
University of Wollongong
Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences

1993

HAVAL - A one-way hashing algorithm with
variable length output
Yuliang Zheng
University of Wollongong, yuliang@uow.edu.au

Josef Pieprzyk

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Yuliang Zheng, Josef Pieprzyk and Jennifer Seberry, HAVAL - A one-way hashing algorithm with variable length output, (Jennifer
Seberry and Yuliang Zheng, (Eds.)), Advances in Cryptography - Auscrypt'92, Conference held at the Gold Coast, Australia,
December 1992, 718, Lecture Notes in Computer Science, Springer-Verlag, Berlin--Heidelberg--New York, (1993), 83-104.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/infopapers
http://ro.uow.edu.au/eis

HAVAL - A one-way hashing algorithm with variable length output

Abstract
A one-way hashing algorithm is a deterministic algorithm that compresses an arbitrary long message into a
value of specified length. The output value represents the fingerprint or digest of the message. A
cryptographically useful property of a one-way hashing algorithm is that it is infeasible to find two distinct
messages that have the same fingerprint. This paper proposes a one-way hashing algorithm called HAVAL.
HAVAL compresses a message of arbitrary length into a fingerprint of 128, 160, 192, 224 or 256 bits. In
addition, HAVAL has a parameter that controls the number of passes a message block (of 1024 bits) is
processed. A message block can be processed in 3, 4 or 5 passes. By combining output length with pass, we can
provide fifteen (15) choices for practical applications where different levels of security are required. The
algorithm is very efficient and particularly suited for 32-bit computers which predominate the current
workstation market. Experiments show that HAVAL is 60% faster than MD5 when 3 passes are required, 15%
faster than MD5 when 4 passes are required, and as fast as MD5 when full 5 passes are required. It is
conjectured that finding two collision messages requires the order of 2n/2 operations, where n is the number
of bits in a fingerprint.

Disciplines
Physical Sciences and Mathematics

Publication Details
Yuliang Zheng, Josef Pieprzyk and Jennifer Seberry, HAVAL - A one-way hashing algorithm with variable
length output, (Jennifer Seberry and Yuliang Zheng, (Eds.)), Advances in Cryptography - Auscrypt'92,
Conference held at the Gold Coast, Australia, December 1992, 718, Lecture Notes in Computer Science,
Springer-Verlag, Berlin--Heidelberg--New York, (1993), 83-104.

This conference paper is available at Research Online: http://ro.uow.edu.au/infopapers/1080

http://ro.uow.edu.au/infopapers/1080

/

HAVAL - A One-Way Hashing Algorithm
with Variable Length of Output 1

Yuliang Zheng
Josef Pieprzyk

Jennifer Seberry

Centre for Computer Security Research
Department of Computer Science

University of Wollongong
Wollongong, NSW 2522, Australia

E-mail: {yuliang.josef.jennie}@cs.uow.edu.au

June 30, 1993

Abstract

A one-way hashing algorithm is a deterministic algorithm that compresses an ar­
bitrary long message into a value of specified length. The output value represents the
fingerprint or digest of the message. A cryptographically useful property of a one-way
hashing algorithm is that it is infeasible to find two distinct messages that have the same
fingerprint. This paper proposes a one-way hashing algorithm called HAVAL. HAVAL
compresses a message of arbitrary length into a fingerprint of 128, 160, 192, 224 or
256 bits. In addition, HAVAL has a parameter that controls the number of passes a
message block (of 1024 bits) is processed. A message block can be processed in 3, 4
or 5 passes. By combining output length with pass, we can provide fifteen (15) choices
for practical applications where different levels of security are required. The algorithm
is very efficient and particularly suited for 32-bit computers which predominate the
current workstation market. Experiments show that HAVAL is 60% faster than MD5
when 3 passes are required, 15% faster than MD5 when 4 passes are required, and as
fast as MD5 when full 5 passes are required. It is conjectured that finding two colli­
sion messages requires the order of 2n/2 operations, where n is the number of bits in a
fingerprint.

1 Introduction

A one-way hashing algorithm is a deterministic algorithm that compresses an arbitrarily
long message into a value of specifie<tJength. The output value represents the fingerprint
or digest of the input message. A very useful property of a one-way hashing algorithm is
that it is collision intractable, i.e., it is computationally infeasible to find a pair of mes­
sages that have the same fingerprint. One-way hashing algorithms are widely used in
information authentication, in particular, in digital signature, and have received extensive
research since the invention of public key cryptography by Diffie and Hellman [DH76] and
by Merkle [Mer78]. Theoretical results on one-way hashing algorithms were obtained by
Damgard [Dam87, Dam90]. Results on a weaker version of one-way hashing algorithms,
universal one-way hashing algorithms, can be found in [NY89, ZMI91, Rom90].

1 An extended abstract was presented at AUSCRYPT'92, Gold Coast, December 1992. The first author
was supported in part by the Australian Research Council under the reference number A49232172, the
second author by A49131885, and the third author by A49130102, A9030136, A49131885 and A49232172.

1

Recently much progress has been made in the design of practical one-way hashing algo­
rithms which are suited for efficient implementation by software. Notable work includes the
MD family which consists of three algorithms MD2, MD4 and MD5 [Ka192, Riv92a, Riv92b],
the federal information processing standard for secure hash (SHS) proposed by the National
Institute of Standards and Technology (NIST) of the United States [NIS92], and Schnorr's
hashing algorithm FFT-Hash based on fast Fourier transformations [Sch92, Vau92]. All
these algorithms output fingerprints of fixed length. In particular, fingerprints ofFFT-Hash
and the algorithms in the MD family are of 128 bits, while fingerprints of SHS are of 160 bits
which is designed primarily for NIST's proposed digital signature standard DSS [NIS91].

Despite the progress, little work has been done in the design of one-way hashing algo­
rithms that can output fingerprints of variable length (except the proposal of Snefru, whose
two-pass version has been found to be insecure [Mer90]). Such an algorithm would be more
flexible and hence more suited for various applications where variable length fingerprints
are required. The aim of this research is to design a one-way hashing algorithm that can
output fingerprints of 128, 160, 192, 224 or 256 bits. These different lengths for fingerprints
provide practical applications with a broad spectrum of choices. The algorithm, which we
call HAVAL, uses some of the principles behind the design of the MD family. In addi­
tion, HAVAL makes an elegant use of Boolean functions recently discovered by Seberry and
Zhang [SZ92]. These functions have nice properties which include

1. they are 0-1 balanced,

2. they are highly non-linear,

3. they satisfy the Strict Avalanche Criterion (SAC),

4. they can not be transformed into one another by applying linear transformation to
the input coordinates and

5. they are not mutually correlated via linear functions or via bias in output.

In addition, the number of passes each 1024-bit block of an input message is processed can
be 3, 4 or 5. This adds one more dimension of flexibility to the algorithm. Combination of
the two variable parameters, pass and output length, provides practical applications with
fifteen different levels of security.

\Vhen compared with MD2, MD4;SHS and FFT-Hash, MD5 is considered much superior
in terms of speed and security. In plrticular, MD5 is about 15% faster than SHS (See for
example the note posted on the sci. crypt news group by Kevin McCurley, 5 September
1992), although the latter is very likely to become a standard. Our preliminary experiments
show that HAVAL is at least 60% faster than MD5 when 3 passes are required, at least 15%
faster than MD5 when 4 passes are required, and about as fast as MD5 when full 5 passes
are required.

Detailed specifications of HAVAL are presented in Section 2. Section 3 discusses ratio­
nale behind the design of HAVAL. This is followed by a discussion about security issues
of HAVAL in Section 4. Extensions of HAVAL in several directions are discussed in Sec­
tion 5. Finally, Section 6 presents some concluding remarks. A reference implementation
of HAVAL by the C programming language on a 32-bit computer is attached in Appendix.

2

2 Specifications of HAVAL

We begin with a general description of the algorithm. Detailed specifications of all parts of
the algorithm follows.

First we introduce a few notations and conventions. We consider, unless otherwise
specified, strings (or sequences) on GF(2). Throughout the paper, a single bit from GF(2)
will be denoted by a lower case letter, while a string of bits on GF(2)' will be denoted by a
upper case letter. A byte is a string of 8 bits, a word is a string of 4 bytes (32 bits) and a
block is the concatenation of 32 words (1024 bits). We assume that the most significant bit
of a byte appears at the left end of the byte. Similarly we assume that the most significant
byte of a word comes at the left end of the word, and the most significant word of a block
appears at the left end of the block. Note that a binary string X = Xn-1Xn-2 ... Xo can be
viewed as an integer whose value is Ix = Xn_12n-1 + Xn_22n-2 + '" + xo2°. Conversely an
integer I can also be viewed as a binary string XI = Xn-1Xn-2 ... Xo with I = Xn_12n-1 +
Xn_22n-2 + ... + xo2°.

The modulo 2 multiplication and modulo 2 addition of Xl, X2 E G F(2) are denoted by
X1X2 and Xl EEl X2 respectively. The bit-wise modulo 2 addition operation of two binary
strings 51 and 52 of the same length is denoted by 51 EEl 52, and the bit-wise modulo 2
multiplication ofthe two strings 51 and 52 is denoted by 51-52' Note that - has precedence
over EEl in computation. Another notation EEl is also used in the specifications. Assume that
51 = W1,n-1 W1,n-2' .. W1,o and 52 = W2,n-1 W2,n-2 ... l1l 2,o, where each Wi,j is a 32-bit
word, the word-wise integer addition modulo 232 of the two strings is denoted by 51 EEl 52) i.e.,
51 EEl 52 = (W1,n-1 + W2,n-1 mod 232)(W1,n_2 + W2,n-2 mod 232

) ••• (W1,o + W2 ,o mod 232
).

Note that in the definition of EEl we have viewed each Wi,j as an integer in [0,232
- 1].

Given a message M to be compressed, HAVAL pads (extends) M first. The length of
(i.e., the number of bits in) the message after padding is a multiple of 1024, and padding
is always applied even when the length of M is already a multiple of 1024. The last block
of the padded message contains the number of bits in the unpadded message, the required
number of bits in the fingerprint and the number of passes each message block is processed.
It also indicates the version number of HAVAL. The current version number is 1.

Now suppose that the padded message is Bn - 1 Bn - 2 •·• Bo, where each Bi is a 1024-
bit block. HAVAL starts from the block Bo and a 8-word (256-bit) constant string Do =
Do,7Do,6'" Do,o, which is taken from the fraction part of 7r = 3.1415 ... , and processes
the message Bn - 1 Bn - 2 ••• Bo in a block-by-block way. More precisely, it compresses the
message by repeatedly calculating ~

.1'

where i ranges from 0 to n - 1 and H is called the basic compressing part of HAVAL. See
Section 2.4 for the actual values of the 8 constant 32-bit words DO,7, Do,6, "', Do,o.

Finally, HAVAL adjusts, if necessary, the last 256-bit string Dn into a string of the
length specified in the last block Bn - 1 , and outputs the adjusted string as the fingerprint of
the message M. In summary, HAVAL processes a message }.tI in the following three steps:

1. Pad the message M so that its length becomes a multiple of 1024. The last (or the
most significant) block of the padded message indicates the length of the original
(unpadded) message M, the required length of the fingerprint of M, the number of
passes each block is processed and the version number of HAVAL.

3

Bo

Bn.l. H

D

Figure 1: Hashing a Message by HAVAL

2. Calculate repeatedly Di+l = H(Di' Bi) for i from 0 to n - 1, where Do is a 8-word
(256-bit) constant string and n is the total number of blocks in the padded message.

3. Adjust the 256-bit value Dn obtained in the above calculation according to the fin­
gerprint length specified in the last block Bn - 1 , and output the adjusted value as the
fingerprint of the message M.

The second and the third steps are graphically depicted in Figure 1. Detailed descrip­
tions of the three steps are provided in the following sections.

2.1 Padding

The purpose of padding is two-fold: to make the length of a message be a multiple of 1024
and to let the message indicate the length of the original message, the required number of
bits in the fingerprint, the number of passes and the version number of HAVAL. HAVAL
uses a 64-bit field MSGLEN to specify the length of an unpadded message. Thus messages
of up to (264 -1) bits are accepted, which is long enough for practical applications. HAVAL
also uses a lO-bit field FPTLEN to specify the required number of bits in a fingerprint. In
addition HAVAL uses a 3-bit field PASS to specify the number of passes each message block
is processed, and another 3-bit field VERSION to indicate the version number of HAVAL.
The number of bits in a fingerprint can be 128, 160, 192, 224 and 256, while the number of
passes can be 3, 4 and 5. The current version number of HAVAL is 1.

HAVAL pads a message by appending a single bit 1 next to the most significant bit of
the message, followed by zero or more bit Os until the length of the (new) message is 944

4

D ... ,

Figure 2: The Basic Compressing Algorithm H

modulo 1024. Then, HAVAL appends to the message the 3-bit field VERSION, followed by
the 3-bit field PASS, the 10-bit field FPTLEN and the 64-bit field MSGLEN.

2.2 The Basic Compressing Algorithm H

The basic compressing algorithm H processes a block in 3,4 or 5 passes, which is specified
by the 3-bit field PASS in the last block. Denote by HI, H2 , H3, H4 and Hs the five
passes. Now suppose that the input to H is (Din, B), here Din is a 8-word string and B
is a 32-word (1024-bit) block. Let Dov.t denote the 8-word output of H on input (Din' B).
Then processing of H can be described in th following way. (See also Figure 2.)

HI(Eo,B);

H2(El, B);

H 3(E2 ,B);

H4 (E3 ,B); (if PASS=4, 5)

Es = Hs(E4,B); (if PASS=5)

Dov.t
{

E3 EEl Eo
E4 EEl Eo
E5 EEl Eo

5

if PASS=3
if PASS=4
if PASS=5

Original 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(H l) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ord2 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8
(H2) 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27
ord3 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26
(H3) 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2
ord4 24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3
(H4) 22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13
ords 27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10
(Hs) 5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

Table 1: Word Processing Orders

Each of the five passes HI, H2 , H3 , H4 and Hs has 32 rounds of operations and each
round processes a different word from B. The orders in which the words in B are processed
differ from pass to pass. In addition, each pass employs a different Boolean function to
perform bit-wise operations on words. The five functions employed by HI, H 2 , H3 , H4 and
Hs are:

fl(X6,XS,X4,X3,X2,Xl,XO)

h(X6, Xs, X4, X3, X2, Xl, Xo)

h(X6, Xs, X4, X3, X2, XI, Xo)

f4(X6,XS,X4,X3,X2,X1,XO)

XlX4 EB X2 X S ED X3 X 6 EO XOXI EO Xo

XlX2 X 3 EO X2 X4 X S EO XlX2 EO XlX4 EO

X2 X 6 EB X3 X S EB X4 X S EO XOX2 EO Xo

XlX2 X 3 EO XlX4 ED X2 X S EB X3 X 6 ED XOX3 EB Xo

X1 X 2 X 3 EB X2 X 4 X S EB X3 X 4 X 6 EO

XlX4 EB X2 X 6 EB X3 X 4 EB X3 X S EB

X3 X 6 EB X4 X S EB X4 X 6 EO XOX4 EB Xo

fs(X6, Xs, X4, X3, X2, Xl, Xo) = XlX4 EB X2 X S EO X3X6 EO XOXI X2X3 EO XOXs EO Xo

These five Boolean functions have very nice properties when their coordinates are per­
muted. This will be stated in Section 3 together with rationale behind the design of the
functions. The five passes HI, H-2, H3 , H4 and Hs are specified in more detail in the
following sections.].'-

2.2.1 Pass 1

Assume that the input to HI is (Eo, B), where Eo consists of 8 words E O,7, E O,6,· •• , Eo,o

and B of 32 words W 3l , W30,···, ltVo • HI processes the block B in a word-by-word way and
---transforms the input into a 8-word output El = E 1,7El ,6··· El,o. Denote by ROT(X, s) the

s position rotate right operation on a word X and by f 0 9 the composition of two functions
f and 9 (9 is evaluated first). Then HI can be described in the following way. (See also
Figure 3.)

1. Let TO,i = EO,i, 0 ~ i ~ 7.

2. Repeat the following steps for i from 0 to 31:

6

permutations Xs Xs X4 X3 Xz Xl
Xt J 1 1 1 ! ! 1

</>3,1 Xl Xo X3 Xs Xs Xz X4

</>3,Z X4 X2 Xl Xo Xs X3 Xs

</>3,3 Xs Xl Xz X3 X4 Xs Xo

</>4,1 Xz Xs Xl X4 Xs X3 Xo

</>4,Z X3 Xs Xz Xo Xl Xs X4

</>4,3 Xl X4 X3 Xs Xo Xz Xs

</>4,4 Xs X4 Xo Xs Xz Xl X3

</>S,l X3 X4 Xl Xo Xs X2 Xs

</>S,2 Xs Xz Xl Xo X3 X4 Xs

</>S,3 Xz Xs Xo X4 X3 Xl Xs

</>S,4 Xl Xs X3 Xz Xo X4 Xs

</>S,S X2 Xs Xo Xs X4 X3 Xl

Table 2: Permutations on Coordinates

FlO A..3l (TiS,TiS,Ti4,Ti3 ,TiZ,Ti1,TiO) '+' , , , , , , , ,

F1 0 </>4,1 (Ti,S, Ti,S, Ti,4, Ti,3, Ti,Z, Ti,l, Ti,O)

FlO </>s,l(Ti,S, Ti,S, Ti,4, Ti,3, Ti,Z, Ti,l,Ti,O)

if PASS=3
if PASS=4
if PASS=5

R = ROT(P, 7) EEl ROT(Ti,7, 11) EEl Wi;

Ti+I,7 = Ti,s; Ti+I,S = Ti,S; Ti+I,S = Ti,4; Ti+l,4 = Ti,3;

Ti+l,3 = Ti,z; Ti+I,2 = T i,l; Ti+I,1 = Ti,O; Ti+l,O = R.

Note that the input to the i-th round (Ti,S, Ti,s, Ti,4, Ti,3, Ti,2, Ti,l, Ti,o) is permuted ac­
cording to </>3,1 (when PASS=3), </>4,1 (when PASS=4) or </>S,l (when PASS=5) before being
passed to Fl. Here <P3,1, </>4,1 and </>S,1 are permutations on coordinates specified in Ta­
ble 2, where permutations employed by the other four passes are also specified. Fl performs
bit-wise operations on its input words according to the Boolean function 11 specified in
Section 2.2.

F1()(s,)(S,)(4,Jt3,)(Z,)(1,)(O) =

~.~ffi~·~ffi~.~ffi~.~ffi~

The result of Fl is rotated and added (modulo 23Z) to the rotated version of Ti,7. The i-th
word Wi in B is also added to the rotated version of Ti,7. The sum is used to substitute (the
old) Ti,7. After the substitution, the 8 words Ti,7, Ti,S,···, Ti,O are shifted with Ti,7 being
replaced by Ti,s, Ti,S by Ti,S, ... , Ti,l by Ti,O, and Ti,O by Ti,7. These words are then used
as input to the (i + l)-th round. Finally, T3Z is output as a result.

2.2.2 Pass 2

Assume that the input to Hz is (E l , B). Hz processes the words in B according to the word
processing order ord2 specified in Table 1. It employs in its computation 32 constant words

7

I
I
I
I , I

I
I
I

""'"

Figure 3: Pass 1

8

Ws
Kl.O

Eu

I
I
I
I ,

El,l

Figure 4: Pass 2

I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I

""'"

EuE.., E.,E",EJ.lE", E ..

K 2,31, K 2,30,·· ., K 2,o, all of which are taken from the fraction part of 7i. The actual values
of these constant words are defined in Section 2.4. H2 processes the words as follows (see
also Figure 4):

1. Let To,; = E1,i, 0;£ i;£ 7.

2. Repeat the following steps for.i from 0 to 31:
]."

{

F2 0 (i>3,2(Ti,6, Ti,S,Ti,4, Ti,3, Ti,2, Ti,I,Ti,o) if PASS=3
P = F2 0 <P4,2(Ti,6, Ti,S, Ti,4, Ti,3, Ti,2, Ti,l, Ti,O) if PASS=4

F2 0 <Ps,2(Ti,6, Ti,S, Ti,4, Ti,3, Ti,2, Ti,l, Ti,O) if PASS=5
-- --R = ROT(P,7) EEl ROT(Ti,7, 11) EEl Word2

(i) EEl K 2,i;

Ti+l,7 = Ti,6; Ti+l,6 = Ti,S; Ti+1,S = Ti,4; Ti+1,4 = Ti,3;
Ti+1,3 = Ti,2; Ti+1,2 = Ti,l; Ti+1,l = Ti,O; Ti+1,O = R.

Similar to HI, (Ti,6, Ti,S, Ti,4, Ti,3, Ti ,2, Ti,l, Ti,O) is permuted according to <P3,2, <P4,2 or <PS,2
before being passed to F2, where </J3,2, <P4,2 and <PS,2 are specified in Table 2. F2 performs

9

bit-wise operations on its 7 input words according to the Boolean function fz:

~2()(6,)(S')(4,)(3')(2')(1')(0) :::

)(1 ·)(2 •)(3 EB)(2 ·)(4 •)(s EB
~·~EB~·~EB~·~EB~·~EB~·~EB~·~EB~

The output value of ~2 is rotated and added to the rotated version of Ti ,7. The i-th word
Word2(i) is also added to the rotated version of Ti,7. In addition, a constant K 2 ,; which is
unique to i is added to the rotated version of Ti ,7. As in Hb the 8 words are shifted before
proceeding to the next round of operations. The output of H 2 is the result of the last round.

2.2.3 Pass 3

The input to H3 is (E2 ,B). H3 processes the words in the block B according to the
word processing order for ord3 specified in Table 1. H3 also employs 32 constant words
K 3,31, K 3,30, ... , K 3,0, all of which are taken from the fraction part of 1[' •

1. Let To,; ::: E 2 ,;, 0 ~ i ~ 7.

2. Repeat the following steps for i from 0 to 31:

{

~3 0 (P3,3(Ti,6, Ti,S, Ti,4, Ti,3, T i,2, T;,l,Ti,O) if PASS=3
P = ~3 0 ¢4,3(T;,6, Ti,S, Ti,4, Ti,3, Ti,2, Ti,l, Ti,o) if PASS=4

~3 0 ¢s,3(T;,6,Ti,S,Ti,4,Ti,3,Ti ,2,Ti,1,Ti,0) if PASS=5 - -R = ROT(P, 7) EEl ROT(Ti,7, 11) EEl Word
3
(i) EEl K 3 ,i;

Ti+1,7::: T;,6; T;+1,6 = Ti,s; Ti+1,S = Ti,4; Ti+1,4 = Ti,3;

Ti+1,3 ::: Ti,2; Ti+1,2 = Ti,l; T;+l,l = Ti,O; Ti+l,O = R.

~3 performs bit-wise operations according to the Boolean function h :

~()(6,)(S'~'~'~')(1'~)=

~·~·~EB~·~EB~·~EB~·~EB~·~EB~

2.2.4 Pass 4

This pass is executed only when four or five passes are required. The input to H4 is (E3 ,B).
The order in which the words in the block B are processed is specified by ord4 in Table 1.
32 constant words, denoted by K 4,3b K 4,30,···, K 4,0, are employed by H4. These constants
are unique to H 4 and all taken from the fraction part of 1[' •

1. Let TO,i ::: E 3,i, 0 ~ i ~ 7.

2. Repeat the following steps for i from 0 to 31:

p::: { ~4 0 ¢4,4(Ti,6, Ti,S, Ti,4, Ti,3, Ti,2, Ti,b Ti,O) if PASS=4
~4 0 ¢s,4(Ti,6, Ti,S, Ti,4, Ti,3, Ti,2, Ti,b Ti,O) if PASS=5 - -R::: ROT(P, 7) EE ROT(Ti,7, 11) EEl WOrd4 (i) EE K 4 ,i;

Ti+l,7 ::: Ti,6; Ti+l,6 = Ti,S; Ti+l,S = Ti,4; Ti+l,4 = Ti,3;
Ti+1,3 ::: Ti,2; Ti+1,2 ::: Ti,l; Ti+l,1 = T;,o; Ti+1,0 = R.

10

F4 performs bit-wise operations on its input words according to the Boolean function

14:

2.2.5 Pass 5

~(X6,XS,~,~,X2,Xl'~)=

~·~·~ffi~·~·~ffi~·~·~ffi
Xl • X 4 ffi X 2 • X6 ffi X3 • X4 ffi X3 • Xs ffi

~.~ffi~.~ffi~.~ffi~.~ffi~

This pass is executed only when five passes are required. The input to Hs is (E4' B). The
order in which the words in the block B are processed is specified by ords in Table 1. The
32 constant words employed by Hs are denoted by K S,3l, KS,30,"', Ks,o.

1. Let TO,i = E4,i, 0 ~ i ~ 7.

2. Repeat the following steps for i from 0 to 31:

P = Fs 0 <i>s,S(Ti,6, Ti,S, Ti,4, Ti,3, Ti,2, Ti,l, Ti,O); - -R = ROT(P, 7) EEl ROT(Ti,7, 11) EEl WOrds(i) EEl KS,i;
Ti+l,7 = Ti,6; Ti+l,6 = Ti,S; Ti+l,5 = Ti,4; Ti+1,4 = Ti,3;
Ti+l,3 = Ti,2; Ti+1,2 = Ti,l; Ti+1,l = Ti,O; Ti+l,O = R.

3. Let E5,i = T32 ,i, 0 ;£ i ;£ 7, and output Es = ES,7E5,6'" Es,o.

Fs performs bit-wise operations on its input words according to the Boolean function

Is:

~(X6,X5,~,X3,X2'~'~)=

~.~ffi~·~ffi~·~ffi~·~·~.~ffi~·~ffi~

2.3 Tailoring the Last Output of H

Recall that the last string Dn = Dn,7Dn,6'" Dn,o output by H is of 256 bits. Dn is used
directly as the fingerprint of M if a 256-bit fingerprint is required. Otherwise, Dn is tailored
into a string of specified length. Wi" discuss the four cases that need adjustment to Dn.
These four cases are (1) Case-1 wh~n 128-bit fingerprints are required, (2) Case-2 when
160-bit fingerprints are required, (3) Case-3 when 192-bit fingerprints are required and (4)
Case-4 when 224-bit fingerprints are required. In the following discussions, we will use a
superscript to indicate the length of a string. For instance, if X is a t-bit string, we use X[t]

to indicate explicitly the length of X.
Case-1 (128-bit fingerprint): We divide Dn,7, Dn,6, Dn,5 and Dn,4 in the following way

Dn ,7

Dn ,6

Dn ,5

Dn ,4

X[8] X [8] X [8] X [8]
7,3 7,2 7,1 7,o,

x[8] X [8] X [8] X [8]
6,3 6,2 6,1 6,0'

X[8] X [8] X [8] X[8]
5,3 S,2 5,1 S,O'

X[8] X [8] X [8] X [8]
4,3 4,2 4,1 4,0'

11

Let

Y3 D EEl (X[8] X [8] X [8] X[8]) n,3 7,3 6,2 5,1 4,0'

Y2 D EEl (X[8] X [8] X [8] X[8]) n,2 7,2 6,1 5,0 4,3'

Y1 D EEl (X[8] X [8] X[8] X[8]) n,l 7,1 6,0 5,3 4,2'

~ D (X~X~X~X~) n,O EEl 7,0 6,3 5,2 4,1·

Case-2 (160-bit fingerprint): We divide Dn,7, Dn,6 and Dn,5 in the following way

= X [7] X [6] X[7] X [6] X [6]
7,4 7,3 7,2 7,1 7,0'

X [7] X[6] X(7] X [6] X [6]
6,4 6,3 6,2 6,1 6,0'

X[7] X[6] X[i] X[6] X[6]
5,4 5,3 5,2 5,1 5,0·

Y4
[i] [6] [i])

Dn,4 EEl (Xi,4X6,3X5,2 '

Y3
[6] [7] [6]

Dn,3 EEl (Xi,3X6,2X5)'

Y2 = ([7] (6] [6])
Dn,2 EEl X7,2X6,lX5,0 ,

Y1 =
[6] (6] (7]

Dn,l EEl (Xi ,lX6,OX5,4)'

Yo (6] (i] (6])
Dn,O EEl (Xi,OX6,4X5,3 .

Case-3 (192-bit fingerprint): Divide Dn ,7 and Dn ,6 into

X(6] X[5] X(5] X (6] X(5] x[5]
7,5 i,4 i,3 i,2 i,l i,O'

X (6] X[5] X(5] X(6] X(5] X[5]
6,5 6,4 6,3 6,2 6,1 6,0·

Y5 = Dn ,5 EEl (X~~~Xl~~),
Y4 ; - D n ,4 EEl (X~~~X~~l),
Y3 = D n ,3 EEl (X~~lx~~!),

Y2 Dn ,2 EEl (X~~~Xl~i),
Y1 Dn ,l EEl (X~~iX~~b),
Yo Dn,o EEl (X~~bx~~b.

Output Y5Y4Y3Y2Y1YO as the fingerprint.
Case-4 (224-bit fingerprint): We divide D n ,7 into

D - X(5] X[5] X [4] x[5] X [4] X(5] X(4]
n,7 - 7,6 7,5 7,4 7,3 i,2 i,l i,O·

12

2.4 The Constants from 1['

HAVAL uses totally 136 constant 32-bit words. Among them, 8 words are used as initial
values DO,7, DO,6, "', Do,o, 32 words are employed by Pass 2 as K2,31, K 2,30, "', and K 2,o,
32 words by Pass 3 as K3 ,31, K3 ,30, "', and K3 ,o, 32 words by Pass 4 as K4,31, K4 ,30, "',

and K4 ,o, and the remaining 32 words by Pass 5 as KS,31, K S,30, "', and Ks,o. The first 8
constant words correspond to the first 256 bits of the fraction part of 11'. The 32 constant
words used in Pass 2 correspond to the next 1024 bits of the fraction part of 11', which is
followed by the 32 constant words used by Pass 3, the 32 constant words used by Pass 4 and
the 32 constant words used by Pass 5. The 136 constant words are listed in the following
in hexadecimal form. They appear in the following order:

1. Do,o, DO,I, "', DO,i,

5. Ks,o, KS,I, "', K S,31.

243F6A88 85A308D3 13198A2E 03707344 A4093822 299F31DO 082EFA98 EC4E6C89

3>'"
452821E6 38D01377 BE5466CF 34E90C6C COAC29B7 C97C50DD 3F84D5B5 B5470917
9216D5D9 8979FB1B D1310BA6 98DFB5AC 2FFD72DB D01ADFB7 B8E1AFED 6A267E96
BA7C9045 F12C7F99 24A19947 B3916CF7 0801F2E2 858EFC16 636920D8 71574E69
A458FEA3 F4933D7E OD95748F 728EB658 718BCD58 82154AEE 7B54A41D C25A59B5

9C30D539 2AF26013 C5D1B023 286085FO CA417918 B8DB38EF 8E79DCBO 603A180E
6C9EOE8B B01E8A3E D71577C1 BD314B27 78AF2FDA 55605C60 E65525F3 AA55AB94
57489862 63E81440 55CA396A 2AAB10B6 B4CC5C34 1141E8CE A15486AF 7C72E993
B3EE1411 636FBC2A 2BA9C55D 741831F6 CE5C3E16 9B87931E AFD6BA33 6C24CF5C

7A325381 28958677 3B8F4898 6B4BB9AF C4BFE81B 66282193 61D809CC FB21A991
487CAC60 5DEC8032 EF845D5D E98575Bl DC262302 EB651B88 23893E81 D396ACC5

13

OF6D6FF3 83F44239 2EOB4482 A4842004 69C8F04A 9E1F9B5E 21C66842 F6E96C9A
670C9C61 ABD388FO 6A51AOD2 D8542F68 960FA728 AB5133A3 6EEFOB6C 137A3BE4

BA3BF050 7EFB2A98 A1F1651D 39AF0176 66CA593E 82430E88 8CEE8619 456F9FB4
7D84A5C3 3B8B5EBE E06F75D8 85C12073 401A449F 56C16AA6 4ED3AA62 363F7706
1BFEDF72 429B023D 37DOD724 DOOA1248 DBOFEAD3 49F1C09B 075372C9 80991B7B
25D479D8 F6E8DEF7 E3FE501A B6794C3B 976CEOBD 04C006BA C1A94FB6 409F60C4

We generated these constant words by Maple (Version 5 on a SP ARCstation) with the
following program:

printlevel := -1;
Digits := 2000;
pifrac := evalf(Pi) - 3;
K := 2 - 32;
for i from 1 by 1 ~hile i <= 136 do
next~ord := trunc(pifrac * K);
lprint(convert(next~ord,hex));

pifrac:= frac(pifrac * K);

od;

3 The Design Rationale

3.1 Designing the Boolean Functions

The five boolean ·functions iI, 12, h, 14 and 15 used by HI, Hz, H3 , H4 and Hs are of
central importance to the hashing algorithm. We first introduce a few definitions before
going into their design details.

Denote by Vn the the vector space of n- tuples of elements from G F (2), where n is a
positive integer. A Boolean function is a function from Vn to GF(2). Note that a Boolean
function 1 from Vn to G F(n) can be "reduced" to a unique polynomial in n coordinate
variables Xn , Xn-l,· .. , Xl· In the following discussions, we will identify the function 1 with
its unique polynomial 1(X n , Xn-l, ... , Xl). The sequence of the function 1 is defined as
the concatenation of the 2n output bits of l(xn ,xn-I, •.• ,xd when Xn,Xn-I, ... ,XI vary
from 0,0,··· ,0 to 1,1,··· ,1. The-iunction 1 is called a linear function if 1 has the form of

.1"

1(Xn , Xn-l, ..• , xd = anxn ED an-l Xn-l ffi ... ffi al Xl ffi ao, where ai E G F(2).
We say that a function 1 from Vn to GF(2) is 0-1 balanced if the number of 1 bits and

the number of 0 bits in the sequence of 1 are the same, both being 2n
- 1 . Let 9 be another

function from Vn to GF(2). The distance between 1 and 9 is the number of positions in the
sequences of 1 and 9 at which the two functions have different values. The non-linearity of
the function 1 is defined as the minimum distance between 1 and all linear functions from
Vn to GF(2). When n = 2k for some k > 1, the maximum non-linearity a function from
Vn to GF(2) can attain is 22k - 1 - 2k-l. Such a functions is called a bent function [Rot76].
We say that f satisfies the Strict Avalanche Criterion (SAC) if for every 1 ~ i ~ n,
complementing Xi results in the output of 1 being complemented 50% of the time over all
possible input vectors.

Two functions f and 9 are linearly equivalent (in structure) if 1 can be transformed into
9 via linear transformation of coordinates and complementation of functions, i.e., there is a

14

non-singular n X n matrix A on G F(2) as well as a vector B E Vn such that f(x A tf) B) = g(x)
or f(xAtf) B) EB 1 = g(x), where x = (Xn,Xn-b ... ,XI)' Otherwise we say that f and 9 are
linearly inequivalent. A set of functions is said linearly inequivalent if all pairs of functions
from the set are linearly inequivalent.

f and 9 are mutually output-uncorrelated if f, 9 and f tf) 9 are all 0-1 balanced non-linear
functions. A set of functions is mutually output-uncorrelated if all pairs of functions in the
set are mutually output-uncorrelated. The set is said perfectly output-uncorrelated if any
non-zero linear combination of the functions in the set results in a 0-1 balanced non-linear
function.

Linear equivalence and output-correlation can be used to examine from two different
angles the structural similarity among functions. Our goal is to design five Boolean functions
in seven variables so that each of the functions has the following properties PI, P2 and P3.

PI Being 0-1 balanced.

P2 Having a high non-linearity.

P3 Satisfying the Strict Avalanche Criterion (SAC).

In addition, as a set of functions, they have the following properties P4 and P5.

P4 Being linearly inequivalent in structure.

P5 Being mutually output-uncorrelated.

These properties are considered as desirable ones for a cryptographic primitive such as a
one-way hashing algorithm. PI ensures that a function outputs a 0 bit and a 1 bit with the
same probability 0.5 when the input to the function is picked randomly and uniformly over
all possible vectors. P2 is desirable since a linear function would render a cryptographic
algorithm easily breakable. P3 brings good avalanche effect to a cryptographic algorithm.
P4 ensures that functions employed by a cryptographic algorithm bears no resemblance
in structure (with respect to linear transformation of coordinates and complementation
of functions.) Finally, P5 ensures that the sequences of the functions are not mutually
correlated either via linear functions or via the bias in output bits.

In [SZ92], Seberry and Zhang presented a novel method for constructing Boolean func­
tions that have the properties PI, P2 and P3. In particular, they showed that given a
bent function from V2k to GF(2), where k ~ 1, one can obtain a Boolean function from
V2k+1 to G F(2) that has the properties PI, P2 and P3 and a non-linearity of 22k - 2k.
Here is their construction method.1>tet g(X2k, X2k-b ... , Xl) be a bent function, and let
£(X2k, X2k-l, ... ,Xl) be an arbitrary non-constant linear function. Let

Note that h(X2k,X2k-I,'" ,Xl) is also a bent function. Also note that a bent function is not
0-1 balanced. Now assume that both the function sequence of g(X2k, X2k-I,"" Xl) and that
of h(X2k,X2k-ll""XI) have more Is (or Os) than Os (or Is). Then the following function
from V2k+1 to GF(2)

f(X2k,X2k-I"",XI,XO)

(xo tf) l)g(X2k. X2k-ll ... , Xl) EB Xo(h(X2k, X2k-I,' .. , xd tf) 1)

= g(X2k, X2k-ll"" xI) tf) XO£(X2k, X2k-I,"" Xl) EB Xo

15

has properties PI, P2 and P3.
The five Boolean functions iI, 12, 13, f4 and 15 employed by HI, H 2 , H3, H4 and Hs

are constructed from the following bent functions 9I, 92, 93 and 94·

91(XS,XS,X4,X3,X2,XI) XIX4 EB X2 X S EB x3 X 6

92(x6, xs, x4, x3, X2, Xl) = XIX2 X 3 EB X2 X 4 X S EB XIX2 EO XIX4 EB X2 X S EB X3 X S EB X4 X S

93(X6, Xs, X4, X3, X2, Xl) XIX2 X3 EB XIX4 EB X2 X S EB X3 X S

94(Xs, Xs, X4, X3, X2, xd XIX2 X 3 EB X2 X 4 X S EB X3 X 4 XS EB
XI X 4 EB X2X6 EB X3X4 EB X3 X S EB X3 X 6 EB X4 X S EB X4 X 6

These four bent functions were discovered by Rothaus in his pioneering work [Rot76].
In the same paper, Rothaus also proved that these are the only bent functions from V6 to
GF(2) which are linearly inequivalent in structure. Let

£1(X6,XS,X4,X3,X2,XI) = Xl,

£2(X6,XS,X4,X3,X2,xd X2,

£3(X6,XS,X4,X3,X2,Xl) x3,

£4(X6,XS,X4,X3,X2,xd x4·

By applying Seberry and Zhang's method, we obtain the first four functions iI, 12, 13 and
f4 as follows:

9i(X6,XS,X4,X3,X2,xd EB X Ofi(X6,XS,X4,X3,X2,Xl) EO Xo

9i(X6,XS,X4,X3,X2,XI) EB XOXi EO Xo

where i = 1,2,3,4. The fifth function, which also has the properties PI, P2 and P3, is
obtained in the following way. Let

Then

Is(x6,xS,X4,X3,X2,Xl,xo)

= (1 EB XO)91(X6,XS'_~4,X3,X2,Xl) EB xo(l EB hS (X6,XS,X4,X3,X2,Xl)) ...
= 91(X6,XS,X4,X3,X2,Xl) EB XOXI X 2X 3 EB XOXs EB Xo

These functions have a non-linearity of 26 - 23 = 56, which is in fact the maximum
non-linearity of functions from V7 to GF(2) [SZ92].

N ow we show that these functions are linearly inequivalent in structure. We call the
product of several coordinate variables a term. The de9ree of a term is the number of
coordinate variables in it. The degree of a Boolean function is the maximum degree among
all terms of the function. Thus 11 has five terms XIX4, X2XS, X3X6, XOXI and Xo. The
first four terms are of degree 2, the last term is of degree 1, and hence the degree of 11 is
2. Consider the case when a linear transformation of coordinates is applied to a Boolean
function 1 and a new Boolean function 9 is obtained. Each term of 1 generates one or more
new terms. However no terms that have higher degrees than that of the original one can be
created. Therefore, all the terms in 9 which have the highest degree are derived from terms

16

in f which have the same degree. This implies that linear transformation of coordinates
does not change the degree of a function.

The degrees of the five functions iI, 12, 13, f4 and fs are 2, 3, 3, 3 and 4 respectively.
From the above discussions, we know that iI and fs are linearly inequivalent. In addition,
neither iI nor fs can be transformed into any of the other three functions 12, 13 and f4 by
linear transformation of coordinates. The other direction is also true. Now consider 12, 13
and f4. Note that 12 has two degree-3 terms XIX2X3 and X2X4XS, 13 has one degree-3 term
XIX2X3, and f4 has three degree-3 terms XIX2X3, X2X4XS and X3X4X6. It was shown in [Rot76]
that the above three sets of degree-3 terms can not be transformed into one another by linear
transformation of coordinates. From this it follows that the three functions 12, 13 and f4
are linearly inequivalent. In summary iI, 12, 13, f4 and fs are linearly inequivalent, and
hence they have the property P4.

By now we have seen that the five functions iI, 12, 13, f4 and fs satisfy properties PI,
P2, P3 and P4. Verification shows that these five functions do not have the property P5.
By permuting the coordinates of the functions iI, 12 and 13 according to <hI, <P3,2 and
<P3,3 shown in Table 2, we obtain three functions iI 0 <P3,1, 12 0 <P3,2 and h 0 <P3,3 that are
mutually output-uncorrelated (Le., satisfying the property P5). In fact these three functions
are perfectly output-uncorrelated. As permuting coordinates does not affect the functions
with respect to properties PI, P2, P3 and P4, we know that the three permuted functions
iI 0 <P3,I, 12 0 <P3,2 and 13 0 <P3,3 which are used in the 3-pass case satisfy all the five properties
PI, P2, P3, P4 and P5. All non-zero linear combinations of the three functions have the
maximum non-linearity of 56.

Similarly, by permuting the coordinates of the functions iI, 12, 13 and f4 according
to <P4,1, <P4,2, <P4,3 and <P4,4 shown in Table 2, we obtain four functions fl 0 <P4,1, 12 0 <P4,2,

13 0 <P4,3 and h 0 <P4,3 that are perfectly output-uncorrelated and hence satisfy the property
P5. Among the non-zero linear combinations of iI 0 <P4,1, 12 0 <P4,2, h 0 <P4,3 and f4 0 <P4,4,

ten achieve the maximum non-linearity of 56 and the remaining 5 achieve 48.
Permuting the coordinates of the functions iI, 12, 13, f4 and fs according to <PS,I, <PS,2,

<PS,4, <PS,3 and <Ps,s shown in Table 2 yields five functions iI 0 <PS,l, 12 0 <PS,2, h 0 <PS,3, h 0 <PS,4

and h 0 <Ps,s that are mutually output-uncorrelated and hence satisfy the property P5.
Although the permutations do not yield perfectly output-uncorrelated functions, all the
non-zero combinations are either 0-1 balanced or very close to 0-1 balanced. Eight of the
combinations have the maximum non-linearity of 56, four have 52, fifteen have 48, three
have 44 and one has 32.

The permutations shown in Table 2 are obtained by random sampling. We have also
found many other alternative permutations. The permutations shown in Table 2 are chosen
since they bring the highest average non-linearity to the linear combinations of the functions.

To compare with MD4, MD5 and SHS, we have listed the Boolean functions used
by these algorithms in Table 3. The main design criterion for these functions is as fol­
lows [Riv92a, Riv92b]: if the input to a function is the result of flipping independent unbi­
ased coins, then the output of the function should behave in the same way as the result of
flipping an independent unbiased coin as well. This is equivalent to say that the functions
are all 0-1 balanced, i.e., they satisfy the property PI, one of our five design criteria. Note
that one of the functions, x EB y EB z, is linear. The other degree-2 functions can be trans­
formed into one another by linear transformation on coordinates. In particular, xyEBxzEByz,

17

II MD4 MD5 SHS
1 xy E!7 xz E!7 z xy E!7 xz E!7 z xy E!7 xz E!7 z
2 xy E!7 xz E!7 yz xz E!7 yz E!7 y xE!7yE!7z
3 xE!7yE!7z xE!7yE!7z xy E!7 xz E!7 yz
4 Y E!7 z E!7 xz E!7 1 xE!7yE!7z

Table 3: Boolean Functions Used by MD4, MD5 and SHS

xz E!7 yz EB y, and y E!7 z E!7 xz E!7 1 can all be transformed into xy E!7 xz EB z by

[
X-*X

EBY
EBl] [X-*y] [x-*yE!7Z]

y-*y , y-*z , y-*xEBzEBl
z-*z z-*x z-*x

respectively. In addition, it is easy to check that correlations among the output sequences
of the function are very poor.

3.2 Other Design Issues

At the i-th round of Pass 1, Ti,7 is updated essentially by adding to it the output of Fl and
the i- th word Wi. This can be viewed as the folding technique used in ordinary hashing (see
Page 512, [Knu73]). Rotation is employed to destroy the symmetry of addition modulo 232

operation. This technique is also used in the processing of Passes 2, 3, 4 and 5. Inversion
of the basic compressing algorithm H is made computationally infeasible by the addition
of its 8-word input to the last pass' output.

Processing of the five passes is made more distinct by allowing them to perform re­
ordering operations upon the words. The word processing orders are selected in such a way
that no word is processed by the same round at different passes and that the orders are as
un-related as possible. In addition, constant words unique to each round are used in the
later four passes. These constant words have been defined as consecutive bits in the fraction
part of 7i to avoid possible allegation that a trap-door would have been planted in them.

In addition, different permutations on coordinates of h, h, 13, f4 and fs are employed
according to the number of passes];equired. This makes the hashing algorithm behave more
differently when the number of pa~ses changes.

4 Security of HAVAL

Two messages are said to collide with each other with respect to a one-way hashing algorithm
if they are compressed to the same fingerprint. For HAVAL, there are two possibilities for a
pair of messages to collide: the number of passes the messages are processed can be the same
or differ. Ideally, given a one-way hashing algorithm, we would like to prove formally that
it is computationally infeasible to find a collision pair for the hashing algorithm. Like many
other hashing algorithms such as the MD family, SHS and FFT-hash, however, HAVAL
could not be formally proved to be secure. Recently, Berson has proposed an attack to a
single pass of MD5 [Ber92J. His method applies to a single pass of HAVAL as well. However,
it seems to be unlikely that the attack might be extended to two or more passes. vVe also

18

note that the attack by den Boer and Bosselaers [dBB94] on a single pass of MD5 is not
directly applicable to HAVAL.

It is conjectured that the best way to find a collision pair is by using the birthday attack.
In such an attack, an attacker prepares two sets of 2n/2 distinct messages, and calculates
their fingerprints. Here n denotes the number of bits in a fingerprint, and it can be 128, 160,
192, 224, 256. Also note that the number of passes the two sets of messages are compressed
may differ. The attacker can check (by, for instance, sorting) if there is any collision pair
of messages, one is from the first set and the other from the second set. The attacker
will succeed with a probability about 0.5. However, such an attack requires the order of
2n/2 operations, which is impractical even for n = 128. It is also conjectured that given a
fingerprint, it requires the order of 2n operations to obtain a message that is mapped to the
fingerprint.

5 Extensions and Future Work

The algorithm can be extended in several directions. Firstly, we note that the number of
passes can be increased by adding more functions into the function set {iI, h, h, 14, is}·

It is well known that for any k ~ 4, there are at least k linearly inequivalent bent
functions from V2k to GF(2). Thus by using the same approach as described in Section 3.1,
we can design, at least in theory, four or more functions from V2k+1 to GF(2) that have the
properties PI, P2, P3, P4 and P5. In this way, we can design one-way hashing algorithms
that compress an arbitrarily long message into a fingerprint of 32(2k + 2) or less bits, where
k ~ 4.

We also note that although HAVAL is designed primarily for 32-bit machines, hashing
algorithms suited to more advanced platforms such as 64-bit machines can be obtained by
modifying the definition of a word.

The efficiency of the algorithm can be improved if we can find simpler replacements for
the five functions. It is a future research subject to search for other approaches that might
lead to simpler functions having the five properties.

6 Conclusions

We have proposed a new one-way hashing algorithm HAVAL that can compress an arbitrar­
ily long message into a fingerprint of 128, 160, 192, 224 or 256 bits. To meet the needs of
various practical applications, HAVAL also has provides the flexibility to change the number

l'

of passes message blocks are processed. A great deal of attention has been paid to the design
of the five Boolean functions used by the algorithm. We expect that it requires the order of
2n / 2 operatiOns to find a pair of collision messages, where n is the length of a fingerprint.
We also expect that the algorithm would be widely used in practical applications where
fingerprints of variable length are required.

Acknowledgements The authors are grateful to Xian-Mo Zhang for his invaluable
contribution to this project. This work would be impossible without his insight in the
construction of cryptographically useful Boolean funcitons. We also would like to thank
Tor Nordhagen for his help in testing and programming, and Bart Preneel for bringing
[Mer90] to our attention.

19

References

[Ber92] T. A. Berson. Differential cryptanalysis mod 232 with applications to MD5. In
Advances in Cryptology - Proceedings of EuroCrypt'92, Lecture Notes in Computer
Science. Springer-Verlag, 1992. (to appear).

[Dam87] 1. Damgard. Collision free hash functions and public key signature schemes. In
Advances in Cryptology - Proceedings of EuroCrypt'87, Lecture Notes in Computer
Science. Springer-Verlag, 1987.

[Dam90] 1. Damgard. A design principle for hash functions. In G. Brassard, editor, Advances
in Cryptology - Proceedings of Crypto'89, Lecture Notes in Computer Science,
Vol. 435, pages 416-427. Springer-Verlag, 1990.

[dBB94] B. den Boer and A. Bosselaers. Collisions for the compression function of MD5. In
Advances in Cryptology - Proceedings of EuroCrypt'93, Lecture Notes in Computer
Science. Springer-Verlag, 1994. (to appear).

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):472-492, 1976.

[Kal92] B. Kaliski. The MD2 message digest algorithm, April 1992. Request for Comments
(RFC) 1319.

[Knu73] D. E. Knuth. The Art of Computer Programming, Sorting and Searching, vol­
ume 3. Addison-Wesley, 1973.

[Mer78] R. Merkle. Secure communication over insecure channels. Communications of the
ACM, 21:294-299, 1978.

[Mer90] R. C. Merkle. A fast software one-way hash function. Journal of Cryptology,
3(1):43-58, 1990.

[NIS91] NIST. A proposed federal information processing standard for digital signature
standard (DSS), August 1991.

[NIS92] NIST. A proposed federal information processing standard for secure hash (SHS),
January 1992.

j.'

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21-st ACM Symposium on Theory of Comput­
ing, pages 33-43, 1989.

[Riv92a] R. Rivest. The MD4 message digest algorithm, April 1992. Request for Comments
(RFC) 1320. (Also presented at Crypto'90, 1990).

[Riv92b] R. Rivest. The MD5 message digest algorithm, April 1992. Request for Comments
(RFC) 1321.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the 22-nd A CM Symposium on Theory of Computing, pages
387-394, 1990.

20

[Rot76J O. S. Rothaus. On "bent" functions. Journal of Combinatorial Theory (A),
20:300-305, 1976.

[Sch92] C. P. Schnorr. FFT-Hash II, efficient cryptographic hashing, April 1992. Presented
at EuroCrypt'92.

[SZ92J J. Seberry and X.-M. Zhang. Highly nonlinear 0-1 balanced boolean functions
satisfying strict avalanche criterion, 1992. AusCrypt'92, Gold Coast.

[Vau92} S. Vaudenay. FFT-Hash-II is not yet collision-free. In Rump Session, Crypto'92,
1992.

[ZMI91] Y. Zheng, T. Matsumoto, and H. Imai. Structural properties of one-way hash
functions. In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology
- Proceedings of Crypto'90, Lecture Notes in Computer Science, Vol. 537, pages
303-311. Springer-Verlag, 1991.

21

	University of Wollongong
	Research Online
	1993

	HAVAL - A one-way hashing algorithm with variable length output
	Yuliang Zheng
	Josef Pieprzyk
	Jennifer Seberry
	Publication Details

	HAVAL - A one-way hashing algorithm with variable length output
	Abstract
	Disciplines
	Publication Details

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

