N-Benzoylthiourea

Pawel Wagner
University of Wollongong, pawel@uow.edu.au

Sabina Niemczyk-Baltoro
Silesian University of Technology

Maciej Kubicki
Adam Mickiewicz University

Publication Details
N-Benzoylthiourea

Abstract
In the title compound, C₈H₈N₂OS, strong intramolecular N—H⋯O hydrogen bonds [N⋯O = 2.669 (3) and 2.618 (3) Å] form almost planar six-membered rings and enforce the conformation of the molecule. Two kinds of intermolecular N—H⋯S hydrogen bonds [N⋯S = 3.309 (3)–3.456 (2) Å] between two symmetry-independent molecules form consecutive dimers that expand in ribbons along the [100] direction.

Keywords
n, benzoylthiourea

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/aiimpapers/1123
In the title compound, \(\text{C}_8\text{H}_8\text{N}_2\text{OS} \), strong intramolecular \(\text{N} - \text{H} \cdots \text{O} \) hydrogen bonds \([\text{N} \cdots \text{O} = 2.669 (3) \text{ and } 2.618 (3) \text{ Å}] \) form almost planar six-membered rings and enforce the conformation of the molecule. Two kinds of intermolecular \(\text{N} - \text{H} \cdots \text{S} \) hydrogen bonds \([\text{N} \cdots \text{S} = 3.309 (3) \cdots 3.456 (2) \text{ Å}] \) between two symmetry-independent molecules form consecutive dimers that expand in ribbons along the [100] direction.

Comment

Thiourea derivatives can be regarded as model compounds for different intra- and intermolecular interactions involving \(\text{S} \) atoms. In the literature, there are only a few structural reports describing these compounds, perhaps due to the reported difficulties in preparing crystals for X-ray diffraction studies (Shanmuga Sundara Raj et al., 1999). Therefore, we have carried out the X-ray structural study of a simple thiourea derivative, viz. \(\text{N-benzoyl-thiourea}, \) (I). The main goal of this study was to identify the patterns created by the intermolecular \(\text{N} - \text{H} \cdots \text{S} \) interactions.

The asymmetric part of the unit cell of (I) contains two molecules, hereinafter referred to as molecules \(\text{A} \) and \(\text{B} \). The bond lengths and angles of these symmetry-independent molecules are quite similar (Table 1). The normal probability plot analysis (Abrahams & Keve, 1971; International Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) shows that the differences are of a statistical rather than systematic nature; the correlation coefficients between experimental and theoretical distributions are 0.97 for bond lengths and 0.94 for bond angles. In fact, there is an approximate pseudo-centre of symmetry between molecules \(\text{A} \) and \(\text{B} \). Taking into account only \(\text{C} - \text{CO} - \text{thiourea} \) fragments, the coordinates of this pseudo-centre are \([0.704 (6), 0.78 (2), 0.502 (7)]\). The benzene rings deviate considerably from this approximate symmetry, the dihedral angle between the least-squares plane of the ring and the plane through the three atoms \(\text{C}11, \text{O}11 \) and \(\text{N}11 \) being 42.9 (1)° in molecule \(\text{A} \) and 33.0 (1)° in molecule \(\text{B} \).

The \(\text{C}1/\text{C}11/\text{O}11/\text{N}11 \) and thiourea fragments are almost ideally planar, with the maximum deviations from the least-squares planes not exceeding 0.012 (2) Å. The dihedral angles between these planes are also small, viz. 7.3 (1)° in \(\text{A} \) and 2.1 (2)° in \(\text{B} \). This almost coplanar conformation is enforced by a strong intramolecular \(\text{N}12 - \text{H} \cdots \text{O}11 \) hydrogen bond that closes an almost planar six-membered ring [maximum deviations of 0.051 (6) and 0.015 (8) Å for molecules \(\text{A} \) and \(\text{B} \), respectively]. The significantly more folded conformation of molecule \(\text{A} \) correlates well with the lengths of the intramolecular hydrogen bonds (Table 2). A similar conformation was found in a closely related compound, \(\text{N-(4-methylbenzoyl)-thiourea}, \) (II) (Reinke, 2001). In (II), the dihedral angle between two planar fragments is 5.8°, and the hydrogen bonds also have an intermediate length, with an \(\text{N} \cdots \text{O} \) distance of 2.640 Å. Additional arguments for the decisive role of this hydrogen bond in the determination of molecular conformation can be obtained by an examination of the May 2002 release of the Cambridge Structural Database (Allen, 2002). For 28 fragments with primary and secondary \(\text{N}12 \) groups, the mean value of the improper \(\text{OC} \cdots \text{CN} \) torsion angle is 3 (2)° for (I), this angle is 7.0 (2)° in molecule \(\text{A} \) and 1.0 (2)° in \(\text{B} \), and for (II), it is 3.5°, while for 26 compounds with tertiary groups, the mean value of this angle is 51 (7)° (after the removal of two outliers).

The pattern of bond lengths and angles in (I) is quite typical. Both \(\text{C} = \text{O} \) and \(\text{C} - \text{S} \) bonds have double-bond characters, but the results of the bond order analysis show that the bonds have a mixed character.
acter, and the C—N bonds in the thiourea fragment are significantly different. The C—NH₂ bond is remarkably short; indeed it is one of the shortest C—N bonds found in thiourea derivatives.

The crystal packing in (I) is governed by two kinds of strong N—H···S hydrogen bonds (Table 2 and Fig. 1) which form pseudo-centrosymmetric dimers of molecules A and B. These hydrogen bonds connect the molecules into ribbons along the [100] direction, and these hydrophilic hydrogen-bonded channels are surrounded by the hydrophobic surface of the phenyl rings. Interestingly, the true centre of symmetry is not utilized in creating the main structural pattern; instead, the phenyl rings. Interestingly, the true centre of symmetry is not utilized in creating the main structural pattern; instead, the

channels are surrounded by the hydrophobic surface of the phenyl rings. Interestingly, the true centre of symmetry is not utilized in creating the main structural pattern; instead, the

channel is surrounded by the hydrophobic surface of the phenyl rings. Interestingly, the true centre of symmetry is not utilized in creating the main structural pattern; instead, the

Table 2

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1LA—H1LA···S12B</td>
<td>0.791 (19)</td>
<td>2.60 (2)</td>
<td>3.391 (2)</td>
<td>175.0 (19)</td>
</tr>
<tr>
<td>N12A—H12A···O11A</td>
<td>0.77 (2)</td>
<td>2.06 (2)</td>
<td>2.699 (3)</td>
<td>136 (2)</td>
</tr>
<tr>
<td>N11B···H11B···S12A</td>
<td>0.850 (19)</td>
<td>2.606 (19)</td>
<td>3.442 (2)</td>
<td>168.2 (17)</td>
</tr>
<tr>
<td>N12B···H12B···O11B</td>
<td>0.84 (3)</td>
<td>1.92 (3)</td>
<td>2.616 (3)</td>
<td>140 (3)</td>
</tr>
<tr>
<td>N12B···H12B···S12B</td>
<td>0.83 (3)</td>
<td>2.49 (3)</td>
<td>3.309 (3)</td>
<td>170 (2)</td>
</tr>
<tr>
<td>N12A···H12A···S12B</td>
<td>0.93 (3)</td>
<td>2.55 (3)</td>
<td>3.456 (2)</td>
<td>167 (2)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) 1 + x, y, z; (ii) x − 1, y, z.

Experimental

N-Benzoylthiourea was prepared by a modification of the method previously described by Klayman et al. (1972). Benzoyl chloride was added to a solution of potassium thiocyanate in warm anhydrous acetone, and the resulting mixture was refluxed. Potassium chloride, which precipitated as a fine powder, was removed by filtration and a concentrated aqueous ammonia solution was added to the filtrate. The resulting mixture was evaporated to dryness using a rotary evaporator and the residue was extracted with ethanol. Colourless crystals of (I) were obtained by slow evaporation from a methanol solution.

Crystal data

c₄h₄n₄o₅s
Mᵣ = 180.22
Triclinic, P̅T
α = 8.2300 (16) Å
β = 9.3410 (18) Å
γ = 72.91 (3)°
V = 876.7 (4) Å³
Z = 4
Dₐ = 1.365 Mg m⁻³
Cell parameters from 25

Selected geometric parameters (Å, °)

S12A···C12A	1.678 (2)
O11A···C11A	1.220 (2)
N11A···C11A	1.376 (3)
N12A···C12A	1.303 (3)
S12A···N11A	118.70 (17)
S12A···N12A	122.97 (18)
N11A···N12A	118.3 (2)
C11A···C12A	128.0 (2)
C6A···C14···C1A···O11A	135.1 (2)
C6B···C1B···C1B···O11B	145.3 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

Data collection

Kuma KM-4 four-circle diffractometer
ω/2θ scans
3276 measured reflections
3067 independent reflections
1929 reflections with I > 2σ(I)
Rint = 0.025
Intensity decay: 3%

Refinement

Refinement on F²
R(F² > 2σ(F²)) = 0.034
wR(F²) = 0.071
S = 1.00
3067 reflections
282 parameters
All H-atom parameters refined
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.024 (2)

Data collection: KM-4 Software (Kuma, 1992); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXL97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

The authors thank Mr Nikodem Kuznik, Silesian University of Technology, for helpful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1152). Services for accessing these data are described at the back of the journal.

References