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Highly Nonlinear 0-1 Balanced Boolean 
Functions Satisfying Strict Avalanche Criterion 

(Extended Abstract) 

Jennifer Seberry * and Xian-Mo Zhang ** 

Department of Computer Science 
The University of Wollongong 

Wollongong, NSW 2522, AUSTRALIA 

Abstract. Nonlinearity, 0-1 balanced ness and strict avalanche criterion 
(SAC) are important criteria for cryptographic functions. Bent functions 
have maximum nonlinearity and satisfy SAC however they are not 0-
1 balanced and hence cannot be directly used in many cryptosystems 
where 0-1 balanced ness is needed. In this paper we construct 
(i) 0-1 balanced boolean functions on Y2k+l (k 2: 1) having nonlinearity 

22k _ 2k and satisfying SAC, 

(ii) 0-1 balanced boolean functions on Y2k (k 2: 2) having nonlinearity 
22k

-
1 

_ 2k and satisfying SAC. 

We demonstrate that the above nonlinearities are very high not only for 
the 0-1 balanced functions satisfying SAC but also for all 0-1 balanced 
functions. 

1 Basic Definitions 

Let Vn be the vector space of n tuples of elements from GF(2). Let 0", {3 E Vn· 
Write 0" = (al·· ·an ), f3 = (b1 ·· ·bn ), where aj,b j E GF(2). Write (0",{3) = 
2:,1=1 ajbj for the scalar product of 0" and j3. We write 0" = (al·· ·an ) < {3 = 
(b l ... bn ) if there exists k, 1 ::; k ::; n, such that al = bl , ... , ak-l = bk - l and 
ale = 0, bk = 1. Hence we can order all vectors in Vn by the relation < 

where 

0"0=(0···00), ... , 0"2n-1_l=(01···1), 

0"2n-1 = (10···0), ... , 0"2n-l = (11 .. ·1). 

* Supported in part by the Australian Research Council under the reference numbers 
A49130102, A9030136, A49131885 and A49232172. 

** Supported in part by the Australian Research Council under the reference number 
A49130102. 
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Definition 1. Let f( x) be a function from Vn to G F(2) (simply, a function on 
Vn ). We call the (1 -I)-sequence 71f = « _I)f(O'o) (_I)f(O'd ... (_I)'(O'ln_t)) 
the sequence of f(x). f(x) is called the function of 71f. The (0, I)-sequence 
(J(ao) f(al) ... f(a2 n -d) is called the truth table of f(x). In particular, if the 
truth table of f(x) has 2n

- 1 zeros (ones) f(x) is called 0-1 ba(anced. 

Let e = (al ... a2n) and 71 = (b l ... b2n ) be (1 , -I)-sequences of length 2n. The 
operation * between e and 71, denoted by e * 71, is the sequence (al bl ... a2n b2 n ). 

Obviously if e and 71 are the sequences of functions f( x) and g( x) on Vn respec­
tively then e * 71 is the sequence of f(x) + g(x). 

Definition 2. We call the function hex) = alxl + .. ·+anxn +c, aj,c E GF(2), 
an affine function, in particular, hex) will be called a linear function if the 
constant c = O. The sequence of an affine function (a linear function) will be 
called an affine sequence (a linear sequence). 

Definition 3. Let f and 9 be functions on Vn · d(J, g) = Lf(r);z!g(r) 1 is called 
the Hamming distance between f and g. Let rt'1, ... ,rt'2n,rt'2n+l, ... ,rt'2n+1 be 
all affine functions on Vn. Nf = mini= 1, ... ,2n+1 d(J, rt'i) is called the nonlinearity 
of f(x). 

The nonlinearity is a crucial criterion for a good cryptographic design. It 
prevents the cryptosystems from being attacked by a set of linear equations. 
The concept of nonlinearity Was introduced by Pieprzyk and Finkelstein [16]. 

Definition4. Let f(x) be a function on Vn. If f(x) + f(x + a) is 0-1 balanced 
for every a E Vn, W( a) = 1, where W( a) denotes the number of nonzero 
coordinates of a ( Hamming weight) of a, we say that f( x) satisfies the strict 
avalanche criterion (SAC). 

We can give an equivalent description of SAC: let f be a function on Vn. If 
if we change any single input the probability that the output changes is t (see 
[2]). The strict avalanche criterion was originally defined in [20], [21], later it 
has been generalized in many ways [2], [3], [6], [10], (13], (18]. The SAC is 
relevant to the completeness and the avalanche effect. The 0-1 balancedness, the 
nonlinearity and the avalanche criterion are important criteria for cryptographic 
functions [1], [3], [4], [13]. 

Definition 5. A (1, -I)-matrix H of order h will be called an Hadamard matrix 
if HHT = hh. 

If h is the order of an Hadamard matrix then h is 1, 2 or divisible by 4 [19]. 
A special kind of Hadamard matrix, defined as follows will be relevant: 

Definition 6. The Sylvester-Hadamard matrix ( or Walsh-Hadamard matrix) of 
order 2n, denoted by H n, is generated by the recursive relation 

H [
Hn-l Hn-l ] 1 2 H 1 

n = H -H ' n = , , 00 • , 0 = . 
n-l n-l 
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Definition 7. Let f(x) be a function from Vn to GF(2). If 

2-~ L (_l)J(r)+(P.r) = ±1, 
rEV .. 

for every f3 E Vn . We call f( x) a bent function on Vn . 

l,From Definition 7, bent functions on Vn only exist for even n. Bent func­
tions were first introduced and studied by Rothaus [17]. Further properties, 
constructions and equivalence bounds for bent functions can be found in [1], 
[7], [9], [15], [22]. Kumar, Scholtz and Welch [8] defined and studied the bent 
functions from Z; to Zq. Bent functions are useful for digital communications, 
coding theory and cryptography [2], [4], [9], [11], [12], [13], [14], [15]. Bent 
functions on Vn (n is even) not only attain the upper bound of nonlinearity, 
2n- 1 - 2!n-l, but also satisfy SAC. However 0-1 balancedness is often required 
in cryptosystems and bent functions are not 0-1 balanced since the Hamming 
weight of bent functions on Vn is 2n- 1 ± 2!n-l [17]. In this paper we construct 
0-1 balanced functions with high nonlinearity satisfying high-order SAC from 
bent functions. 

Notation 8. Let X be an indeterminant. We give X a binary subscript that is 
Xi 1 .• ·i .. where il, ... ,in E GF(2). For any sequence of constants il .... ,ip from 
GF(2) define a function Di1 ".j, from v;, to GF(2) by 

D j 1 ".j, (YI , ... , Yp) = (YI + i~) ... (yP + i;) 
where '% = 1 + i is the complement of i modulo 2. 

2 The Properties of Balancedness and Nonlinearity 

Lemma 9. Letei1".j, be the sequence ofafunction fi 1".j,(Xl,···,X q) from Vq 

to GF(2). Write e = (eo".oo eO"'OI ... el ... 11) for the concatenation of eo".oo, 
eO".Ol, ""6,,,11' Then e is the sequence of the function from Vq+p to GF(2) 
given by 

f(Yl""'YP,Xl,""X q ) = L Di1·"j,(Yl, ... ,Yp)fi1".i,(Xl.···,X q), 

(il ,,·j,)EV, 

Proof. It is obvious that: 

Hence, by exhaustive choice, 

By the definition of sequence offunctions (Definition 1) the lemma is true. 0 
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Lemma 10. Write H n = [ ~~ 1 where Ii IS a row of H n' Then Ii is the 

12:-1 

sequence ofhi(x) = (ai, x} where ai is defined before Definition 1. 

Proof By induction on n. Let n = 1. Since HI = [! ~ ], 10 = (+ +), the 

sequence of (0, x) and h = (+ -) , the sequence of (1, x) where x E VI, + and -
stand for 1 and -1 respectively. Suppose the lemma is true for n = 1,2, .. , ,k-1. 

Since Hie = HI X Hie-I, where x is the Kronecker product, each row of Hn 
can be expressed as 6 x I where 6 = (+ +) or (+ -), and I is a row of H n - 1 . 

By the assumption I is the sequence of a function, say h(x) = {a,x}, where 
a, x E Vie-I. Thus 6 x I is the sequence of (/3, y) where y E Vic, /3 = (0 a) or (1 a) 
according as I = (+ +) or (+ -). Thus the lemma is true for n = k. 0 

;.From Lemma 10 all the rows of Hn comprise all the sequences of linear 
functions on Vn and hence all the rows of ±H n comprise all the sequences of 
affine functions on Vn . 

Lemma 11. Let f and g be functions on Vn whose sequences are 1]1 and 1]g 
respective/yo Then d(f, g) = 2n

-
1 - t{1]I, 1]g). 

Proof (1]1, 1]g) = LI(z)=9(z) 1 - LI(z);tg(z) 1 = 2n 
- 2 LI(z);eg(z) 1 = 2n 

-
2d(J, g). This proves the lemma. 0 

Let Hn = (h ij ) and Li = (hi 1 •.. hi';.") i.e. the i-th row of Hn. Write Li+2" = 
-Li, i = 1, ... , 2n. Since Li, i = 1, ... , 2n, is a linear sequence L1, ... , L2", 
L 2"+1, ... , L 2 ,,+1 comprise all affine sequences. Let f be a function on Vn whose 
sequence is 1]1 and !Pi be the function of Li. 

Write 1]J = (a1' .. a2")' Since (1]J,Li) = EJ:1 ajhij 

(1]1, Li}2 = 2n + 2 L ajathijhit. 
i<t 

and 
2" 2" 2" 

L{1]I, Li}2 = 22n + 2 L L aiathijhit = 22n + 2 L ajat L hiihit . 
i=l i=l j<t j<t i=l 

Since Hn is an Hadamard matrix L:i~1 hiihit = 0 for j -# t and hence 

2" 

L{1]J,LY = 22n. 
i=1 

(1) 

(2) 

Thus there exists an integer, say io, such that (1]1, Lio)2 = {1]I, Lio+2 .. )2 ;::: 2n 

and hence {1]I,Lio);::: 2!n or (1]I, Lio+2") ;::: 2!n. Without any loss of generality 
suppose (1]J, Lio) ;::: 2!n. By Lemma 11 d(f, !Pio) ~ 2n- 1 - 2!n-1. This proves 
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Lemma 12. NJ ::; 2n- 1 - 2!n-1 for any function on Vn. 

Lemma 13. If both (J, -l)-sequences ~ and T/ of length 2t consist of an even 
number of ones and an even number of minus ones then d( O!, /3) is even. 

Proof Write e = (al .. , a2t) and TJ = (b 1 ••• b2t ). Let nl denote the number of 
pairs (ai, bi) such that ai = + 1, bi = + 1; let n2 denote the number of pairs 
(ai, bi ) such that ai = + 1, bi = -1; let n3 denote the number of pairs (ai, bi) 
such that ai = -1, bi = + 1; and let n4 denote the number of pairs (ai, bi ) such 
that ai = -1, bi = -1. Hence nl + n2, n3 + n4, n1 + n3 and n2 + n4 are all even 
and hence 2n1 + n2 + n3 is even. Thus n2 + n3 = d(O!,/3) is even. 0 

The following result can be found in [5] 

Lemma 14. Let f(x) be a function from Vn to CF(2). f(x) and e be the se­
quence of f(x). Then the following four statements are equivalent 

(i) f(x) is bent, 
(ii) for any affine sequence of length 2n, denoted by I, (~, I) = ±2!n, 

(iii) f(x) + f(x + O!) is 0-1 balanced for every nonzero O! E Vn, 
(iv) f(x) + (O!,x) contains 2n- 1 ± 2!n-1 zeros for every O! E Vn. 

Let Lj and cp, j = 1, ... , 2n +l, be the same as in the proof of Lemma 12. If f 
is a bent function then (TJ1,Li)2 = 2n and hence (TJ1,Li) = 2!n or (TJ1, LW2") = 
2!n for each fixed i, 1 ::; i ::; 2n. By Lemma 11 d(J, !Pi) = 2n- 1 - 2!n-1 or 
d(J,!Pi+2") = 2n- 1_2!n-l for each fixed i, 1::; i::; 2n. Thus NJ = 2n- 1_2!n-l. 
In other words, bent functions attain the upper bound for nonlinearities given 
in Lemma 12. Conversely, if a function f on Vn attains the upper bound for 

I· .. 2n- 1 2.1.n -l th ( L)2 2n r . 1 2n+1 ' f' non meantles, -", en TJJ, i = lor 1 = , ... , l.e. IS 

bent, otherwise (TJ/, Li}2 = 2n does not hold for some i, 1 ::; i ::; 2n+l. Note 
that Li+2" = -Li' iFrom (2) there exist i1 and i2 , 1::; i1 ,i2 ,::; 2", such that 
(TJJ,LiJ2 > 2n and (T/J,Li,}2 < 2". Thus (T/J,Li l ) > 2!n or (T/J,Li l +2") > 
2!n. Without any loss generality, suppose (T/l, LiJ > 2!n. By using Lemma 11 
d(J, !Pi

l
) < 2n- 1 - 2!n-l and hence NJ < 2n- 1 - 2!n-1. This is a contradiction 

to the assumption that f attains the maximum nonlinearity 2n- I _2!n-l. Hence 
we have proved 

Corollary 15. A function on Vn attains the upper bound for nonlinearities, 
2n- 1 - 2!n-l, if and only if it is bent. 

iFrom (1) we have 

Corollary 16. Let f be a function on Vn whose sequence is 1]/ = (al ... a2"), 
Then f is bent ifand only ifLj<tajathijhit = 0 fori = 1, ... ,2" where (h ij ) = 
Hn. 
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l.From Corollary 15 0-1 balanced functions cannot attain the upper bound 
for nonlinearities 2n- 1_ 2!n-1. However we can construct a class of 0-1 balanced 
functions with high nonlinearity by using bent functions. 

Corollary 17. Let f be a 0-1 balanced function on Vn (n 2: 3). Then NJ :::; 
2n- 1 - 2!n-1 - 2 if n is even number and NJ :::; ll2n - 1 - 2!n-1 JJ if n is odd 
where II x JJ denotes the maximum even number less than or equal to x. 

Proof. Note that f and each <Pi, where <pi is the same as in Definition 3, have 
an even number of ones and an even of number of zeros. By Lemma 13 dU, <Pi) 
is even. By corollary 15 dU,gi) < 2n - 1 - 2tn-1. This proves the corollary. 0 

Lemmal8. Let h(Xl, ... ,X21<:) be a bent/unction on V21<:-2, j = 1,2. Set 

9 = (U,Xl, .. " X21<:) = (1 + u)/t(x) + u/2(x). 

Then Ng 2: 221<: - 21<: . 

Proof. Write {j for the sequence of h, j = 1,2. By Lemma 9 I = (6 6) is the 
sequence of g, of length 221<:+1. Let L be the sequence of an affine function, say 
<po By Lemma 10 L is a row of ±H21<:+1' Since H2k+1 = HI X H21<: and HI = 

U !1]' where x is the Kronecker product, L can be expressed as L = (I' I') 

or L = (I' - I'), by Lemma 10, where I' is a row of ±H21<:. Since both / and 
/ + h are bent, by (ii) of Lemma 14, {{j,I'} = ±21<:. {/L} = {{I, I'} ± {6,I'}. 
Thus I{/, L}I :::; 21<:+1. By Lemma 11 d(g, <p) 2: 221<: - 21<:. Since <P is arbitrary 
Ng 2: 221<: - 21<: . 0 

Lemmal9. Let h(Xl, .. ' ,X21<:-2) be a bent/unction on V21<:-2, j = 1,2,3,4. Set 

g( u, V, Xl, ... , X21<:-2) = (l+u)( l+v)/t(x)+(l+u)v/2( x)+u(l+v)h(x)+uvf4(x). 

Then Ng 2: 221<:-1 - 21<:. 

Proof Let {j be the sequence of h(x), j = 1,2,3,4 and 1] = (6 6 6 {4) be the 
sequence of g. Let L be an affine sequence of length 221<: whose function is h(z), 
an affine function. By Lemma 10 L is a row of ±H21<:' Since H21<: = H2 X H21<:-2 
and L can be expressed as L = 12 X h-2 where 12 is a row of ±H2 and 121<:-2 is 
a row of ±H21<:-2. Since each {i is bent, by (ii) of Lemma 14, {{i,l} = ±2k

-
l

. 

Note that 1{1],L}1 :::; 'L,1=11{{i,/}1 and hence 1{7],L}1 :::; 4·21<:-1. By Lemma 11 
d(g, h) 2: 221<:-1 - 21<:. Since h is an arbitrary affine function Ng 2: 221<:-1 - 2k . 0 

Lemma20. f(xl, ... ,Xn)+tP(Ul, ... ,Ut) is a 0-1 balanced/unction on Vn+t i/ 
f is a 0-1 balanced function on Vn or tP is a 0-1 balanced function on Vi, 

Proof Set g(XlJ ... , xn, Ul, ... , Ut) = f(Xl, ... , xn)+tP( U1, ... , Ut). Without any 
loss of generality, suppose / is a 0-1 balanced function on Vn . Note that for every 
fixed (u~ ... u~) E Vi, g(Xl, ... ,Xn,u~, ... ,u~) = f(Xl, ... ,Xn)+tP(u~, ... ,u~) 
is a 0-1 balanced function on Vn thus g(Xl,"" Xn, Ul,"" ut} is a 0-1 balanced 
function on Vn+t . 0 
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3 Construction 

3.1 On'V;,Hl 

Let k ~ 1 and l(x1, ... ,x21:) be a bent function on V21:. Write x = (Xl "·X21:). 
Let hex) be a non-constant affine function on V21:. Note that I(x) + hex) is 
also bent (see Property 2, p95, [8J) and hence I + h assumes the value zero 
221:-1 ± 21:-1 times and assumes the value one 221:-1 =t= 21:-1 times. 

Without any loss of generality we suppose I(x) assumes the value zero 221:-1+ 
21:-1 times (if lex) assumes the value zero 221:-1_21:-1 times, the bent function 
I(x)+ 1 assumes the value zero 221:-1 +21:-1 times and hence we can replace I(x) 
by I(x) + 1). Also we suppose I(x) + hex) assumes the value zero 221:-1 - 21:-1 
times (if I(x )+h(x) assumes the value zero 221:-1 +21:-1 times, the bent function 
I(x) + hex) + 1 assumes the value zero 221:-1 - 21:-1 times so we can replace 
I(x) + hex) by I(x) + hex) + 1). Set 

g( U, Xl, ... , X21:) = I(xl, . " , X21:) + Uh(X1, . .. , X21:)' (3) 

Lemma21. g(U,X1,." ,X21:) defined by (3) is a 0-1 balanced/unction on V2,H1. 

Proof. Note that g(0,X1"" ,X21:) = l(x1,"" X21:) assumes the value zero 22k
-

1+ 
21:-1 times and g(l, xl,,,' , XU,) = J(Xb " . , X21:) + h(Xl, " ., X21:) assumes the 
value zero 221:-1 - 21:-1 times. Thus g(U,X1,'" ,X21:) assumes the value zero 21: 
times (one 21: times). 0 

Lemma 22. Ng ~ 221: - 21: where 9 is defined b~ (3). 

Proof 9 = 1+ uh = (1 + u)1 + u(J + h). Note that both I and 1+ h are bent 
functions on V21:. By Lemma 18 Ng ~ 221: - 21: . 0 

Lemma 23. g( U, Xl,,,. , X21:) defined by (3) satisfies the strict avalanche crite­
non. 

Proof. Let -y = (b a1" 'a21:) with W(-y) = 1. Write a = (a1,,·a21:), z = 
(u Xl ... X21:) and x = (Xl ... X21:). g(z + -y) = I(x + a) + (u + b)h(x + a) 
and hence g(z) + g(z + -y) = I(x) + I(x + a) + u(h(x) + hex + a» + bh(x + a). 

Case 1: b = 0 and hence W(a) = 1. g(z) + g(z + ,) = I(x) + I(x + a) + 
u( h( x) + h( X + a». Since h is a non-constant· affine function h( x) + h( X + a) = c 
where c is a constant. Thus g(z) + g(z + ,) = I(x) + I(x + a) + cu. 
By (iii) of Lemma 14 I(x)+ I(x+a) is a 0-1 balanced function on V21: and hence 
by Lemma 20 g(z) + g(z + -y) is a 0-1 balanced function on V2,Hl .. 

Case 2: b = 1 and hence W(a) = 0 i.e. a = O. g(z) + g(z + -y) = hex). Since 
hex) is a non-constant affine function on V21: hex) is a 0-1 balanced and hence 
by Lemma 20 g(z) + g(z + a) is a 0-1 balanced function on V2,H1. 0 

Summarizing Lemmas 21,22,23 we have 

Theorem24. Fork ~ 1, g(U,Xb".,X21:) defined by (3) is a 0-1 balanced/unc­
tion on V2I:+l having Ng ~ 221: - 21: and satisfying the strict avalanche criterion. 
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3.2 On v;.k 

Let k ~ 2 and f(xl, ... , X2k-2) be bent function on V2k - 2. Write x = (Xl··· X2k-2). 
Let hj(x), j = 1,2,3, be three non-constant affine functions on V2k-2 such that 
h;(x) + hj(x) is non-constant for any i :f; j. Such hl(x), h2(x), h3(X) exist for 
k ~ 2. Note that each f(x) + hj(x) is also bent (see Property 2, p95, [8]) and 
hence f + hj assumes the value zero 22k- 3 ± 2k- 2 times and assumes the value 
one 22k - 3 =F 2k- 2 times. 

Without any loss of generality we suppose both f(x) and f(x )+h l (x) assume 
the value zero 22k-3+2k-2 times and both f(x)+h 2(x) and f(x)+h3(x) assume 
the value zero 22k- 3 - 2k- 2 times. This assumption is reasonable because f(x) + 
hj(x) assumes the value zero 22k - 3 - 2k- 2 times if and only if f(x) + hj(x) + 1 
assumes the value zero 22k- 3 + 2k- 2 times and hj(x) + 1 is also a non-constant 
affine function thus we can choose one of f(x) + hj(x) and f(x) + hj(x) + 1 so 
that the assumption is satisfied. Set 

Lemma 25. g( u, V, Xl, .•. , X2k-2) defined by (4) is a 0-1 balanced function on 
V2k. 

Proof. Note that g(0,0,Xl, ... ,X2k_2) = f(x), g(0,I,Xl,· .. ,X2k-2) = f(x) + 
hl(x), g(I,0,Xl, ... ,X2k-2) = f(x) + h2(x), g(I,I,Xl, ... ,X2k_2) = f(x) + 
hl(x) + h2(X) + (hl(x) + h2(X) + h3(X» = f(x) + h3(X). By the assumption 
the first two functions assume the value zero 22k-2+2k-l times in total and the 
second two functions assume the value zero 22k- 2 - 2k - l times in total. Hence 
g( u, v, Xl, ... , X2k-2) assumes the value zero 22k - l times in total and thus it is 
a 0-1 balanced function on V21:. 0 

Lemma 26. Ng ~ 221:-1 - 2k where 9 is defined by (4). 

Proof. Note that 9 = f(x)+vhl(x)+uh2(X)+uv(hl(X)+h2(X)+h3(X)) = (1+ 
u)(1 +v)f(x) + (1 +u)v(J(x) +hl (x» + u(1 +v )(J(x) + h2(X)) + uv(J(x)+ h3(X ). 
By Lemma 19 N g ~ 221:-1 - 2k. 0 

Lemma 27. g(u, v, Xl, ... , X21:-2) defined by (4) satisfies the strict avalanche 
criterion. 

Proof. Let i = (b c al ... a2k-2) with Wei) = 1. Write a = (al··· aZI:-2), 

z = (u V xl ... X21:-2) and X = (Xl ... X21:-2). 

Note that g(z + i) = f(x + a) + (v + c)hl(x + a) + (u + b)h2(x + a) + (u + 
b)(v + c)(h1(x + a) + h2(x + a) + h3(X + a)). 

Case 1: b = 1 and hence c = 0, W(a) = ° i.e. a = 0. g(z) + g(z + i) = 
h2(X) + v(hl(x) + h2(X) + h3(X» will be h2(X) when v = ° and hl(x) + h3(x) 
when v = 1. Both h2(X) and hl(x) + h3(X) are non-constant affine functions on 
V21:-2 and hence g(z) + g(z + i) is 0-1 balanced on V2k. 
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Case 2: c = 1 and hence b = 0, W(o) = 0 i.e. 0 = O. The proof is similar to 
Casel. 

Case 3: W(o) f. 0 and hence b = c = O. Since hj is an affine function we can 
write hj(x) + hj(x + 0) = aj where aj is a constant. Hence g(z) + g(z + r) = 
I(x)+ l(x+O)+va1 +ua2+uv(a1 +a2+a3). By (iii) of Lemma 14 I(x)+ I(x+o) 
is a 0-1 balanced function on V21:-2 and hence by Lemma 20 g(z) + g(z + r) is 
a 0-1 balanced function on V2k. This proves that g(U,V,X1"",X2k-2) satisfies 
the strict avalanche criterion. 0 

Summarizing Lemmas 25,26,27 we have 

Theorem 28. Fork ~ 2, g(U,V,X1, ... ,X2k_2) defined by (4) is a 0-1 balanced 
lunction on V2k having Ng ~ 22k- 2 - 2k and satislying the strict avalanche 
criterion. 

4 Remarks 

We note that the nonlinearities of 0-1 balanced functions satisfying SAC in 
Theorems 24 and 28 are the same as those for ordinary 0-1 balanced functions 
(see [13]). Next we give two examples of the theorems. 

Example 1. In Theorem 24 let k = 2. Consider Vs. As we know, I(X1, X2, X3, X4) = 
X1X2 + X3X4 is a bent function in V4. Choose the non-constant affine func­
tion h(X1,X2,X3,X4) = 1 + Xl + X2 + X3 + X4' Note 1 assumes the value zero 
24- 1 + 22- 1 = 10 times and 1 + h assumes the value zero 24- 1 - 22- 1 = 6 
times. Hence we set g(U,X1,X2,X3,X4) = I(X1,X2,X3,X4) + Uh(X1,X2,X3,X4) = 
X1X2 + X3X4 +u(1 +X1 +X2 +X3 +X4). By Theorem 24 g(u, Xl, X2, X3, X4) is a 0-1 
balanced function with Ng ~ 24 - 22 = 12, satisfying the strict avalanche crite­
rion. On the other hand, by Corollary 17 the bound for nonlinearly 0-1 balanced 
functions on Vs is ll24 - 22-t JJ = llI3.1818·· .JJ = 12 where llxJJ denotes the 
maximum even number no larger than x. This means that Ng = 12 attains the 
upper bound for nonlinearly 0-1 balanced functions on Vs. 

Example 2. In Theorem 28 let k = 3. Consider V6. Choose I(Xl,X2,X3,X4) = 
X1X2 + X3X4, a bent function in V4. Also choose non-constant affine functions 
h1(X1,X2,X3,X4) = Xl, h2(X1,X2,X3,X4) = 1 + X2, h3(X1,X2,X3,X4) = 1 + X3· 
Note both 1 and 1 + hI assume the value zero 24 - 1 + 22- 1 = 10 times and 
both 1 + h3 and 1 + h4 assume the value zero 24- 1 - 22- 1 = 6 times. Hence 
we set g( u, V, Xl. X2, X3, X4) = 1 + vh1 + uh2 + uv(h1 + h2 + h3). By Theorem 
28 g(U,V,Xl,X2,X3,X4) is a 0-1 balanced function with Ng ~ 25 

- 23 = 24, 
satisfying the strict avalanche criterion. On the other hand, by Corollary 17 the 
upper bound for nonlinearly 0-1 balanced functions on V6 is 2s - 22 - 2 = 26. 
This means that Ng = 24 is very high. . 

Recently Zheng, Pieprzyk and Seberry [23] constructed a very efficient one 
way hashing algorithm using boolean functions constructed by the method given 
in Theorem 24. These functions have further cryptographically useful properties. 
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