A note on small defining sets for some SBIBD(4t-1, 2t-1, t-1)

Dinesh Sarvate

Jennifer Seberry

University of Wollongong, jennie@uow.edu.au
A note on small defining sets for some SBIBD(4t-1, 2t-1, t-1)

Abstract
We conjecture that p specified sets of p elements are enough to define an SBIBD(2p+1, p, (p - 1)/2) when p \equiv 1 \pmod{4} is a prime or prime power. This means in these cases p rows are enough to uniquely define the Hadamard matrix of order 2p + 2. We show that the p specified sets can be used to first find the residual BIBD(p + 1, 2p, (p + 1)/2, (p - 1)/2) for p prime or prime power. This can then be used to uniquely complete the SBIBD for p = 5, 9, 13 and 17. This is another case where a residual design with \lambda > 2 is completable to an SBIBD, the first such case having been given by Seberry in "On small defining sets for some SBIBD(4t-1, 2t-1, t-1)". Bulletin ICA 4:58-62, 1992.

Disciplines
Physical Sciences and Mathematics

Publication Details
Dinesh Sarvate and Jennifer Seberry, A note on small defining sets for some SBIBD(4t-1, 2t-1, t-1), Bulletin of the Institute of Combinatorics and its Applications, 10, (1994), 26-32
A note on small defining sets for some
SBIBD(4t - 1, 2t - 1, t - 1)

Dinesh Sarvate
Department of Mathematics
College of Charleston
Charleston, SC, USA

and

Jennifer Seberry*
Department of Computer Science
The University of Wollongong
Wollongong, NSW, 2500
Australia

Abstract

We conjecture that \(p \) specified sets of \(p \) elements are enough to define an SBIBD(2p + 1, p, (p - 1)/2) when \(p \equiv 1 (mod 4) \) is a prime or prime power. This means in these cases \(p \) rows are enough to uniquely define the Hadamard matrix of order \(2p + 2 \). We show that the \(p \) specified sets can be used to first find the residual BIBD(p + 1, 2p, (p + 1)/2, (p - 1)/2) for \(p \) prime or prime power. This can then be used to uniquely complete the SBIBD for \(p = 5, 9, 13 \) and 17. This is another case where a residual design with \(\lambda > 2 \) is completable to an SBIBD, the first such case having been given by Seberry in "On small defining sets for some SBIBD(4t - 1, 2t - 1, t - 1)". Bull. ICA 4:58-62, 1992.

We will refer to a design and its incidence matrix, with treatments as rows and blocks as columns, interchangeably.

Smallest defining sets have been studied by Gray [1, 2, 4] and minimal defining sets by Seberry [8]. Definitions are used from [9, 11, 12].

Let \(D = \{d_1, d_2, \ldots, d_{2t}\} \) be the quadratic residues modulo \(p = 4t + 1 = q^a \) a prime power (we recall zero is neither a quadratic residue nor a quadratic nonresidue). Let

\[
E = \{d_1, d_2, \ldots, d_{2t}, p, d_1 + p, d_2 + p, \ldots, d_{2t} + p\}.
\]

Consider a Galois field \(GF(q^a) \) with a primitive element \(x \) satisfying \(g(x) = 0 \). Now the elements of this field are integers or polynomials in \(x \). The constant term in each element (polynomial) will be referred to as the integer. In the next description, in working with the first \(2t \) elements of \(E \), integers are reduced modulo \(q, p = q^a \) so \(q + i \equiv i (mod \ q) \), i.e. integers and coefficients remain in the range 0 to \(q - 1 \). When working with the last \(2t + 1 \) elements of \(E \) the integers (not coefficients) are reduced modulo \(q \) so \(p + q + i \equiv p + i (mod \ q) \) and \(p - j \equiv p + q - j (mod \ q) \) so coefficients remain in the range 0 to \(q - 1 \) and integers in the range \(p \) to \(p + q - 1 \).

We label the columns of a partial incidence matrix \(0, 1, \ldots, q - 1, x + 1, \ldots, x + q - 1, 2x, \ldots, 2x + q - 1, \ldots, (q - 1)(x^r - 1)/(x - 1), p, p + 1, \ldots, p + q - 1 \).

*Written while on faculty at the Center for Communication and Information Science, the Department of Electrical Engineering and the Department of Computer Science and Engineering, University of Nebraska - Lincoln, NE 68588-0502, USA.

†Research funded by ARC grant A48830241 and an ATERII grant.

Bulletin of the ICA, Volume 10 (1994) 26–32
\[p + x, \ldots, p + (q - 1)(x^* - 1)/(x - 1), \] and the rows 0, 1, \ldots, q - 1, x, \ldots, (q -
1)(x^* - 1)/(x - 1).

Associate with each row label an index, \(g_i \), \(i = 0, 1, \ldots, q^* - 1 \), and with each column label an index, \(f_j \), \(j = 0, 1, \ldots, 2q^* - 1 \). We now define the sets \(E_i, i = 0, 1, \ldots, q^* - 1 \) by

\[
E_i = \{ j : (f_j - g_i) \mod g(x), \mod p \in E \},
\]
as \(j \) runs from 0 to \(2q^* - 1 \).

1 The case \(p \equiv 1 \mod 4 \)

Conjecture 1 The \(p = q^*, p \equiv 1 \mod 4 \) a prime power, sets given by \(E_i \), \(i = 0, 1, \ldots, p - 1 \), are (minimal) defining sets for an \(SBIBD(2p + 1, p, (p - 1)/2) \).

We will show that the conjecture is true for \(p = 5, 9, 13 \) and 17.

Example. For \(p = 5 \), \(D = \{ 1, 4 \} \), there is no polynomial primitive element and \(E = \{ 1, 4, 5, 6, 9 \} \). Now \(g_0 = 0, \ldots, g_4 = 4 \), and \(f_0 = 0, f_1 = 1, \ldots, f_5 = 9 \). To find \(E_i \) we consider

\[
f_0 - g_0, f_1 - g_1, \ldots, f_5 - g_5,
\]
and \(f_j \in E \) if \(f_j - g_i \notin E \). Hence we have \(E_0 = \{ 1, 4, 5, 6, 9 \} \), \(E_1 = \{ 2, 0, 6, 7, 5 \} \), \(E_2 = \{ 3, 1, 7, 8, 6 \} \), \(E_3 = \{ 4, 2, 8, 9, 5 \} \), \(E_4 = \{ 0, 3, 9, 11, 1 \} \) where the first two elements are reduced modulo 5 to the range \(0 \) to \(4 \) and the last three elements are reduced modulo 5 to the range \(5 \) to \(9 \).

Example. For \(p = 9 = 3^2 \) and \(x^2 = x + 1 \) be the primitive polynomial, now \(D = \{ 1, 2, x + 1, 2x + 2 \} \) and \(E = \{ 1, 2, x + 1, 2x + 2, 9, 10, 11, x + 10, 2x + 11 \} \). Thus, \(g_0 = 0 \), \(g_1 = f_0 = 2x \), \(f_2 = x + 9 \), \(g_2 = f_2 = x + 1, f_3 = 2x + 1, f_4 = x + 10 \), \(g_3 = f_3 = x + 2, f_4 = 2x + 2, f_5 = x + 11 \), \(g_4 = f_4 = x + 3, f_5 = 2x + 9, f_6 = 9 \), \(g_5 = f_5 = x + 4, f_6 = 10, f_7 = 2x + 10 \), \(g_6 = f_6 = x + 5, f_7 = 11, f_8 = x + 11 \), \(g_7 = 2x + 2, f_8 = x + 11, f_9 = 2x + 11 \). To find \(E_i \) we consider

\[
f_0 - g_0, f_1 - g_1, \ldots, f_7 - g_7,
\]
and \(f_j \in E \) if \(f_j - g_i \notin E \). Hence we have \(E_0 = \{ 1, 2, x + 1, 2x + 2, 9, 10, 11, x + 10, 2x + 11 \} \), \(E_1 = \{ 2, 0, x + 2, 2x + 11, 2x \} \), \(E_2 = \{ 0, 1, x, 2x + 1, 11, 9, 10, 2x + 10 \} \), \(E_3 = \{ 3, 1, 2, x + 2, 1, 2x + 9, x + 10, 2x + 9, 11 \} \), \(E_4 = \{ 4, 2, 1, x + 1, 2x + 2, x + 10, 9, x + 10, 2x + 9 \} \), \(E_5 = \{ 0, 3, 9, 11, x, 2x + 10, 9, 11, x + 9 \} \), \(E_6 = \{ 2x + 2, 2, x, 2x + 10, 2x + 11, 2x + 9, 11, x + 9 \} \), \(E_7 = \{ 2x + 2, 2x + 1, 0, x + 1, 2x + 11, 2x + 9, 2x + 10, 9, x + 12 \} \).
where the first four elements are reduced modulo 3 to the range 0 to 2 and the last five elements have their coefficients in the range 0 to 2 and their integers in the range 9 to 11.

The incidence matrix is made using the labels f_0, \ldots, f_{r-1}. If $f_j \in E_i$, then the (i,j) element of the incidence matrix is 1, otherwise it is zero. Hence the incidence matrices for examples 1 and 2 are:

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

and, as the column labels are 0, 1, 2, 3, x, x+1, x+2, ... the incidence matrix is:

\[
\begin{array}{cccccccc}
0 & 1 & 2 & x & x+1 & x+2 & 2x & x+9 & 2x+9 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
\end{array}
\]

(note for space reasons not all the labels in the first row are given).

Lemma 1. The incidence matrix of E_0, \ldots, E_{p-1} and $E_p = \{0, 1, \ldots, q - 1, x, \ldots, (q - 1)(x' - 1)/(x - 1)\}$ is a $BIBD(p + 1, 2p, p, (p + 1)/2, (p - 1)/2)$.

Proof. The dimensions, the row sum and the column sum are by construction.

Now the nature of the construction shows that the first p columns of the incidence matrix will have $(p - 1)/2 = 2t$ elements and the last $p + 1$ columns will have $(p + 1)/2 = 2t + 1$ elements as the elements of a Galois field are an additive group and as we run through all g_i the number of times $f_j - g_i \in D$ for fixed j is $|D| = 2t$.

It remains to discuss the inner product of the rows. For the last row, from E_p, the intersection is correct by construction.

The first p rows can be divided into the first and last p columns. They are the incidence matrices of the quadratic residues (the matrix in the 0 to $(p - 1)$st rows and the 0th to $(p - 1)$st columns) and the quadratic residues with 0 in the pth to $(2p - 1)$st columns. These sets are known [9] to give $2 - \{(p - 1)/2, (p + 1)/2, (p - 1)/2\}$ supplementary different sets and so we have the correct inner product.

Conjecture 2. The sets given in the last Lemma always form the residual design of an $SSBD(2p + 1, p, (p - 1)/2)$.

28
Lemma 2 The sets for $p = 5$ can be uniquely extended to an $SBIBD(11,5,2)$.

Proof. Straightforward use of the properties of an $SBIBD$.

Lemma 3 The sets given for $p = 9$ can be uniquely extended to a symmetric $SBIBD(19,9,4)$.

Proof. A search was made for all possible 11th rows to complete the design and exactly nine possibilities were found. These nine rows gave the following $SBIBD(19,9,4)$:

$$
\begin{array}{ccccccccccccccc}
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
$$

The expanded version of the incidence matrix of the $SBIBD(19,9,4)$ found during the construction is row and column permutation equivalent to:

$$
\begin{array}{cccccc}
0 & c_3 & c_5 & c_7 & 0_3 & 0_3 \\
0_3 & J & J & J & J & J \\
0_3 & J & J & J & J & J \\
0_3 & J & J & J & J & J \\
0_3 & 0 & J & J & J & J \\
0_3 & J & J & J & J & J \\
0_3 & 0 & J & J & J & J \\
0_3 & J & J & J & J & J \\
\end{array}
$$

or
I. Subsequently Gower [7] showed the conjecture is true for \(p = 13 \) and \(17 \) can be uniquely extended to symmetric SBIBD(27,13,6) and SBIBD(35,17,8).

2 The case \(p \equiv 3(\text{mod } 4) \)

Seberry [8] gave a conjecture for primes \(4t - 1 \equiv 3(\text{mod } 4) \) and showed the conjecture is true for \(t = 2,3,5 \). Subsequently Gower [7] showed the conjecture is true for \(t = 6 \). We now extend the conjecture of that paper to the case of prime powers.

Conjecture 3. Let \(D = \{d_1,d_2,\ldots,d_{2t-1}\} \) be the quadratic residues modulo \(p = 4t-1 \equiv 3(\text{mod } 4) \) a prime power. Let \(x \) satisfy a primitive polynomial. Write the elements of \(GF(p) \) in additive notation as \(g_1,g_2,\ldots,g_p \). Define \(E_i = \{g_j : g_j - z^i \in D, i \text{ sized, } j = 1,\ldots,p, z \in D \} \) for \(i = 1,\ldots,2t-1 \). Then we claim the sets \(E_1,\ldots,E_{2t-1},D \) are the residual design of an SBIBD(\(4t-1,2t-1,t-1 \)).

Conjecture 4. Suppose \(4t-1 \) is a prime power. Then the sets \(E_1,\ldots,E_{2t-1} \) just defined can be extended, uniquely, up to permutation of treatments using the link property of blocks of an SBIBD to form an SBIBD(\(4t-1,2t-1,t-1 \)).

Example. If \(p \equiv 3(\text{mod } 4) = 3^3 \) with primitive root \(z \) satisfying \(z^3 = x + 2 \) we have \(D = \{1,2x,2x^2+1,2x^2+2,x^2+2,x^2+2,x^2+x+1,x^2+2x^2+x+1 \} \). With the elements of \(GF(3^3) \) written as \(g_1,\ldots,g_{27} \) for example \(g_4 = x^3 = x+2x \), and \(E_4 = \{g_j : g_j - z^4 \in D \} = \{g_j : g_j - x^2 - 2x \in D \} = \{x^2+2x^2+1,x^2+2,x^2+2x^2+2x+2,x+2x^3+2x^2+1,2x^2+2x^2+x+1,2x^2+2x+2x^2+2x+1 \} \). Then we claim \(E_1,\ldots,E_{27},D \) give a residual design of the SBIBD(27,13,6) and can be uniquely extended to that design.

We give another, simpler proof of Lemma 2 of [8];
Lemma 5 Suppose \(4t - 1 \) is a prime power. Then the sets \(E_1, E_2, \ldots, E_{2t-1} \) defined above can be completed to the residual design \(BIBD(2t, 4t-1, 2t-1, t, t-1) \) of an \(SBIBD(4t-1, 2t-1, t-1) \).

Proof. Since \(4t - 1 \) cannot be written as the sum of two squares, the sets \(E_1, E_2, \ldots, E_{2t-1} \) do not contain the zero element and are therefore subsets of the set of \(4t - 2 \) nonzero elements. We write down \(A \), the \(2t - 1 \times 4t - 2 \) incidence matrix of the \(E_i \).

From the construction of the \(SBIBD(4t-1, 2t-1, t-1) \) based on the quadratic residues, we know that these sets form part of an \(SBIBD \) generated from \(D \). In this \(SBIBD \), \(|E_i \cap D| = t-1 \) for each \(i \), and the elements in this intersection must be quadratic residues as \(D \) contains only quadratic residues. Hence each \(E_i \) consists of \(t-1 \) quadratic residues and \(t \) quadratic non-residues. Thus in the incidence matrix \(A \), in each column corresponding to a quadratic non-residue there will be \(t \) ones, and since there are \(2t - 1 \) quadratic non-residues, these columns contain altogether \(t(2t - 1) \) ones in \(A \). Similarly, in each column corresponding to a quadratic residue there will be \(t-1 \) ones, and since there are \(2t - 1 \) quadratic residues, these columns contain altogether \((t-1)(2t - 1) \) ones in \(A \). This shows \(A \) contains \((2t - 1)^2 \) ones.

\(A \) may be interpreted in two ways: first, as the incidence matrix of the first \(2t - 1 \) blocks of an \(SBIBD(4t-1, 2t-1, t-1) \), where each row corresponds to a block; second, as the incidence matrix of the first \(2t - 1 \) elements of a \(BIBD(2t, 4t-1, 2t-1, t, t-1) \), where each column corresponds either to a block or to a block with one element missing.

Now if we wish to extend each block to form the \(BIBD(2t, 4t-1, 2t-1, t, t-1) \), or in other words, to adjoin one extra row to the matrix \(A \) to form the incidence matrix \(B \) of such a design, we must place one extra one in each of the columns which corresponds to a quadratic residue. The number of ones in this additional row must be the difference between the number of ones in \(B \) and the number already present in \(A \), that is \(2t(2t - 1) - (2t - 1)^2 = 2t - 1 \) precisely.

Thus the extra row is simply the incidence vector of \(D \), and as already noted \(D \) intersects each \(E_i \) in precisely \(t - 1 \) elements.

We see that a similar result is not true for twin prime power difference sets. Indeed Gray and Street [5] indicate that the smallest defining set for an \(SBIBD(15, 7, 3) \) contains nine blocks. The next example shows why twin prime powers are radically different.

Example. Consider the difference set \(D = \{(0, 0), (1, 0), (2, 0), (1, 1), (1, 4), (2, 2), (2, 3)\} \) to generate a \((15, 7, 3)\) design. As \((0, 0)\) is in the difference set, \((0, 0) + D = D\) is \(D \) again.

Acknowledgement. The authors would like to thank the referee for many useful comments.
References

