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Abstract 

Koukouvinos, c., S. Kounias and 1. Seberry, Supplementary difference sets and optimal 
designs, Discrete Mathematics 49-58. 

D-optimal designs of order n = 2v == 2 (mod 4), where q is a prime power and v = q2 + q + 1 
are constructed using two methods, one with supplementary difference sets and the other using 
projective planes more directly. 

An infinite family of Hadamard matrices of order n = 4v with maximum excess a(n) = 
nYn - 3 where q is a prime power and v = q2 + q + 1 is a prime, is also constructed. 

1. Introduction 

In [17-18] (Seberry) Wallis has given the following definition of supplementary 
difference sets: 

If B = {bI> b2 , ••• ,bkJ, D = {d1 , d2, ... ,dk2 } are two collections of kl' k2 

residues mod v such that the congruence 

bi - bj =a (mod v), di - dj =a (mod v) 

has exactly A solutions for any a ~O (mod v) then B, D are called supplementary 
difference sets (abbreviated as SDS), denoted by 2-{ v; kl' k 2; A}. 

In [5] Elliott and Butson have given the following definition of a relative 

difference set: 
A set D of k elements in a group G of order vm is a difference set of G relative 

to a normal subgroup F of order m -=1= vm if the collection of differences 

0012-365X/91/$03.50 © 1991- Elsevier Science Publishers B.V. (North-Holland) 
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r - s, r, sED, r *" S contains only the elements of G which are not in F, and 
contains every such element exactly J.. times. This relative difference set 
(abbreviated as RDS) will be denoted by R(v, m, k, J..). 

In this paper we consider the case m = 2, i.e. R(v, 2, k, J..). These RDS are 
called also near difference sets (see Ryser [13]). In [5] Elliott and Butson proved 
that if q is an odd prime power, then we can construct cyclic relative difference 
sets R(v, 2, k, J..), where 

n = 2v = 2(q2 + q + 1), J.. = !q(q -1) (1) 

Spence [16] showed that the construction of Elliott and Butson is also valid 
when q is a power of 2. For the construction of these R(v, 2, k, J..) see also 
[11-12]. 

If n == 2 (mod 4), v = nl2 and RI> R2 are v X v commuting matrices, with 
elements ± 1, such that 

R1Ri + R2Ri = (2v - 2)1" + qJv 

then the n X n matrix 

has the maximum determinant (Ehlich [4]) among all n X n ± 1 matrices. 

(2) 

(3) 

Such matrices R are called D-optima/ designs of order n and their construction 
is known for the following values of n: 2, 6, 10, 14, 18, 26, 30, 38, 42, 46, 50, 54, 
62, 66, 82, 86 (Ehlich [4], Yang [20-24], Chadjipantelis and Kounias [2], 
Chadjipantelis, Kounias and Moyssiadis [3]). 

If R 1, R2 are circulant, then pre- and post-multiplying both sides of (2) by eT 

and e respectively we obtain 

(v - 2kl? + (v - 2k2? = 4v - 2 (4) 

where e is the v X 1 matrix of 1 's and k 1, k2 is the number of -1 's in every row of 
R 1 , R2 respectively. 

If R 1 , R2 satisfy (2) so do ±RI> ±R2, i.e. we can always take 1:;;; kl :;;; k 2:;;; 
(v - 1)/2. 

In [2] Chadjipantelis and Kounias proved that the existence of 2-{v; kl' k 2; J..} 
SDS, where k1' k2 satisfy (4) and J.. = kl + k2 - (v -1)/2 is equivalent to the 
existence of D-optimal designs of order n = 2v == 2 (mod 4). In this paper we 
construct D-optimal designs for n == 2 (mod 4) by using SDS. 

Now we give some basic definitions. 
An Hadamard matrix, called H-matrix, of order n is an n X n matrix H with 

elements + 1, - 1 satisfying 

HTH = HHT = nIno 

The sum of the elements of H, denoted by a(H), is called excess of H. The 
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maximum excess of H, over all H-matrices of order n, is denoted by a(n), i.e. 

a(n) = max a(H) for all H-matrices of order n (5) 

An equivalent notion is the weight w(H) which is the number of l's in H, then 
a(H) = 2w(H) - n2 and a(n) = 2w(n) - n2, see [9-10]. 

Kounias and Farmakis [10] proved that a(n) = nVn when n = 4(2m + 1)2 and a 
regular H-matrix exists thus satisfying the equality of Best's [1] inequality, 

a(n) o;;;nVn. 

Infinite families of H-matrices satisfying this bound have been found by Seberry 
[14] and Yamada [19]. 

Also, Kounias and Farmakis [10] proved that a(n) = nVn - 3 can be attained 
when n = (2m + 1)2 + 3 thus satisfying the equality of the Hammer-Levingston­
Seberry [9] bound, 

a(n) o;;;nVn - 3 

for this bound. This is discussed further in Section 3. 
In this paper we also construct an infinite family of H-matrices of order n = 4v 

with maximum excess a(n) = nVn - 3, where q is a prime power and v = 
q2 + q + 1 is a prime. 

2. On O-optimal designs of order n == 2 (mod 4) 

Spence [16] proved the following theorem. 

Theorem 1 (Spence). If there exists a cyclic projective plane of order q2 then there 
exist two ±1 matrices R 1 , R 2, both circulant and of order 1 + q + q2, such that 

(6) 

where I is the identity matrix of order 1 + q + q2 and J is the square matrix of order 
1 + q + q2, all the entries of which are + 1. 

Now, by using the circulant matrices Rv R2 constructed by Spence in Theorem 
1, and the matrix R in (3), we note the following theorem. 

Theorem 2. There exist D-optimal designs of order n == 2 (mod 4), where q is a 
prime power and 

n = 2v = 2( q2 + q + 1). 

Proof. Let D = {d 1 , d2, ... , dk } be a R(v, 2, k, ).) as in (1) and v = q2 + q + 1. 
The following two sets 

Dl = {(d + v)/2 (mod v), dE D, dodd} 

D2 = {d/2 (mod v), dE D, d even} 
(7) 
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constitute 2-{v, kv k 2;}. = kl + k2 - (v -1)/2} SDS, where 

v = q2 + q +, 1, k - q(q - 1) k _ q(q + 1) 
1- 2 ' 2- 2 ' 

v-I 
}.=k1 +k2--

2
-=k1 

satisfying (4) (see Spence [16], Seberry Wallis and Whiteman [15]). 

(8) 

Since a R(v, 2, k, }.) exists when q is a prime power, this completes the proof of 
Theorem 2. D 

The matrices R 1 , R2 are the incidence circulant matrices of SDS described in 
(7) and are constructed by setting - 1 in the positions indicated in D 1 , D2 
respectively and + 1 in the remaining positions. The following examples which are 
given in Table 1 illustrate the cases q = 2, 3, 4, 5, 7 of Theorem 2. 

We give another proof of· the above result which indicates possibilities for 
inequivalences and has less restrictions on the underlying structures. 

First we note that a matrix, W, of order n with entries 0, + 1, -1, exactly k 
nonzero entries in each row and column and inner product of distinct rows zero is 
called a weighing matrix denoted W = W(n, k). In fact 

WWT=kJn , 

and a W(n, n) is an Hadamard matrix. 

Theorem 3. Let Q and P be the incidence matrices of (q2 + q + 1, q + 1, 1) 
difference sets. Further suppose QP has elements 0, 1, 2. Then W = QP - J is a 
weighing matrix of order q2 + q + 1 and weight q2 that is WWT = q2J and W has 
entries 0, 1, -1. Furthermore if W = X - Y, where X and Y have entries 0, 1 then 
R =J -X - Y satisfies RRT = qJ +J, RJ = (q + l)J. 

Proof. Since P and Q are incidence matrices of (q2 + q + 1, q + 1, 1) difference 
sets 

ppT = QQT = qJ +J, P J = QJ = (q + l)J 

where P, Q, J, J are of order q2 + q + 1. Now 

WWT = (QP_J)(pTQT -J) = QPpTQT _JpTQT - QPJ +J2 

= Q(qJ +J)QT - 2(q + 1)2 +J2 = qQQT - (q + 1)2J +J2 

= q2J + qJ - (q2 + 2q + 1- q2 - q -l)J = q2J. 

Since PQ had entries 0, 1,2 PQ - J must have entries 0, 1, -1. 
Now WJ = QPJ _J2 = (q + 1)2J -J2= qJ. So WJ = (X - Y)J = qJ. WWT = q2J 
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Table 1 
R(v, 2, k, A) where v, k, A satisfy (1) and SDS 2-{ v; kl' k 2; A} where v, kl' k2' A satisfy (8) 

n = 14, q = 2, v = 7, k = 4, kl = 1, k2 = 3; A == 1 

(i) D = {a, 1, 4, 6} 
Dl = {4} 
D2 = {a, 2, 3} 

(ii) D = {a, 3, 5, 13} 
Dl = {3, 5, 6} 
D2 = {a} 

n = 26, q = 3, v = 13, k = 9, kl = 3, k2 = 6; A = 3 
(i) D = {a, 1, 6, 8, 10, 11, 12, 15, 18} 

Dl = {I, 7, 12} 
D2 = {a, 3, 4, 5, 6, 9} 

(ii) D = {O, 1,2,8, 11, 18,20,22, 23} 
Dl = {5, 7, 12} 
D2 = {O, 1,4,9,10, 11} 

(iii) D = {4, 5, 7, 10, 11, 12, 15, 19, 21} 
D, = {I, 3, 4, 9, 10, 12} 
D2 = {2, 5, 6} 

(iv) D = {5, 8, 15, 17, 19, 20, 23, 24, 25} 
D, = {I, 2, 3, 5, 6, 9} 
D2 = {4, 10, 12} 

(v) D = {2, 4, 6, 7, 10, 11, 12, 18, 21} 
Dl = {4, 10, 12} 
D2 = {I, 2, 3, 5, 6, 9} 

n = 42, q = 4, v = 21, k = 16, kl = 6, k2 = 10; A = 6 

(i) D = {O, 1, 10, 11, 18,20,23,25,26,29,30,34,36,37,38, 40} 
Dl = {I, 2, 4, 8, 11, 16} 
D2 = {O, 5, 9, 10, 13, 15, 17, 18, 19, 20} 

(ii) D = {O, 2, 4, 5, 6, 8,12,13,16,17,19,22,24,31,32, 41} 
D, = {5, 10, 13, 17, 19, 20} 
D2 = {O, 1,2,3,4,6,8, 11, 12, 16} 

n = 62, q = 5, v = 31, k = 25, k, = 10, k2 = 15; A = 10 

(i) D = {O, 1,2,3,5,6,7,9,10,13,15,17,23,24,25,26,30,35,39,42, 45, 50, 51, 53, 58} 
D, = {2, 4, 7, 10, 11, 16, 17, 18, 19,20,22,23,24,27, 28} 
D2 = {O, 1, 3, 5, 12, 13, 15, 21, 25, 29} 

(ii) D = {O, 1,2,5,7,9,10,21,22,25,29,34,35,37,39,43,44,45,46,48, 50, 51, 54, 57, 61} 
D, = {2, 3, 4, 6, 7, 10, 13, 15, 16, 18, 19, 20, 26, 28, 30} 
D2 = {O, 1,5, 11, 17,22,23,24,25, 27} 

n = 114, q = 7, v = 57, k = 49, k, = 21, k2 = 28; A = 21 

(i) D = {O, 8, 10, 12, 15, 18, 20, 22, 23, 25, 26, 32, 34, 39, 40, 41, 43, 45, 46, 47, 50, 51, 52, 
55,56,59,60,61,62,68,70,71,73,74,78,81,84,85,86, 87, 88,90,92, 93, 94,101, 
105,110,111} 

D, = {I, 2, 7, 8, 12, 14, 15, 18,22,24,27,36,40,41,48,49,50,51,52,54, 56} 
D2 = {O, 4, 5, 6, 9, 10, 11, 13, 16, 17,20,23,25,26,28,30,31,34,35,37,39,42,43,44, 

45,46,47,55} 
(ii) D = {O, 2, 3, 4, 8, 10, 11, 14, 21, 22, 23, 24, 27, 28, 31, 32, 33, 34, 36, 37, 39, 40, 

43,45,47,48,50,52,54,55,56,62,69,70,72,73,74,75, 77, 82, 83, 86, 87, 92, 
98, 101, 103, 108, 110} 

D, = {6, 8, 9, 10, 13, 15,22,23,30,34,39,40,42,44,45,47,48,50,51,52, 56} 
D2 = {O, 1,2,4,5,7, 11, 12, 14, 16, 17, 18,20,24,25,26,27,28,31,35,36,37,41,43,46, 

49, 54, 55} 

53 
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says W has q2 entries 1 or -1 in each row, 'Say x ones and y minus ones. Then 

x-y=q x + y = q2 

and thus 

x = ~q(q + 1), y = ~q(q -1). 

Now any row of W has x = !(q2 + q) ones, y = ~(q2 - q) minus ones and q + 1 
zeros. 

Write any two rows of W as 

1···················1 - ................. - 0···················0 

1···1 - ... - 0···0 1···1 - ... - 0···0 1···1 - ... - 0···0 
'--v-''-v---''--v-''--v-''-v---''--v-''--v-''-v---''--v-' 
ace b d f x-a-b y-c-d q+l-e-f 

where there are, for example a columns (D and f columns ( (/). 
Now the number of columns (8) is q + 1 - e - f. Furthermore the inner product 

of each pair of rows is zero so a + b - c - d = O. Also 

a + c + e = x (number of ones in first row) 

b + d + f = y (number of minus ones in first row). 

Hence 

q+l-e-f=q+l+a+c-x+b+d-y=-q2+ q +l+a+c+b+d 

= _q2 + q + 1 + 2c + 2d (using a + b - c - d = 0) 

,,-;;: _q2 + q + 1 + q2 - q (number of minus ones in second row) 

,,-;;:1. 

Now 1 ~ q + 1 - e - f ~ O. Suppose q + 1 - e - f = 0 then using 

a + b + c + d + e + f = q2 

a+b-c-d =0 

e+f=q+l 
We have 

2a + 2b = q2 + q + 1. 

But q2 + q + 1 is always odd. So we have a contradiction and q + 1 - e - f = 1. In 
other words each row of W has q + 1 zeros and in each pair of rows of W exactly 
one zero is underneath a zero. Thus if R = J - X - Y is the matrix with ones 
where W had zeros R is the incidence matrix of a (q2 + 1 + 1, q + 1, 1) 
configuration. So 

RRT = qI +J and RJ = (q + I)J. 

Furthermore if P and q were defined on a cyclic (abelian) group, R is defined on 
the same group. 
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Theorem 4. There exist two matrices A and 13 of order q2 + q + 1 which satisfy 

AAT + BBT = 2(q2 + q)I + 2J. 

Proof. Let A = W + Rand B = W - R be defined as above. D 

55 

Corollary 5. There is a D-optimal design of order 2(q2 + q + 1) whenever there is 
a (q2 + q + 1, q + 1, 1) difference set. 

Proof. Use 

as before. D 

Remark 1. This construction does not require the difference set to be defined on 
a cyclic group. Glynn [7], Geramita and Seberry [6, p. 152] have shown the 
conditions of the theorem can be met, for example if P = Q in theorem. 

Remark 2. We note that the sets Dl and D2 of 2 - {v; k 1, k 2 ; A.} SDS described in 
(7) are disjoint. 

For if 

di + V _ dj ( d) --=- mo v 
2 2 

then di - dj == v (mod 2v), (di , dj ED) in violation of the definition of a RDS. (see 
Seberry Wallis and Whiteman [15]). 

D-optimal designs have been constructed for n = 14, n = 26 by Ehlich [4] and 
Yang [22] and for n = 42, n = 62 by Yang [20,23] and Chadjipantelis and 
Kounias [2]. All the other orders of D-optimal designs which are constructed by 
the above method are new. 

3. The maximum excess of Hadamard matrices of order n = 4v 

First we show that the Hammer-Levingston-Seberry [9, p. 246] bound for 
n = (2m + 1)2 + 3 is the same as that found by Kounias and Farmakis [10, section 
4]. 

Hammer, Levingston and Seberry [9, p. 217] show that for H-matrices of order 
n, writing x for the greatest even integer <Vii, t = x if In - x 2

1 < I (x + 2)2 - n I 
and t = x - 2 otherwise, i the integer part of n«t + 4f - n )/8(t + 2), the excess of 
the H-matrices is bounded by 

a(n) = net + 4) - 4i. 
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Write n = (2m + 1)2 + 3 = 4(m2 + m + 1): Now x, even, is the greatest even 

integer <vn. 
Let x = 2a, then 2a < vn and 

4m2~4a2<4(m2+m + 1)<4(m + 1)2 

Hence m ~a <m + 1. 
Thus we can write 

x =2a =2m, t = x - 2 = 2m - 2 and i = m 2 + m + 1. 

Hence 

a(n) ~ (2m + 2) - 4i = n(2m + 2) - n = n(2m + 1) = nVn - 3 

This was the result given in Kounias and Farmakis [10]. We summarize this as 

the following lemma. 

Lemma 6. The Hammer-Levingston-Seberry bound is equivalent to a(n) ~ 
n(2m + 1) = nVn - 3 when n = (2m + 1f + 3. 

Kounias and Farmakis [10] proved that a(n) = nVn - 3 can be attained when 
n = (2m + 1)2 + 3 thus satisfying the equality of the above bound. 

Spence [16] proved the following theorem. 

Theorem 7 (Spence). If there exists a cyclic projective plane of order q2 and two 
supplementary difference sets in a cyclic group of order 1 + q + q2, then there exists 
a Hadamard matrix of the Goethals-Seidel type of order 4(1 + q + q2). 

Now, from this theorem of Spence we note the following theorem. 

Theorem 8. There exist H-matrices of order n = (2q + 1)2 + 3, with maximum 
excess a(n) = nVn - 3, where q is a prime power and v = q2 + q + 1 is a prime. 

Proof. It is easy to see (Spence [16], Seberry Wallis and Whiteman [15]) that if 
v = q2 + q + 1 is a prime, then we can construct two sets D3 and D4 as 

(9) 

SDS, where D3 is the set of quadratic residues of v, and D4 is the set of quadratic 
nonresidues of v, k3 = k4 = q(q + 1)/2, A = k3 + k4 - (v + 1)/2 = q(q + 1)/2-1. 

By using (7) and (9) SDS, we can construct a 

4 - { v; kl' k2' k3' k 4; A = tl k i - v} 

which may be used to construct H-matrices (H4v) of the Goethals-Seidel type. 
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Now, it is obvious that n = 4v = 4(q2 -+ q + 1) = (2q + 1)2 + 3, and from 
Lemma 3 and the result of Kounias and Farmakis [10], we note that these 
H-matrices have maximum excess a(n) = nVn - 3. 0 

If we construct the R 3, R4 incidence circulant matrices of (9) SDS, we have 

R3Rj + R4RI = 2(q2 + q + 2)Iv - 2Jv. (10) 

Hence from (6) and (10) we obtain: 

(11) 

The following matrix G, whose construction is due to Goethals and Seidel [8], 
is an H-matrix of order 4(q2 + q + 1): 

[ 

RJ R 2W R3W R4W] 
-R2 W R j -RIw RjW 

G= T T 
-R3W R 4W R j -R2W 

-R4 W RjW RIw R j 

where W = [wij ] is the permutation matrix of order v = q2 + q + 1 defined by 

if i + j == 1 (mod v), 
otherwise. 

(12) 

The circulant (1, -1) matrices Rj, R 2, R 3, R4 of order v, have row sums 
2q + 1, 1, 1, 1 respectively, then G gives the row-sum vector (2qejnI4' (2q + 
4)e!/4) where re; denotes the 1 x s vector (r, r, ... , r). 

Example. From Theorem 8 we obtain the following orders of H-matrices with 
maximum excess: 

n=28 (q=2,v=7), 

n =52 (q = 3, v = 13), 

n = 124 (q = 5, v = 31), 

n =292 (q = 8, v = 73), 

n = 1228 (q = 17, v = 307), 

n = 3028 (q = 27, v = 757), 

n = 6892 (q = 41, v = 1723), 

n = 14164 (q = 59, v = 3541), etc. 

H-matrices with maximum excess have been constructed for n = 28, n = 52, 
n = 124 from the results of Hammer, Levingston and Seberry [9] using 
Williamson-type matrices alone, or from the results of Kounias and Farmakis 
[10]. All the other orders of H-matrices with maximum excess are new. 
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