. The sequence of f is a $(1,-1)$-sequence defined by $((-1)^{f(0)}, (-1)^{f(1)}, \ldots, (-1)^{f(2^n-1)})$, where $f_0 = (0, \ldots, 0, 0), f_1 = (0, \ldots, 0, 1), \ldots, f_{2^n-2} = (1, \ldots, 1), f_{2^n-1} = (1, \ldots, 1, 1)$. The matrix of f is a $(1,-1)$-matrix of order 2^n defined by $M = ((-1)^{f(\alpha \oplus \beta)})$. f is said to be balanced if its truth table contains an equal number of ones and zeros.

An affine function f on V_n is a function that takes the form of $f(x_1, \ldots, x_n) = a_1x_1 \oplus \cdots \oplus a_nx_n \oplus c$, where $a_j, c \in GF(2), j = 1, 2, \ldots, n$. Furthermore f is called a linear function if $c = 0$.

Definition 1 The Hamming weight of a $(0,1)$-sequence s, denoted by $W(s)$, is the number of ones in the sequence. Given two functions f and g on V_n, the Hamming distance $d(f,g)$ between them is defined as the Hamming weight of the truth table of $f \oplus g(x)$, where $x = (x_1, \ldots, x_n)$. The nonlinearity of f, denoted by N_f, is the minimal Hamming distance between f and all affine functions on V_n, i.e., $N_f = \min_{\varphi_1, \varphi_2, \ldots, \varphi_{2^n-1}} d(f, \varphi)$ where $\varphi_1, \varphi_2, \ldots, \varphi_{2^n-1}$ are all affine functions on V_n.

Note that the maximum nonlinearity of functions on V_n coincides with the covering radius of the first order binary Reed-Muller code $RM(1,n)$ of length 2^n, which is bounded from above by $2^{n-1} - 2^{\frac{n}{2} - 1}$ (see for instance [CKHFMS85]). Hence $N_f \leq 2^{n-1} - 2^{\frac{n}{2} - 1}$ for any function on V_n. Next we introduce the definition of propagation criterion.

Definition 2 Let f be a function on V_n. We say that f satisfies

1. the propagation criterion with respect to α if $f(x) \oplus f(x \oplus \alpha)$ is a balanced function, where $x = (x_1, \ldots, x_n)$ and α is a vector in V_n.

2. the propagation criterion of degree k if it satisfies the propagation criterion with respect to all $\alpha \in V_n$ with $1 \leq W(\alpha) \leq k$.

$f(x) \oplus f(x \oplus \alpha)$ is also called the directional derivative of f in the direction α. The above definition for propagation criterion is from [PLL91]. Further work on the topic can be found in [PGV91]. Note that the strict avalanche criterion (SAC) introduced by Webster and Tavares [Web85, WT86] is equivalent to the propagation criterion of degree 1 and that the perfect nonlinearity studied by Meier and Staffelbach [MS90] is equivalent to the propagation criterion of degree n where n is the number of the coordinates of the function.

While the propagation characteristic measures the avalanche effect of a function, the linear structure is a concept that in a sense complements the former, namely, it indicates the straightness of a function.

Definition 3 Let f be a function on V_n. A vector $\alpha \in V_n$ is called a linear structure of f if $f(x) \oplus f(x \oplus \alpha)$ is a constant.

By definition, the zero vector in V_n is a linear structure of all functions on V_n. It is not hard to see that the linear structures of a function f form a linear sub-space of V_n. The dimension of the sub-space is called the linearity dimension of f. We note that it was
Eversee who first introduced the notion of linear structure (in a sense broader than ours) and studied its implication on the security of encryption algorithms [Eve88].

A \((1, -1)\)-matrix \(H\) of order \(m\) is called a Hadamard matrix if \(HH^t = mI_m\), where \(H^t\) is the transpose of \(H\) and \(I_m\) is the identity matrix of order \(m\). A Sylvester-Hadamard matrix of order \(2^n\), denoted by \(H_n\), is generated by the following recursive relation

\[
H_0 = 1, \quad H_n = \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}, \quad n = 1, 2, \ldots
\]

(1)

Let \(\ell_i, 0 \leq i \leq 2^n - 1\), be the \(i\)th row of \(H_n\). By Lemma 2 of [SZZ94a], \(\ell_i\) is the sequence of a linear function \(\varphi_i(x)\) defined by the scalar product \(\varphi_i(x) = \langle \alpha_i, x \rangle\), where \(\alpha_i\) is the \(i\)th vector in \(V_n\) according to the ascending order.

Definition 4 Let \(f\) be a function on \(V_n\). The Walsh-Hadamard transform of \(f\) is defined as

\[
\hat{f}(\alpha) = 2^{-\frac{n}{2}} \sum_{x \in V_n} (-1)^{f(x) \oplus \langle \alpha, x \rangle}
\]

where \(\alpha = (a_1, \ldots, a_n) \in V_n\), \(x = (x_1, \ldots, x_n)\), \(\langle \alpha, x \rangle\) is the scalar product of \(\alpha\) and \(x\), namely, \(\langle \alpha, x \rangle = \Theta_{i=1}^n a_i x_i\), and \(f(x) \oplus \langle \alpha, x \rangle\) is regarded as a real-valued function.

The Walsh-Hadamard transform, also called the discrete Fourier transform, has numerous applications in areas ranging from physical science to communications engineering. It appears in several slightly different forms [Rot76, MS77, Dil72]. The above definition follows the line in [Rot76]. It can be equivalently written as

\[
(\hat{f}(\alpha_0), \hat{f}(\alpha_1), \ldots, \hat{f}(\alpha_{2^n-1})) = 2^{-\frac{n}{2}} \xi H_n
\]

where \(\alpha_i\) is the \(i\)th vector in \(V_n\) according to the ascending order, \(\xi\) is the sequence of \(f\) and \(H_n\) is the Sylvester-Hadamard matrix of order \(2^n\).

Definition 5 A function \(f\) on \(V_n\) is called a bent function if its Walsh-Hadamard transform satisfies

\[
\hat{f}(\alpha) = \pm 1
\]

for all \(\alpha \in V_n\).

Bent functions can be characterized in various ways [AT90, Dil72, SZZ94a, YH89]. In particular the following four statements are equivalent:

(i) \(f\) is bent.

(ii) \(\langle \xi, \ell \rangle = \pm 2^{\frac{n}{2}}\) for any affine sequence \(\ell\) of length \(2^n\), where \(\xi\) is the sequence of \(f\).

(iii) \(f\) satisfies the propagation criterion with respect to all non-zero vectors in \(V_n\).

(iv) \(M\), the matrix of \(f\), is a Hadamard matrix.

Bent functions on \(V_n\) exist only when \(n\) is even [Rot76]. Another important property of bent functions is that they achieve the highest possible nonlinearity \(2^{n-1} - 2^{\frac{n}{2}-1}\).
3 More on Walsh-Hadamard transform and Nonlinearity

As the Walsh-Hadamard transform plays a key role in the proofs of main results to be described in the following sections, this section provides some background knowledge on the transform. More information regarding the transform can be found in [MS77, Dil72]. In addition, Beauchamp’s book [Bea84] is a good source of information on other related orthogonal transforms with their applications.

Given two sequences \(a = (a_1, \ldots, a_m) \) and \(b = (b_1, \ldots, b_n) \), their component-wise product is defined by \(a \ast b = (a_1b_1, \ldots, a_nb_n) \). Let \(f \) be a function on \(V_n \). For a vector \(\alpha \in V_n \), denote by \(\xi(\alpha) \) the sequence of \(f(x \oplus \alpha) \). Thus \(\xi(0) \) is the sequence of \(f \) itself and \(\xi(0) \ast \xi(\alpha) \) is the sequence of \(f(x) \oplus f(x \oplus \alpha) \).

Set

\[
\Delta(\alpha) = \langle \xi(0), \xi(\alpha) \rangle,
\]

the scalar product of \(\xi(0) \) and \(\xi(\alpha) \). \(\Delta(\alpha) \) is also called the auto-correlation of \(f \) with a shift \(\alpha \). Obviously, \(\Delta(\alpha) = 0 \) if and only if \(f(x) \oplus f(x \oplus \alpha) \) is balanced, i.e., \(f \) satisfies the propagation criterion with respect to \(\alpha \). On the other hand, if \(|\Delta(\alpha)| = 2^n \), then \(f(x) \oplus f(x \oplus \alpha) \) is a constant and hence \(\alpha \) is a linear structure of \(f \).

Let \(M = ((-1)^{\langle \alpha_i \delta_i \rangle}) \) be the matrix of \(f \) and \(\xi \) be the sequence of \(f \). Due to a very pretty result by R. L. McFarland (cf. Theorem 3.3 of [Dil72]), \(M \) can be decomposed into

\[
M = 2^{-n} H_n \text{diag}(\langle \xi, \xi \rangle, \ldots, \langle \xi, \xi \rangle) H_n
\]

where \(\ell_i \) is the \(i \)th row of \(H_n \), a Sylvester-Hadamard matrix of order \(2^n \).

Clearly

\[
MM^T = 2^{-n} H_n \text{diag}(\langle \xi, \xi \rangle^2, \ldots, \langle \xi, \xi \rangle^2) H_n.
\]

On the other hand, we always have

\[
MM^T = (\Delta(\alpha \oplus \alpha_j)),
\]

where \(i, j = 0, 1, \ldots, 2^n - 1 \).

Comparing the two sides of (3), we have

\[
(\Delta(\alpha_0), \Delta(\alpha_1), \ldots, \Delta(\alpha_{2^n-1})) = 2^{-n}(\langle \xi, \xi \rangle^2, \ldots, \langle \xi, \xi \rangle^2) H_n.
\]

Equivalently we write

\[
(\Delta(\alpha_0), \Delta(\alpha_1), \ldots, \Delta(\alpha_{2^n-1})) H_n = (\langle \xi, \xi \rangle^2, \ldots, \langle \xi, \xi \rangle^2).
\]

In engineering, (4) is better known as (a special form of) the Wiener-Khintchine Theorem [Bea84]. A closely related result is Parseval’s equation (Corollary 3, p. 416 of [MS77])

\[
\sum_{j=0}^{2^n-1} \langle \xi, \xi_j \rangle^2 = 2^{2n}
\]

which also holds for any function \(f \) on \(V_n \).

Let \(S \) be a set of vectors in \(V_n \). The rank of \(S \) is the maximum number of linearly independent vectors in \(S \). Note that when \(S \) forms a linear sub-space of \(V_n \), its rank coincides with its dimension.

The distance between two functions \(f_1 \) and \(f_2 \) on \(V_n \) can be expressed as \(d(f_1, f_2) = 2^{n-1} - \frac{1}{2} \langle \xi_1, \xi_2 \rangle \), where \(\xi_1 \) and \(\xi_2 \) are the sequences of \(f_1 \) and \(f_2 \) respectively. (For a proof see for instance Lemma 6 of [SZZ94a].) Immediately we have:
Lemma 1 The nonlinearity of a function \(f \) on \(V_n \) can be calculated by

\[
N_f = 2^n - 1 - \frac{1}{2} \max \{ |\langle \xi, \ell_i \rangle|, 0 \leq i \leq 2^n - 1 \}
\]

where \(\xi \) is the sequence of \(f \) and \(\ell_0, \ldots, \ell_{2^n - 1} \) are the rows of \(H_n \), namely, the sequences of the linear functions on \(V_n \).

The next lemma regarding splitting the power of 2 can be found in [SZZ94d]

Lemma 2 Let \(n \geq 2 \) be a positive integer and \(p^2 + q^2 = 2^n \) where both \(p \geq 0 \) and \(q \geq 0 \) are integers. Then \(p = 2^{\frac{k}{2}} \) and \(q = 0 \) when \(n \) is even, and \(p = q = 2^{\frac{k}{2}(n-1)} \) when \(n \) is odd.

In the next section we examine the distribution of the vectors in \(\mathbb{R} \).

4 Distribution of \(\mathbb{R} \)

Let \(f \) be a function on \(V_n \). Assume that \(f \) satisfies the propagation criterion with respect to all but a subset \(\mathbb{R} \) of \(V_n \). Note that \(\mathbb{R} \) always contains the zero vector \(0 \). Write \(\mathbb{R} = \{0, \gamma_1, \ldots, \gamma_s\} \). Then \(|\mathbb{R}| = s + 1 \).

Set \(\mathbb{R}^c = V_n - \mathbb{R} \). Then \(f \) satisfies the propagation criterion with respect to all vectors in \(\mathbb{R}^c \).

Consider the set of vectors \(\{0\} \cup \mathbb{R}^c \). Then \(\{0\} \) is a linear sub-space contained in \(\{0\} \cup \mathbb{R}^c \). When \(\{0\} \cup \mathbb{R}^c \) is a linear sub-space for any nonzero vector in \(\mathbb{R}^c \). We are particularly interested in linear sub-spaces with the maximum dimension contained in \(\{0\} \cup \mathbb{R}^c \). For convenience, denote by \(\rho \) the maximum dimension and by \(W \) a linear sub-space in \(\{0\} \cup \mathbb{R}^c \) that achieves the maximum dimension.

Obviously, \(f \) is bent if and only if \(\rho = n \), and \(f \) does not satisfy the propagation criterion with respect to any vector if and only if \(\rho = 0 \). The case when \(1 \leq \rho \leq n - 1 \) is especially interesting.

Now let \(U \) be a complementary sub-space of \(W \), namely \(U \oplus W = V_n \). Then each vector \(\gamma \in V_n \) can be uniquely expressed as \(\gamma = \alpha \oplus \beta \), where \(\alpha \in W \) and \(\beta \in U \). As the dimension of \(W \) is \(\rho \), the dimension of \(U \) is equal to \(n - \rho \). Write \(U = \{0, \beta_1, \ldots, \beta_{2^n-\rho-1}\} \).

Proposition 1 \(\mathbb{R} \cap W = \{0\} \) and \(\mathbb{R} \cap (W \oplus \beta_j) \neq \phi \), where \(W \oplus \beta_j = \{\alpha \oplus \beta_j | \alpha \in W\}, j = 1, \ldots, 2^{n-\rho} - 1 \).

Proof. \(\mathbb{R} \cap W = \{0\} \) follows from the fact that \(W \) is a sub-space of \(\{0\} \cup \mathbb{R}^c \). Next we consider \(\mathbb{R} \cap (W \oplus \beta_j) \).

Clearly, \(V_n = W \cup (W \oplus \beta_1) \cup \cdots \cup (W \oplus \beta_{2^n-\rho-1}) \).

In addition, \(W \cap (W \oplus \beta_j) = \phi \) for \(j = 1, \ldots, 2^{n-\rho} - 1 \), and \((W \oplus \beta_j) \cap (W \oplus \beta_i) = \phi \) for any \(j \neq i \). Assume for contradiction that \(\mathbb{R} \cap (W \oplus \beta_{j_0}) = \phi \) for some \(j_0 \), \(1 \leq j_0 \leq 2^{n-\rho} - 1 \). Then we have \(W \oplus \beta_{j_0} \subseteq \mathbb{R}^c \). In this case \(W \cup (W \oplus \beta_{j_0}) \) must form a sub-space of \(V_n \).
This contradicts the definition that W is a linear sub-space with the maximum dimension in $\{0\} \cup \mathbb{R}^c$. This completes the proof.

The next corollary follows directly from the above proposition.

Corollary 1 The size of R satisfies $|R| \geq 2^n-\rho$ and hence the rank of R is at least $n-\rho$, where ρ is the maximum dimension a linear sub-space in $\{0\} \cup \mathbb{R}^c$ can achieve.

5 Relating Nonlinearity to Propagation Characteristics

We proceed to the discussion of the nonlinearity of f. The main difficulty lies in finding a good approximation of (ξ, ℓ_i) for each $i = 0, \ldots, 2^n-1$, where ξ is the sequence of f and ξ_i is a row of H_n.

First we assume that

$$W = \{\gamma | \gamma = (a_1, \ldots, a_\rho, 0, \ldots, 0), a_i \in GF(2)\}$$

and

$$U = \{\gamma | \gamma = (0, \ldots, 0, a_{\rho+1}, \ldots, a_n), a_i \in GF(2)\}$$

where W is a linear sub-space in $\{0\} \cup \mathbb{R}^c$ that achieves the maximum dimension ρ and U is a complementary sub-space of W. The more general case where (5) or (6) is not satisfied can be dealt with after employing a nonsingular transform on the input of f. This will be discussed in the later part of this section.

Recall that $\mathbb{R} = \{0, \gamma_1, \ldots, \gamma_s\}$ and $\Delta(\alpha) = (\xi(0), \xi(\alpha))$, where $\xi(\alpha)$ is the sequence of $f(x \oplus \alpha)$. Since $\Delta(\gamma) \neq 0$ for each $\gamma \in \mathbb{R}$ while $\Delta(\gamma) = 0$ for each $\gamma \in \mathbb{R}^c = V_n - \mathbb{R}$, (4) is specialized as

$$(\Delta(0), \Delta(\gamma_1), \ldots, \Delta(\gamma_s))Q = (\langle \xi, \ell_0 \rangle^2, \ldots, \langle \xi, \ell_{2^n-1} \rangle^2).$$

where ξ is the sequence of f, ℓ_i is the ith row of H_n and Q comprises the 0th, γ_1, \ldots, γ_sth rows of H_n. Note that Q is an $(s+1) \times 2^n$ matrix.

Let ℓ be the γth row of H_n, where $\gamma \in \mathbb{R}$. Note that γ can be uniquely expressed as $\gamma = \alpha \oplus \beta$, where $\alpha \in W$ and $\beta \in U$. Let ℓ' be the ℓth row of H_ρ and β' be the βth row of $H_{n-\rho}$. As $H_n = H_\rho \times H_{n-\rho}$, ℓ can be represented by $\ell = \ell' \times \ell''$, where \times denotes the Kronecker product.

From the construction of $H_{n-\rho}$, we can see that the βth row of $H_{n-\rho}$ is an all-one sequence of length $2^{n-\rho}$ if $\beta = 0$, and a balanced $(1,-1)$-sequence of length $2^{n-\rho}$ if $\beta \neq 0$.

Recall that $\mathbb{R} \cap W = \{0\}$ (see also Proposition 1). There are two cases associated with $\gamma = \alpha \oplus \beta \in \mathbb{R}$: $\gamma = 0$ and $\gamma \neq 0$. In the first case, $\ell = \ell' \times \ell''$ is the all-one sequence of length 2^n, while in the second case, we have $\beta \neq 0$ which implies that ℓ'' is a balanced $(1,-1)$-sequence of length $2^{n-\rho}$ and hence $\ell = \ell' \times \ell''$ is a concatenation of 2^n balanced $(1,-1)$-sequences of length $2^{n-\rho}$.

Therefore we can write $Q = (Q_0, Q_1, \ldots, Q_{2^{n-1}})$, where each Q_i is a $(1,-1)$-matrix of order $(s+1) \times 2^{n-\rho}$. It is important to note that the top row of each Q_i is the all-one sequence, while the rest are balanced $(1,-1)$-sequences of length $2^{n-\rho}$.

With Q_0, we have

$$(\Delta(0), \Delta(\gamma_1), \ldots, \Delta(\gamma_s))Q_0 = (\langle \xi, \ell_0 \rangle^2, \ldots, \langle \xi, \ell_{2^n-1} \rangle^2).$$

Let σ_0 be the all-one sequence of length $2^{n-\rho}$. Then

$$(\Delta(0), \Delta(\gamma_1), \ldots, \Delta(\gamma_s))Q_0 \sigma_0^T = (\langle \xi, \ell_0 \rangle^2, \ldots, \langle \xi, \ell_{2^n-1} \rangle^2) \sigma_0^T.$$
This causes
\[
(\Delta(0), \Delta(\gamma_1), \ldots, \Delta(\gamma_s)) \begin{bmatrix} 2^{n-p} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \sum_{j=0}^{2^{n-s}-1} \langle \xi, \ell_j \rangle^2
\]
and
\[
\sum_{j=0}^{2^{n-s}-1} \langle \xi, \ell_j \rangle^2 = 2^{n-p} \Delta(0) = 2^{n-p} + n = 2^{2n-p}.
\]
Similarly, with \(Q_i, i = 1, \ldots, 2^\rho - 1\), we have
\[
\sum_{j=0}^{2^{n-p}-1} \langle \xi, \ell_{j+i2^{n-p}} \rangle^2 = 2^{2n-p}.
\]
Thus we have the following result:

Lemma 3 Assume that \(f\), a function on \(V_n\), satisfies the propagation criterion with respect to all but a subset \(\mathcal{R}\) of vectors in \(V_n\). Set \(\mathcal{R} = V_n - \mathcal{R}\) and let \(W\) be a linear sub-space with the maximum dimension \(\rho\), in \(\{0\} \cup \mathcal{R}\), and \(U\) be a complementary sub-space of \(W\). Assume that \(W\) and \(U\) satisfy (5) and (6) respectively. Then
\[
\sum_{j=0}^{2^{n-p}-1} \langle \xi, \ell_{j+i2^{n-p}} \rangle^2 = 2^{2n-p}
\]
for all \(i = 0, 1, \ldots, 2^\rho - 1\), where \(\xi\) is the sequence of \(f\) and each \(\ell_k\) is a row of \(H_n\).

Lemma 3 can be viewed as a refinement of Parseval’s equation \(\sum_{j=0}^{2^n-1} \langle \xi, \ell_j \rangle^2 = 2^n\). It implies that \(|\langle \xi, \ell_j \rangle| \leq 2^{n-\frac{1}{2}\rho}\) for all \(j = 0, \ldots, 2^n - 1\). Therefore by Lemma 1 we have \(N_j \geq 2^{n-1} - 2^{n-\frac{1}{2}\rho-1}\).

So far we have assumed that \(W\) and \(U\) satisfy (5) and (6) respectively. When this is not the case, we can always find a nonsingular \(n \times n\) matrix \(A\) whose entries are from \(GF(2)\) such that the sub-spaces \(W’\) and \(U’\) associated with \(f’(x) = f(x)A\) have the required forms. \(f’\) and \(f\) have the same algebraic degree and nonlinearity (see Lemma 10 of [SZZ94b]). This shows that the following theorem is true.

Theorem 1 For any function on \(V_n\), the nonlinearity of \(f\) satisfies \(N_f \geq 2^{n-1} - 2^{n-\frac{1}{2}\rho-1}\), where \(\rho\) is the maximum dimension of the linear sub-spaces in \(\{0\} \cup \mathcal{R}\).

Theorem 1 indicates that the nonlinearity of a function is determined by the maximum dimension that a linear sub-space in \(\{0\} \cup \mathcal{R}\) can achieve, but not by the size of \(\mathcal{R}\).

In [SZZ94e], we have proved that \(N_f \geq 2^{n-1} - \frac{1}{2}(n+t-1)\), where \(t\) is the rank of \(\mathcal{R}\). By Corollary 1, we have \(t \geq n - \rho\). This implies that \(2^{n-1} - 2^{n-\frac{1}{2}\rho-1} \geq 2^{n-1} - 2^{\frac{1}{2}(n+t)-1}\). Thus Theorem 1 is an improvement to the result in [SZZ94e]. This improvement can be demonstrated by a concrete example. In [SZZ94e], the following function on \(V_5\)
\[
f(x_1, x_2, x_3, x_4) = (1 \oplus x_1)(1 \oplus x_2)x_3 \oplus (1 \oplus x_1)x_2x_4 \oplus x_1(1 \oplus x_2)(x_3 \oplus x_4) \oplus x_1x_2(x_4 \oplus x_3)
\]
has been shown to satisfy the propagation criterion with respect to all but the following five vectors in V_5:

$$\mathcal{R} = \{(0,0,0,0,0),(0,0,0,0,1),(0,0,0,1,0),(0,0,1,0,0),(0,0,1,1,1)\}.$$

The rank t of \mathcal{R} is equal to 3. By using the result of [SZZ94], $N_{f_5} \geq 2^{5-1} - 2^{\frac{3}{2}(3+3)-1} = 2^4 - 2^3 = 8$. On the other hand, we can set $W = \{(a_1,a_2,a_3,a_4,a_5) | a_i \in GF(2), a_1 \oplus a_2 \oplus a_3 = 0\}$. W is a four-dimensional sub-space in $\{0\} \cup \mathcal{R}^c$. Using Theorem 1 with $\rho = 4$, we have $N_{f_5} \geq 2^{5-1} - 2^{\frac{3}{2}5-1} = 2^4 - 2^2 = 12 > 8$. (Note that according to [CKHFMS85], the maximum nonlinearity a function on V_5 can achieve is 12. Hence we have $N_{f_5} = 12$.)

6 A Tight Lower Bound on Nonlinearity of Functions with Propagation Characteristics

By Theorem 1, $N_f \geq 2^{n-1} - 2^{n-\frac{3}{2}}$ if f, a function on V_n, satisfies the propagation criterion with respect to at least one vector in V_n. This section shows that this lower bound can be significantly improved. Indeed we prove that $N_f \geq 2^{n-2}$ and also show that it is tight.

Theorem 2 If f, a function on V_n, satisfies the propagation criterion with respect to one or more vectors in V_n, then the nonlinearity of f satisfies $N_f \geq 2^{n-2}$.

Proof. As in the previous sections, we denote by \mathcal{R} the set of vectors in V_n with respect to which the propagation criterion is not satisfied by f. We also let $\mathcal{R}^c = V_n - \mathcal{R}$, and W be a linear sub-space in $\{0\} \cup \mathcal{R}^c$ that achieves the maximum dimension ρ.

By Theorem 1, the theorem is trivially true when $\rho > 1$. Next we consider the case when $\rho = 1$. We prove this part by further refining the Parseval’s equation.

As in the proof of Lemma 3, without loss of generality, we can assume that

$$W = \{\gamma | \gamma = (a_1,0,\ldots,0), a_1 \in GF(2)\} \tag{8}$$

$$U = \{\gamma | \gamma = (0,a_2,\ldots,a_n), a_i \in GF(2)\} \tag{9}$$

Similarly to Lemma 3, we have

$$\sum_{j=0}^{2^n-1-1} \langle \xi, \ell_{j+2^n-1} \rangle^2 = 2^{2n-1}, \ i = 0,1, \tag{10}$$

where ξ is the sequence of f and ℓ_k is a row of H_n.

Comparing the first row of (2), we have

$$(a_0,a_1,\ldots,a_{2^n-1}) = 2^{-n}(\langle \xi, \ell_0 \rangle, \ldots, \langle \xi, \ell_{2^n-1} \rangle)H_n$$

or equivalently,

$$2^n(a_0,a_1,\ldots,a_{2^n-1}) = (\langle \xi, \ell_0 \rangle, \ldots, \langle \xi, \ell_{2^n-1} \rangle)H_n \tag{11}$$

where each $a_j = \pm 1$ and $(a_0,a_1,\ldots,a_{2^n-1})$ is the first row of the matrix M described in (2).
Rewrite ℓ_i, the ith row of H_n, as $\ell(\alpha_i)$, where α_i is the binary representation of an integer i in the ascending alphabetical order. Set

$$N = ((\xi, \ell(\alpha_i \oplus \alpha_j)), 0 \leq i, j \leq 2^n - 1.$$

N is a symmetric matrix of order 2^n with integer entries. In [Rot76], Rothaus has shown that $NN = NN^T = 2^{2n}I_{2^n}$. We can split N into four sub-matrices of equal size, namely

$$N = \begin{bmatrix} N_1 & N_2 \\ N_2 & N_1 \end{bmatrix}$$

where each N_j is a matrix of order 2^{n-1}. As $NN = 2^{2n}I_{2^n}$, we have $N_1N_2 = 0$.

Let $(c(\alpha_0), c(\alpha_1), \ldots, c(\alpha_{2^n-1}))$ be an arbitrary linear sequence of length 2^n. Then

$$(c(\alpha_0), c(\alpha_1), \ldots, c(\alpha_{2^n-1-1}), c(\alpha_0), c(\alpha_1), \ldots, c(\alpha_{2^n-1-1}))$$

is a linear sequence of length 2^n, and hence a row of H_n. Thus from (11), we have

$$\sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j)) + \sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j \oplus 2^{n-1})) = \pm 2^n.$$

Hence

$$\sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j)) + \sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j \oplus \alpha_{2^n-1-1}))^2 = 2^{2n}. \quad (12)$$

Rewrite the left hand side of (12) as

$$\begin{align*}
(& \sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j)))^2 + \sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j \oplus \alpha_{2^n-1-1}))^2 \\
+ & 2(\sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j)))(\sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j \oplus \alpha_{2^n-1})))
\end{align*}$$

where

$$\begin{align*}
(& \sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j)))(\sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j \oplus \alpha_{2^n-1}))) \\
= & \sum_{l=0}^{2^{n-1}-1} \sum_{j=0}^{2^{n-1}-1} c(\alpha_j)(\xi, \ell(\alpha_j))c(\alpha_j \oplus \alpha_l)(\xi, \ell(\alpha_j \oplus \alpha_l \oplus \alpha_{2^n-1}))). \quad (13)
\end{align*}$$

As $(c(\alpha_0), c(\alpha_1), \ldots, c(\alpha_{2^n-1}))$ is a linear sequence, $c(\alpha_j)c(\alpha_j \oplus \alpha_l) = c(\alpha_l)$. Hence (13) can be written as

$$\sum_{l=0}^{2^{n-1}-1} c(\alpha_l) \sum_{j=0}^{2^{n-1}-1} (\xi, \ell(\alpha_j))(\xi, \ell(\alpha_j \oplus \alpha_l \oplus \alpha_{2^n-1})).$$

Since $N_1N_2 = 0$,

$$\sum_{j=0}^{2^{n-1}-1} (\xi, \ell(\alpha_j))(\xi, \ell(\alpha_j \oplus \alpha_l \oplus \alpha_{2^n-1})) = 0.$$
This proves that (13) is equal to zero and hence
\[
\sum_{j=0}^{2^{n-1}-1} c(\alpha_j)\langle \xi, \ell(\alpha_j) \rangle^2 + \sum_{j=0}^{2^{n-1}-1} c(\alpha_j)\langle \xi, \ell(\alpha_j \oplus \alpha_{2^n-1}) \rangle^2 = 2^{2n}.
\]
By Lemma 2,
\[
\sum_{j=0}^{2^{n-1}-1} c(\alpha_j)\langle \xi, \ell(\alpha_j) \rangle = 0 \text{ or } \pm 2^n. \tag{14}
\]
Since \((c(\alpha_0), c(\alpha_1), \ldots, c(\alpha_{2^n-1}))\) is an arbitrary linear sequence of length \(2^{n-1}\) and each linear sequence of length \(2^{n-1}\) is a column of \(H_{n-1}\), from (14) we have
\[
\langle \xi, \ell_0 \rangle, \ldots, \langle \xi, \ell_{2^{n-1}-1} \rangle H_{n-1} = 2^n (b_0, \ldots, b_{2^{n-1}-1}) \tag{15}
\]
where \(b_j = 0\) or \(\pm 1\). Therefore
\[
\langle \xi, \ell_0 \rangle, \ldots, \langle \xi, \ell_{2^{n-1}-1} \rangle 2^{\frac{1}{2}(1-n)} H_{n-1} = 2^{\frac{1}{2}(n+1)} (b_0, \ldots, b_{2^{n-1}-1}).
\]
Recall that a matrix \(A\) of order \(s\) is said to be orthogonal if \(AA^T = I_s\). It is easy to verify that \(2^{\frac{1}{2}(1-n)} H_{n-1}\) is an orthogonal matrix. Thus
\[
\sum_{j=0}^{2^{n-1}-1} \langle \xi, \ell_{\alpha_j} \rangle^2 = 2^{n+1} \sum_{j=0}^{2^{n-1}-1} b_j^2.
\]
On the other hand, by (10) we have
\[
\sum_{j=0}^{2^{n-1}-1} \langle \xi, \ell_{\alpha_j} \rangle^2 = 2^{2n-1}.
\]
Hence
\[
\sum_{j=0}^{2^{n-1}-1} b_j^2 = \sum_{j=0}^{2^{n-1}-1} |b_j| = 2^{n-2}.
\]
Now let \(\sigma(\alpha_i)\) denote the \(i\)th row of \(H_{n-1}\), where \(\alpha_i \in V_{n-1}\) is the binary representation of \(i, i = 0, 1, \ldots, 2^{n-1} - 1\). From (15),
\[
\langle \xi, \ell_0 \rangle, \ldots, \langle \xi, \ell_{2^{n-1}-1} \rangle H_{n-1} \sigma(\alpha_i)^T = 2^n (b_0, \ldots, b_{2^{n-1}-1}) \sigma(\alpha_i)^T. \tag{16}
\]
Note that
\[
\langle \sigma(\alpha_i), \sigma(\alpha_j) \rangle = \begin{cases} 2^{n-1} & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}
\]
Thus
\[
H_{n-1} \sigma(\alpha_i)^T = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 2^{n-1} \\ \vdots \\ 0 \end{bmatrix}. \tag{17}
\]
where 2^{n-1} is on the ith position of the column vector.

Write $\sigma(\alpha_i) = (d_0, d_1, \ldots, d_{2^{n-1}-1})$. Then

$$ (b_0, \ldots, b_{2^{n-1}-1})\sigma(\alpha_i)^T = \sum_{j=0}^{2^{n-1}-1} d_j b_j. $$

As $d_j = \pm 1$, we have

$$ | \sum_{j=0}^{2^{n-1}-1} d_j b_j | \leq \sum_{j=0}^{2^{n-1}-1} |b_j| = 2^{n-2}. \tag{18} $$

From (16), (17) and (18)

$$ 2^{n-1} |\langle \xi, \ell_i \rangle| \leq 2^n \sum_{j=0}^{2^{n-1}-1} |b_j| = 2^{2n-2} $$

and hence

$$ |\langle \xi, \ell_i \rangle| \leq 2^{n-1} $$

where i is an arbitrary integer in $[0, \ldots, 2^{n-1} - 1]$. Similarly,

$$ |\langle \xi, \ell_i \rangle| \leq 2^{n-1} $$

holds for all $i = 2^{n-1}, 2^{n-1} + 1, \ldots, 2^n - 1$. By Lemma 1, the nonlinearity of f satisfies

$$ N_f \geq 2^{n-1} - 2^{n-2} = 2^{n-2}. $$

This completes the proof. \qed

As an immediate consequence, we have

Corollary 2 Let f be a function on V_n. Then the following statements hold:

1. if the nonlinearity of f satisfies $N_f < 2^{n-2}$, then f does not satisfy the propagation criterion with respect to any vector in V_n.

2. if f satisfies the SAC, then the nonlinearity of f satisfies $N_f \geq 2^{n-2}$.

Finally we show that the lower bound 2^{n-2} is tight. We achieve the goal by demonstrating a function on V_n whose nonlinearity is equal to 2^{n-2}. Let $g(x_1, x_2) = x_1 x_2$ be a function on V_2. Then the nonlinearity of g is $N_g = 1$. Now let $f(x_1, \ldots, x_n) = x_1 x_2$ be a function on V_n. Then the nonlinearity of f is $N_f = 2^{n-2} N_g = 2^{n-2}$ (see for instance Lemma 8 of [SZZ94c]). f satisfies the propagation criterion with respect to all vectors in V_n whose first two bits are nonzero, which count for three quarters of the vectors in V_n. It is not hard to verify that

$$ \{(0,0,0,\ldots,0),(1,0,0,\ldots,0),(0,1,0,\ldots,0),(1,1,0,\ldots,0)\} $$

is the linear sub-space that achieves the maximum dimension $\rho = 2$.

Thus we have a result described as follows:

Lemma 4 The lower bound 2^{n-2} as stated in Theorem 2 is tight.
7 Conclusion

We have shown quantitative relationships between nonlinearity, propagation characteristics and the SAC. A tight lower bound on the nonlinearity of a function with propagation characteristics is also presented.

This research has also introduced a number of interesting problems yet to be resolved. One of the problems is regarding the size and distribution of \(\mathbb{R}^c \), the set of vectors where the propagation criterion is satisfied by a function on \(V_n \). For all the functions we know of, \(\mathbb{R}^c \) is either an empty set or a set with at least \(2^{n-1} \) vectors. We believe that any further understanding of this problem will contribute to the research into the design and analysis of cryptographically strong nonlinear functions.

Acknowledgments

We would like to thank the anonymous referees for their helpful comments. The first author was supported in part by the Australian Research Council (ARC) under the reference numbers A49130102, A49131885 and A49232172, and by the Australian Telecommunications and Electronics Research Board (ATERB) under the reference number O10/058, the second author by ARC A49130102 and ATERB O10/058, and the third author by ARC A49232172 and ATERB N069/412. All authors were supported by a University of Wollongong Research Program grant.

This work was done while the third author was with the University of Wollongong.

References

