NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
THINKING AND LEARNING IN JUNIOR HIGH SCHOOL:
AN EVALUATION OF SOME ENHANCEMENT STRATEGIES.

A Thesis submitted in partial fulfilment of the requirements for the
award of the degree

DOCTOR OF EDUCATION

from

UNIVERSITY OF WOLLONGONG

by

Grahame William Wagener
B.A., M.A., M.Ed. Admin.,

School of Education
January
1997.

Volume 1
DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

__________________________ _______________________
ACKNOWLEDGMENTS

The background work for this study commenced at the University of New South Wales and was encouraged by Professors Cooper and Sweller whom I thank for their early advice and assistance. Much of the development of this study has been influenced by the work of Professor John Edwards, whose understanding of the potential of general thinking skills programs, in particular de Bono’s CoRT program, and whose enthusiastic support for the on-going assistance such programs can give to students, has always been an encouragement to me.

Professor Phillip de Lacey at the University of Wollongong supervised all aspects of my work throughout the study. I especially appreciated and valued his expertise, insightful comments, and ready accessibility. Professor John Hedburg, also of the University of Wollongong, was especially helpful in the latter stages of the study. Dr David Steele helped me a great deal with statistical analyses and I appreciated his comments on my interpretations of the results. My thanks also to Mrs J Green, whose ready advice on statistical procedures, and willingness to help, often at inconvenient times, was always appreciated.

The staff and students at the South Coast high school chosen for this study were always helpful and courteous.

A special word of thanks is offered to Edna Wagener, my mother, for encouragement and support.

My wife, Suzanne, and children, Ben, Peter, and Rebecca always have been extremely patient and supportive. Over the past five years there
have been many ‘lost’ weekends and, on occasion, strong words spoken regarding peace and quiet. Now that the study is completed we can all say that we managed to ‘survive’ and can now look forward to catching up on some of the things we missed out on along the way.
TABLE OF CONTENTS

Statement on access to Thesis	i
Declaration	ii
Acknowledgments	iii
Table of Contents	v
Expanded Table of Contents	vi
List of Tables	xiii
List of Figures	xv
Abstract	xvi
Chapter 1 Introduction	1
Chapter 2 Theoretical background	8
Chapter 3 Literature Review of Learning Theory and the Relationship to Pedagogy	29
Chapter 4 Teaching Thinking Skills: A Literature Review	66
Chapter 5 An Evaluation of CoRT Thinking Skills and some related programs	102
Chapter 6 Problem Solving and Metacognition	133
Chapter 7 The General Question for Investigation	161
Chapter 8 Research Design and Method	168
Chapter 9 Quantitative Results	195
Chapter 10 Analysis of Questionnaire and Interview Data	226
Chapter 11 Discussion and Implications for the Future	245
Bibliography	267
Appendices	293
EXPANDED TABLE OF CONTENTS

CHAPTER ONE

INTRODUCTION

1

CHAPTER TWO

THEORETICAL BACKGROUND

8

2.0 Behavioural Theories 8

a) Thorndike 8

b) Skinner 9

c) Bandura 10

d) Green 11

2.1 Ausubel’s Cognitive Theory 12

2.2 Bruner’s Cognitive Theory 14

2.3 Information-Processing Model 17

2.4 Contemporary Theories 20

a) Constructivist Theory 20

b) Bartlett’s Cognitive Theory 21

c) Sweller’s Cognitive Theory 21

d) Edelman’s General Theory of Learning 22

e) De Bono’s General Theory of Learning and Thinking 24
CHAPTER THREE

LITERATURE REVIEW OF LEARNING THEORY AND THE RELATIONSHIP TO PEDAGOGY.

3.0 The Nature of Learning
 a) Atkin
 b) Bawden
 c) Influences on Learning
 d) The complexity of Learning
 e) Kolb’s Theory of Learning

3.1 Learning Styles
 a) An Historical Perspective
 b) Modes of Learning Styles
 c) Model 1. Student Approach to Learning
 d) Model 2. The Four Mode Model of Kolb
 e) Model 3. Field Dependent - Field Independent Learners
 f) Model 4. Holistic - Serialistic Learners
 g) Model 5. ‘ Levellers and Sharpeners’
 h) Model 6. ‘Conceptual-level Theory’
 i) Model 7. Schema Acquisition
 j) Model 8. Rehearsal
 k) Model 9. Practice

3.1.1 General features of Learning Styles

3.1.2 Learning Styles in the School setting

3.2 Learning Strategies
 a) Background. The Relationship between Learning Styles and Learning Strategies

3.3 Learning Intervention Strategies
 a) Introduction of two broad categories. Declarative Knowledge and Procedural Competence
CHAPTER FOUR

TEACHING THINKING SKILLS: A LITERATURE REVIEW

4.0 Teaching Thinking in an Historical Context
 a) The Historical Perspective as background
 b) Transfer. Specific versus General Transfer. An Historical background

4.1 Contemporary Approaches to Teaching Thinking
 a) The Direct Teaching of Thinking Skills. A background
 b) Arguments for and against the Direct Teaching of Thinking Skills
 c) Approaches to Teaching Thinking
 d) Comments on the Evaluations of General Thinking-skills Programs
 e) Categories of thinking programs
CHAPTER FIVE

AN EVALUATION OF CoRT THINKING SKILLS AND SOME RELATED PROGRAMS.

5.0 Evaluation of some Thinking Skills Programs 102
 a) Instrumental Enrichment Evaluations 102
 b) Productive-Thinking Evaluations 104

5.1 CoRT Thinking Skills Program Evaluations 105

5.2 Discussion of Methodological Issues 116

5.3 Transfer 124

5.4 Conclusion 129

CHAPTER SIX

PROBLEM SOLVING AND METACOGNITION

6.0 Problem Solving 133
 a) Problem solving as part of the Learning Experience 133

6.1 Components of Problem Solving 136
 a) Novice and Expert Problem Solvers 136
 b) Means-ends analysis 140
 c) Rule automation and schema acquisition 141
 d) The use of worked examples 142

6.2 Teaching Problem-solving Skills 143
 a) Introduction 143

6.3 The use of Metacognitive processes to teach problem-solving 146
 a) Introduction. An understanding of Metacognition 146
 b) Approaches to learning using Metacognitive Instruction 147
6.4 Understanding basic brain function
 a) An Historical Perspective
 b) Contemporary views on brain function
 i) Damasio
 ii) Herrmann

CHAPTER SEVEN

THE GENERAL QUESTION FOR INVESTIGATION

CHAPTER EIGHT

RESEARCH DESIGN AND METHOD

8.0 The Research Setting
8.1 The Sample
8.2 The Intervention
8.3 Instrumentation
8.4 Research design
8.5 Quantitative Data Analysis
8.6 Questionnaire and Interview
 a) The Use of Students' Perspective's
 b) Questionnaire
 c) Interviews
8.7 Summary

CHAPTER NINE

QUANTITATIVE RESULTS

9.0 OLSAT Data Analysis
9.1.1 Results for the Effect of the Ten-Lesson CoRT-1 Program on the Scholastic Aptitude of Year-Seven students. 195

9.2 LPQ Data Analysis 204

9.2.1 Results for the Effect of the Ten-Lesson CoRT-1 Program on the Student Approach to Learning of Year-Seven students. 204

 a) The LPQ: A summary of the Theory, Interpreting the Scores and Use in the classroom. 206

 i) A summary of the LPQ Theory. 206

 ii) Interpreting the Scores. 209

 iii) Using the LPQ in the classroom. 209

CHAPTER TEN

ANALYSIS OF QUESTIONNAIRE AND INTERVIEW DATA

10.0 Questionnaire 226

10.1 Interview - Treatment students 232

10.2 Interview - Aspects of Metacognition 235

10.3 Summary of Questionnaire and Interview Data Analysis 238

CHAPTER ELEVEN

DISCUSSION AND IMPLICATIONS FOR THE FUTURE

11.0 Scholastic Aptitude 245

11.1 Transfer 246

11.2 The effect of the CoRT-1 program 248

11.3 Learning Process Questionnaire 253
11.4 Aspects of Metacognition

11.5 Conclusion

BIBLIOGRAPHY

APPENDICES

Appendix A: Structure of a typical CoRT-1 lesson.

Appendix B: CoRT-1 Teacher’s notes.

Appendix C: Student work book and Teacher’s Notes.

Appendix D: Questionnaire.

Appendix E: Student comments written on Questionnaire.

Appendix F: Transcript of Interviews.

Appendix G: Chi-square analysis of Questionnaire data for Treatment (N=74) and Control (N=87) by question.

Appendix H: The Learning Process Questionnaire
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1:</td>
<td>Cognitive Apprenticeship - A model of learning.</td>
<td>57</td>
</tr>
<tr>
<td>Table 2:</td>
<td>Selected approaches to teaching thinking.</td>
<td>90</td>
</tr>
<tr>
<td>Table 3:</td>
<td>Approaches to teaching thinking.</td>
<td>91</td>
</tr>
<tr>
<td>Table 4:</td>
<td>Selected factors argued to facilitate strategy use.</td>
<td>129</td>
</tr>
<tr>
<td>Table 5:</td>
<td>Year-Seven classes and class size.</td>
<td>169</td>
</tr>
<tr>
<td>Table 6:</td>
<td>Motive and Strategy approaches to learning and studying.</td>
<td>178</td>
</tr>
<tr>
<td>Table 7:</td>
<td>Deriving profiles from subscale scores.</td>
<td>179</td>
</tr>
<tr>
<td>Table 8:</td>
<td>t - test for Paired Samples. O1 and O2 Treatment students (N=60) for pre- and post-test.</td>
<td>197</td>
</tr>
<tr>
<td>Table 9:</td>
<td>t - test for Paired Samples. O3 and O4 Control students for post-treatment test (N=60).</td>
<td>198</td>
</tr>
<tr>
<td>Table 10:</td>
<td>t- test for Independent Samples. O5 Treatment (N=32) and O6 Control (N=32) at post-treatment test.</td>
<td>199</td>
</tr>
<tr>
<td>Table 11:</td>
<td>Analysis of Variance for O2, O4, O5, O6 for pre-test (Ind var 1), treatment (Ind var 2) based on post-treatment OLSAT score.</td>
<td>200</td>
</tr>
<tr>
<td>Table 12:</td>
<td>ANCOVA results with Interaction effect.</td>
<td>201</td>
</tr>
<tr>
<td>Table 13:</td>
<td>Decile scores for each item of the LPQ for each group O1 to O4 (N=60) and O5 and O6 (N=32) on pre- and post-treatment test for Treatment and Control.</td>
<td>213</td>
</tr>
<tr>
<td>Table 14:</td>
<td>Mean scores for each LPQ subscale.</td>
<td>216</td>
</tr>
<tr>
<td>Table 15:</td>
<td>Mean scores for each LPQ scale.</td>
<td>219</td>
</tr>
<tr>
<td>Table 16:</td>
<td>Mean scores for LPQ Composite item.</td>
<td>221</td>
</tr>
</tbody>
</table>
Table 17: Percentage of each item within each question on CoRT-1 for the Treatment students (N=74).

Table 18: Percentage of each item within each question on metacognition for all the students (N=161).

Table 19: Chi-square likelihood ratio for each Questionnaire item.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Test Administration Schedule.</td>
<td>185</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Display of Mean Scores for the School Ability Index for Treatment and Control groups over each testing occasion.</td>
<td>202</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Mean Scores for each LPQ subscale.</td>
<td>217</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Mean Scores for the subscale, scale and composite items of the LPQ for all groups Treatment and Control pre- and post-treatment test.</td>
<td>224</td>
</tr>
</tbody>
</table>
ABSTRACT

Through an understanding of learning and thinking strategies an attempt is made to examine whether certain cognitive and metacognitive strategies can enhance student learning and thinking skills. The debate referred to is between the advocates of domain-specific techniques and the advocates of domain-independent, generalisable thinking skills, to consider whether one technique is more effective in enhancing students' thinking skills and learning. Indications are identified in the cognitive and metacognitive literature that some students' thinking and learning might be enhanced by the adoption of certain strategies, and that these strategies might lead to successful outcomes in other learning activities. This study evaluates the effects of general cognitive and metacognitive programs which are reported to enhance student thinking and learning.

An examination is made of de Bono's ten-lesson CoRT -1 Thinking Skills Program, which has been reported to have successfully enhanced student thinking across a range of aptitudes. Case studies and research reports are analysed and the use of thinking skills to enhance learning is placed in an historical and contemporary context. The effect on student thinking and learning through developing an understanding of how students' think, learn, and how the brain functions, is also investigated.

Based on the foregoing, the problem investigated here is: Whether the teaching of general cognitive and metacognitive thinking skills strategies enhances year-seven students' thinking and learning.

A sample of 184 year seven students from a South Coast Comprehensive High school was studied in a program conducted over a total
of 30 weeks. The data from two instruments were analysed using independent \(t \) tests, paired-sample \(t \) tests, and analysis-of-variance procedures. Additionally, an analysis of questionnaire and interview data was conducted.

The analyses of the quantitative measures did not reveal a significant improvement in the constructs of the Otis-Lennon School Ability Test or the Learning Process Questionnaire. While there was statistical significance, it is argued that there might have been a trend favouring the treatment group. Interview and questionnaire data analyses revealed a positive belief, generally held by the students, that CoRT-1 strategies and metacognitive strategies assisted them with their in-class thinking and learning. There was not strong evidence that the students' transferred the strategies to out-of-class thinking and learning situations.

The study has led to certain recommendations regarding cognitive and metacognitive intervention strategies: that provision should be made for students' to practice thinking skills across the curriculum; that students' should be given every opportunity to explore their own thinking and learning processes; that more opportunities should be made available for teacher development in current cognitive and metacognitive strategies; that schools should encourage open discussion, throughout the entire school community, on thinking and learning skills and strategies; and that educators should be given every opportunity to explore cognitive and metacognitive strategies and be encouraged to use as full a range as possible in order to meet the individual needs of all students.