1972

Orthogonal \((0,1,-1)\) matrices

Jennifer Seberry

University of Wollongong, jennie@uow.edu.au

Publication Details

Jennifer Seberry Wallis, Orthogonal \((0,1,-1)\) matrices, Proceedings of First Australian Conference on Combinatorial Mathematics, TUNRA, Newcastle, (1972), 61-84.
Orthogonal $(0,1,-1)$ matrices

Abstract
We study the conjecture: There exists a square $(0,1,-1)$-matrix $W = W(w,k)$ of order w satisfying

$WW^T = kI_w$

for all $k = 0, 1, \ldots, w$ when $w = 0 \pmod{4}$. We prove the conjecture is true for $4, 8, 12, 16, 20, 24, 28, 32, 40$ and give partial results for $36, 44, 52, 56$.

Disciplines
Physical Sciences and Mathematics

Publication Details
Jennifer Seberry Wallis, Orthogonal $(0,1,-1)$ matrices, Proceedings of First Australian Conference on Combinatorial Mathematics, TUNRA, Newcastle, (1972), 61-84.

This conference paper is available at Research Online: http://ro.uow.edu.au/infopapers/945
ORTHOGONAL $(0,1,-1)$-MATRICES

Jennifer Wallis
University of Newcastle, N.S.W., 2308, Australia

ABSTRACT

We study the conjecture:

There exists a square $(0,1,-1)$-matrix $W = W(w,k)$ of order w satisfying

$$WW^T = kI_w$$

for all $k = 0, 1, \ldots, w$ when $w \equiv 0 \pmod{4}$.

We prove the conjecture is true for $4, 8, 12, 16, 20, 24, 28, 32, 40$ and give partial results for $36, 44, 52, 56$.

One generalization of Hadamard matrices is to weighing matrices (see Olga Taussky [3]), that is square $(0,1,-1)$-matrices, W, of order n satisfying

$$WW^T = kI_n, \quad k \leq n,$$ \hspace{1cm} (1)

where I_n is the identity matrix of order n, W^T denotes W transposed.

Clearly

$$WW^T = W^TW = kI_n.$$ \hspace{1cm} (2)
These matrices have application both in design of weighing experiments (see Raghavarao [2]) and in coding theory.

Write \(W(w,k) \) for a weighing matrix satisfying (1).

RELEVANT MATRICES

Clearly \((0,1,-1)\)-matrices satisfying \(WW^T = 0 \) and \(11 \), always exist. Matrices satisfying

\[
WW^T = nI_n, \quad n \equiv 0 \pmod{4}
\]

are Hadamard matrices and if \(U = I + W \) is a skew-Hadamard matrix

\[
WW^T = (n - 1)I_n.
\]

For up-to-date results about these matrices we refer the reader to [1, 4, 5]. These matrices exist for 2 and all \(n \equiv 0 \pmod{4} \), \(n \leq 100 \).

If \(n \equiv 2 \pmod{4} \) a matrix satisfying \(U = I + W \) with

\[
WW^T = (n - 1)I_n, \quad W^T = W
\]

is called a symmetric conference matrix and these can only exist if

\[
n - 1 = a^2 + b^2
\]

\(a, b \) integer (see Raghavarao [2]). These matrices exist for \(n \equiv 2 \pmod{4} \), \(n - 1 \) a prime power for \(n < 100 \).

Write \(H_n \) for the Hadamard matrix of order \(n \), \(J_n \) for the matrix of order \(n \) of all ones, \(S_n \) for the matrix of order \(n \) with zero diagonal and other elements \(\pm 1 \) satisfying

\[
S_n S_n^T = (n - 1)I_n.
\]

The symbol \(\times \) denotes the Kronecker product and the orders of all
matrices are assumed to be compatible under binary operations.

SOME CONSTRUCTIONS

CONSTRUCTION 1. Provided \(AA^T + BB^T + CC^T + DD^T = mI_n \) and for any \(X, Y \in \{A, B, C, D\} \), \(X \) and \(Y \) are \((0,1,-1)\)-matrices and \(XY^T = YX^T \), then

\[
W = \begin{bmatrix}
A & B & C & D \\
-B & A & D & -C \\
-C & -D & A & B \\
-D & C & -B & A \\
\end{bmatrix}
\]

satisfies

\[
WW^T = mI_{4n}
\]

CONSTRUCTION 2. Provided \(\sum_{i=1}^{8} A_i A_i^T = mI_n \), and each \(A_i \) is a \((0,1,-1)\)-matrix and \(A_i A_j^T = A_j A_i^T \), then

\[
W = \begin{bmatrix}
A_1 & A_2 & A_3 & A_4 & A_5 & A_6 & A_7 & A_8 \\
-A_2 & A_1 & A_4 & -A_3 & A_6 & -A_5 & A_8 & -A_7 \\
-A_3 & -A_4 & A_1 & A_2 & -A_7 & A_8 & A_5 & -A_6 \\
-A_4 & A_3 & -A_2 & A_1 & A_8 & A_7 & -A_6 & -A_5 \\
-A_5 & -A_6 & A_7 & -A_8 & A_1 & A_2 & -A_3 & A_4 \\
-A_6 & A_5 & -A_8 & -A_7 & -A_2 & A_1 & A_4 & A_3 \\
-A_7 & -A_8 & -A_5 & A_6 & A_3 & -A_4 & A_1 & A_2 \\
-A_8 & A_7 & A_6 & A_5 & -A_4 & -A_3 & -A_2 & A_1 \\
\end{bmatrix}
\]

satisfies

\[
WW^T = mI_{8n}.
\]
CONSTRUCTION 3. Let $C^T = cI_d$ and $S^T = sI_t$ where $t \equiv 0 \pmod{2}$ also let C have zero diagonal and $C^T = C$. Then with $K = \begin{bmatrix} 1 \\ -1 \\ \vdots \\ 1 \\ -1 \end{bmatrix}$

\[
D = I \times SK + C \times S
\]
satisfies

\[
DD^T = (c + 1)sI_d.
\]

CONSTRUCTION 4. Provided $AA^T + BB^T + CC^T + DD^T = mI_n$, and for any $X, Y \in \{A, B, C, D\}$, X and Y are circulant $(0,1,-1)$-matrices and $XY = YX$, then

\[
W = \begin{bmatrix} A & BR & CR & DR \\ -BR & A & -D_R & C_R \\ -CR & D_R & A & -B_R \\ -DR & C_R & B_R & A \end{bmatrix}
\]

satisfies

\[
WW^T = mI_{4m}.
\]

CONSTRUCTION 5. If there is an Hadamard array (Baumert-Hall array, see [5]) on 4 indeterminates each repeated t times then there exists a $W(4t,t)$, $W(4t,2t)$, $W(4t,3t)$ and a $W(4t,4t)$ by replacing the indeterminates by 0 or 1 as appropriate.

Such arrays exist [1, 5] for $t \in \{1, 3, 5, 7, \ldots, 19, 25\}$.
CONSTRUCTION 6. If there exist two circulant \((0,1,-1)\)-matrices \(A\) and \(B\) of order \(n\) satisfying
\[
AA^T + BB^T = kI_n
\]
then
\[
W = \begin{bmatrix}
A & B \\
-B^T & A^T
\end{bmatrix}
\]
(5)
satisfies
\[
WW^T = kI_{2n}.
\]

CONSTRUCTION 7. If there exist two circulant \((0,1,-1)\)-matrices \(A\) and \(B\) of order \(n\) satisfying
\[
AA^T + BB^T = (k + 2)I - 2J
\]
\[
AJ = 0, \quad BJ = J
\]
then
\[
W = \begin{bmatrix}
0 & 1 & e & e \\
1 & 0 & e & -e \\
e^T & -e^T & A & B \\
e^T & e^T & -B^T & A^T
\end{bmatrix}
\]
(6)
satisfies
\[
WW^T = \begin{bmatrix}
2n+1 & 0 & 0 \\
0 & 2n+1 & 0 \\
0 & 0 & kI_{2n}
\end{bmatrix}
\].
CONSTRUCTION 8. Suppose $S^T = S = W(w, w - 1)$

$$\begin{bmatrix}
S & S \\
S & -S
\end{bmatrix}, \begin{bmatrix}
S & S+I \\
-S-I & S
\end{bmatrix}, \begin{bmatrix}
S & S-I \\
S & -S-I
\end{bmatrix}, \begin{bmatrix}
0 & S & S & S \\
-S & 0 & S & -S \\
-S & -S & 0 & S \\
-S & S & -S & 0
\end{bmatrix}$$

are

$$W(2w, 2w - 2), W(4w, 4w - 2), W(4w, 3w - 3), W(4w, 3w - 2),$$

$$W(4w, 4w - 4), W(4w, 3w - 1)$$ respectively.

CONSTRUCTION 9. Let C be a $(0, 1, -1)$-matrix with zero diagonal satisfying

$$CC^T = cI_d$$

and let B be a $(0, 1, -1)$-matrix satisfying

$$BB^T = aJ_c - J_c, \quad aJ_c = 0.$$

Consider

$$K = I \times J + C \times B,$$

then

$$Kd^T = I \times cd + cI_d \times (aI - J) +$$

$$+ C^T \times Jd^T + C \times B^T$$

$$= acT_{cd}$$

and hence is a $W(cd, ac)$.
[Since these conditions are always satisfied when
$a + 1 = c + 1 = d$ is the order of a conference matrix or a skew-
Hadamard matrix we have a $W(d(d - 1), (d - 1)^2)$ for these orders.]

SOME RESULTS ON THE CONJECTURE

First we give a theorem and then some results.

THEOREM. There can only exist $W(2n,k)$ constructed of two circulant
matrices A and B of order n, of the form

$$W = \begin{bmatrix} A & B \\ -B^T & A^T \end{bmatrix},$$

then

$$k = a^2 + b^2.$$

PROOF. Let $T = (t_{ij})$ of order n be given by

$$t_{1j} = \begin{cases} 1 & j = 2 \\ 0 & \text{otherwise} \end{cases}$$

then

$$t_{ij} = t_{1,j-i+1}.$$

then $A = \sum_{i=1}^{n} a_i T^i$, $B = \sum_{i=1}^{n} b_i T^i$ where $a_i, b_i = 0, 1, -1$.

Now

$$AA^T + BB^T = kI = (\sum_{i=1}^{n} a_i T^i)(\sum_{i=1}^{n} a_i T^{n-i}) + (\sum_{i=1}^{n} b_i T^i)(\sum_{i=1}^{n} b_i T^{n-i}).$$

This is the matrix representation of

$$\left(\sum_{i=1}^{n} a_i \omega^i\right)\left(\sum_{i=1}^{n} a_i \omega^{n-i}\right) + \left(\sum_{i=1}^{n} b_i \omega^i\right)\left(\sum_{i=1}^{n} b_i \omega^{n-i}\right) = k,$$

where ω is an nth root of unity. This must be true for all nth roots.
of unity including 1 so
\[
\left(\sum_{i=1}^{n} a_i \right)^2 + \left(\sum_{i=1}^{n} b_i \right)^2 = k,
\]
and we have the result.

COROLLARY. There can only exist \(W(2n,k)\) constructed of two circulant matrices \(A\) and \(B\) of order \(n\) for

\[k < n, \text{ and } k = 0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 20, 25, 26, 29, 34, 41, \ldots\]

LEMMA 1. (i) If there exists a \(W(w,k)\) then \(W(w,k) \oplus W(w,k)\) is a \(W(2w,k)\) and \(W(w,k) \times \mathbb{I}_2\) is a \(W(2w,2k)\).

(ii) If there exist \(W_1(w_1,k)\) and \(W_2(w_2,k)\) then \(W_1(w_1,k) \oplus W_2(w_2,k)\) is a \(W(w_1 + w_2,k)\).

(iii) If there exist \(W_1(w_1,k_1)\) and \(W_2(w_2,k_2)\) then \(W_1(w_1,k_1) \times W_2(w_2,k_2)\) is a \(W(w_1w_2,k_1k_2)\).

LEMMA 2. If the conjecture is true for \(w\) then there exist

(i) \(W(2w,k)\), \quad 0 \leq k \leq w,

(ii) \(W(2w,2k)\), \quad 0 \leq k \leq w,

(iii) \(W(2w,w + 1)\).

PROOF. Use Lemma 1 for (i) and (ii). For (iii) use the matrix

\[
\begin{bmatrix}
W(w,w) & I_w \\
I_w & -W^T(w,w)
\end{bmatrix}.
\]

LEMMA 3. The conjecture is true for \(w = 2, 4, 8, 15\).
PROOF. (i) For \(w = 2 \), the required matrices are \(O, J_2, K_2 \);

(ii) for \(w = 4 \), the result follows using part (i), Lemma 2 and \(S_4 \);

(iii) for \(w = 8 \), by part (ii), Lemma 2 and \(S_8 \) we have the conjecture;

(iv) for \(w = 16 \), by part (iii), Lemma 2 and \(S_{16} \) we have that \(W(8,k) \) exists for \(k = 0, 1, 2, \ldots, 8, 9, 10, 12, 14, 15, 16 \).

Now with \(S = S_4 \) and \(H = J_4 - 2J_4 \), in the matrices

\[
\begin{bmatrix}
0 & S & S+I & S+I \\
-S & 0 & -S-I & S+I \\
-S+I & S+I & 0 & -S \\
-S+I & -S+I & S & 0
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
I & H & H & H \\
-H & I & H & -H \\
-H & -H & I & H \\
-H & H & -H & I
\end{bmatrix},
\]

we have the result for 16.

Lemma 4. If there exists a \(W(w,k) = A \) then

\[
\begin{bmatrix}
A & A \\
A^T & -A^T
\end{bmatrix},
\begin{bmatrix}
A & A \\
A^T & -A^T
\end{bmatrix},
\begin{bmatrix}
A & A \\
A^T & -A^T
\end{bmatrix},
\begin{bmatrix}
A & A \\
A^T & -A^T
\end{bmatrix}
\]

\[
\begin{bmatrix}
I & I \\
I_W & I_W
\end{bmatrix},
\begin{bmatrix}
I & I \\
I_W & I_W
\end{bmatrix},
\begin{bmatrix}
I & I \\
I_W & I_W
\end{bmatrix},
\begin{bmatrix}
I & I \\
I_W & I_W
\end{bmatrix}
\]

\[\begin{bmatrix}
-A & -A \\
-A^T & A
\end{bmatrix},
\begin{bmatrix}
-A & -A \\
-A^T & A
\end{bmatrix},
\begin{bmatrix}
-A & -A \\
-A^T & A
\end{bmatrix},
\begin{bmatrix}
-A & -A \\
-A^T & A
\end{bmatrix}
\]

\[\begin{bmatrix}
-I & -I \\
-I & -I
\end{bmatrix},
\begin{bmatrix}
-I & -I \\
-I & -I
\end{bmatrix},
\begin{bmatrix}
-I & -I \\
-I & -I
\end{bmatrix},
\begin{bmatrix}
-I & -I \\
-I & -I
\end{bmatrix}
\]

are \(W(4w,2k), W(4w,2k+1), W(4w,3k) \) and \(W(8w,2k+2) \) respectively.
Lemmas. If there exists a $W_w = S$ with $S^T = -S$ then:

$$
\begin{pmatrix}
S & S+I \\
S-I & -S
\end{pmatrix}
$$

are $S_{2w} = W(2w, 2w - 1)$, $W(4w, 4w - 2)$, $S_{w+} = W(ww, ww - 1)$ respectively, while

$$
\begin{pmatrix}
0 & S & S+I & S+I \\
-S & 0 & -S-I & S+I \\
-S+I & S-I & 0 & -S \\
-S+I & -S+I & S & 0
\end{pmatrix}
$$

are $W_{3w}, 3w - 1)$, $W(4w, 3w - 3)$ and $W(ww, 4w - 4)$ respectively.
LEMMA 6. If the conjecture is true for \(w \equiv 0 \mod 4 \) then there exists a \((0,1,-1)\) \(W = W(4w,k) \) of order \(4w \) satisfying
\[
WW^T = kI_{4w}
\]
for \(k = 0, 1, \ldots, 2w+2, 2w+4, 2w+8, \ldots, 4w \) and \(3, 6, 9, \ldots, 3w-3, 3w-1, 3w \).

PROOF. Since \(W(w,k), 0 \leq k \leq w \) exists so does \(W(4w,k) = W(w,k) \oplus W(w,k) \oplus W(w,k) \). By Lemma 4, for \(k = \frac{1}{2} w, \frac{1}{2} w + 1, \ldots, w \) we get a \(W(4w,l) \) with \(l = w+1, w+2, \ldots, 2w+1, \frac{3}{2} w, \frac{3}{2} w + 3, \ldots, 3w, \) and \(2w+2 \).

By Lemma 2 the existence of \(W(w,k) \) implies the existence of \(W(2w,2k) \) and hence \(W(4w,4k) \).

Thus we have the result.

LEMMA 7. The conjecture is true for \(w = 32 \).

PROOF. By Lemmas 3 and 6 there exists a \((0,1,-1)\) \(W \) of order 32 satisfying
\[
WW^T = kI_{32}
\]
for \(k = 0, 1, \ldots, 18, 20, 21, 23, 24, 28, 32 \).

Since \(G \) exists, by Lemma 5, (2) is satisfied for \(k = 30, 31 \).

By Lemmas 2 and 3 (2) is satisfied for \(k = 22, 26 \).

For \(k = 25 \), use \(A_1 = \ldots = A_6 = \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix} = \Lambda \),

\[
A'_{-1} = I_{4w}, A_6 = 0.
\]
For $k = 29$ use $A_2 = A_3 = \ldots = A_7 = A$, $A_8 = I$, in (3) to get $W(32, 25)$ and $W(32, 29)$.

Now let

$C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$

and

$D = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$

then $CD^T = DC^T$. Now choosing $A_1 = A_2 = A_3 = A_4 = C$,

$A_5 = D$, $A_6 = I_4$, $A_7 = A_8 = 0$ in (3) we get a $W(32, 19)$ and choosing $A_1 = A_2 = \ldots = A_6 = C$, $A_7 = D$, $A_8 = I$ in (3) we get $W(32, 27)$.

Thus we have the conjecture for 32.

Lemma 8. There exists a $(0, 1, -1)$-matrix W of order 6 satisfying

$WW^T = kI_6$

for $k = 0, 1, 2, 4, 5$ i.e., there exists a $W(6, k)$ for $k \in \{0, 1, 2, 4, 5\}$.

Proof. Clearly the Lemma is true for $k = 0, 1$. The symmetric conference matrix of order 6 gives the result for $k = 5$. The required matrices for 2 and 4 are

$H_2 \times I_3$ and

$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 & 1 \\ 1 & -1 & 0 & 0 & 1 & 1 \\ -1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 1 & 0 & 0 \end{bmatrix}$

Lemma 9. The conjecture is true for $w = 12$.
PROOF. By Lemmas 2 and 8 we have a $W(12,k)$ for $k = 0,1,2,4,5,8,10$. The existence of an Hadamard and skew-Hadamard matrix of order 12 gives a $W(12,k)$ for $k = 11,12$. For

(i) $k = 3$ use $A = B = C = I_3$, $D = 0$,

(ii) $k = 5$ use $A = J_3 - I_3$, $B = J_3 - 2I_3$, $C = D = 0$,

(iii) $k = 6$ use $A = J_3 - I_3$, $B = J_3 - 2I_3$, $C = I_3$, $D = 0$,

(iv) $k = 7$ use $A = J_3 - I_3$, $B = J_3 - 2I_3$, $C = D = I_3$,

(v) $k = 9$ use $A = J_3$, $B = C = D = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$

respectively, in construction 1.

LEMMA 10. The conjecture is true for $w = 24$.

PROOF. From Lemmas 2 and 9 there exists a $W = W(24,k)$ satisfying (2) for $k = 0,1,\ldots,14,16,18,20,22,24$. Since S_{12} exists, S_{24} exists and (2) is satisfied for $k = 23$.

Write $J = J_3$, $K = J_3 - 2I$, $I = I_3$. Then using for

$k = 15$, $A_1 = J$, $A_2 = A_3 = A_4 = K$, $A_5 = A_6 = A_7 = I$, $A_8 = 0$

$k = 17$, $A_1 = A_2 = A_3 = J - I$, $A_4 = A_5 = A_6 = K$, $A_7 = A_8 = I$,

$k = 19$, $A_1 = J$, $A_2 = A_3 = A_4 = A_5 = K$, $A_6 = J - I$, $A_7 = A_8 = I$,

in construction 2 and using the following first rows in construction 4

10: $0\ldots1\ldots1\ldots1$, $0\ldots0\ldots0\ldots0$, $0\ldots0\ldots0\ldots0$

12: $0\ldots1\ldots0\ldots1\ldots1\ldots0\ldots1\ldots$, $0\ldots0\ldots0\ldots0$

16: $0\ldots1\ldots0\ldots1\ldots0\ldots1\ldots0\ldots1\ldots$, $0\ldots1\ldots0\ldots1\ldots$

17: $-1\ldots1\ldots1\ldots1\ldots1\ldots1\ldots1\ldots$, $0\ldots1\ldots1\ldots1\ldots$, $0\ldots0\ldots0\ldots0$
LEMMA 11. There exists a $(0,1,-1)$-matrix $W = W(10,k)$ satisfying (2) for $k = 0, 1, 2, 4, 5, 8, 9$.

PROOF. The result is clear for $k = 0, 1, 2$ and the symmetric conference matrix of order 10 gives the result for 9. For $k = 4$ use

$$A = \begin{bmatrix} . & 1 & . & 1 \\ 1 & . & . & . \\ . & 1 & . & . \\ 1 & . & . & . \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} . & 1 & . & -1 \\ -1 & . & . & . \\ . & -1 & . & . \\ . & . & -1 & . \end{bmatrix}$$

in

$$\begin{bmatrix} A & B \\ B^T & -A \end{bmatrix}.$$ (5)

For $k = 5$ use

$$A = \begin{bmatrix} -1 & 1 & . & . \\ . & -1 & 1 & . \\ 1 & . & -1 & 1 \\ . & 1 & . & -1 \\ 1 & . & 1 & . \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 1 & . & . \\ 1 & 1 & . & . \\ . & 1 & 1 & . \\ . & . & 1 & 1 \\ 1 & . & . & 1 \end{bmatrix}$$

in (5).
For \(k = 8 \) use (for the first rows of) for \(A \) and \(B \)

\[
\begin{bmatrix}
0 & 1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
0 & 1 & -1 & 1 & 1 \\
-1 & -1 & -1 & -1 & -1
\end{bmatrix}
\]

in (5).

We note

\[
\begin{bmatrix}
0 & 1 & -1 & -1 & 1 \\
-1 & -1 & -1 & 1 & 1
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
-1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 & 1
\end{bmatrix}
\]

may also be used to obtain \(W(10,9) \).

LEMMA 12. The conjecture is true for \(w = 20 \).

PROOF. By Lemmas 1 and 11 we have a \(W \) satisfying (2) for

\(k = 0, 1, 2, 4, 5, 8, 9, 10, 16, 18 \). There is an Hadamard matrix and

a skew-Hadamard matrix of order 20 so we have a \(W \) for \(k = 19, 20 \).

\(W(8,6) \otimes W(12,6) \) and \(W(8,7) \otimes W(12,7) \) give the result for \(k = 6 \) and 7.

The following first rows may be used to generate circulant matrices which can then be used in construction 1:

3: \(\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & -1 & -1 \\
-1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1
\end{bmatrix} \)

8: \(\begin{bmatrix}
0 & 1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 & -1 \\
-1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1
\end{bmatrix} \)

9: \(\begin{bmatrix}
-1 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix} \)

10: \(\begin{bmatrix}
-1 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix} \)

11: \(\begin{bmatrix}
-1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix} \)

12: \(\begin{bmatrix}
-1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1
\end{bmatrix} \)

18: \(\begin{bmatrix}
1 & 1 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix} \)

If we use the following first rows to generate circulant matrices in construction 4:

13: \(\begin{bmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 & -1
\end{bmatrix} \)

14: \(\begin{bmatrix}
0 & 1 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix} \)

17: \(\begin{bmatrix}
0 & 1 & -1 & -1 & -1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix} \)
W(20,15) may be obtained from construction 5. Thus we have the conjecture for \(w = 20 \).

Lemma 13. There exists a \((0,1,-1)\)-matrix \(W \) of order 14 satisfying (2) for \(k = 0, 1, 2, 4, 5, 8, 9, 10, 13 \).

Proof. The result for \(k = 0, 1, 2, 4, 5 \) follows using Lemmas 1, 3 and 8. \(W(14,13) \) exists because there is a symmetric conference matrix of order 14.

Use the following first rows to generate circulant matrices in (4) to obtain the remainder of the results:

<table>
<thead>
<tr>
<th>Case</th>
<th>First Row</th>
<th>Second Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:</td>
<td>-1 1 0 1 0 0,</td>
<td>-1 1 0 1 0 0</td>
</tr>
<tr>
<td></td>
<td>0 1 1 0 0 -1,</td>
<td>0 -1 0 0 1 1</td>
</tr>
<tr>
<td>9:</td>
<td>0 1 1 0 1 0 0,</td>
<td>0 1 1 -1 -1 -1</td>
</tr>
<tr>
<td>10:</td>
<td>0 1 1 0 1 0 0,</td>
<td>1 1 1 -1 -1 -1</td>
</tr>
<tr>
<td></td>
<td>-1 1 1 1 0 0,</td>
<td>-1 1 -1 0 0</td>
</tr>
<tr>
<td></td>
<td>0 1 1 -1 -1 -1,</td>
<td>0 1 1 -1 0 1</td>
</tr>
<tr>
<td>13:</td>
<td>-1 -1 1 0 1,</td>
<td>-1 1 1 1 1</td>
</tr>
</tbody>
</table>

where \(-\) denotes \(-1\).

Lemma 14. The conjecture is true for \(w = 28 \).

Proof. Since \(W(16,k) \) and \(W(12,k) \) exist for \(0 \leq k \leq 12 \) we have \(W(28,k) \) for \(0 \leq k \leq 12 \). By construction 5 we have \(W(28,14), W(28,21) \) and \(W(28,28) \). A \(W(28,27) \) exists since there is a skew-Hadamard matrix of order 28. There is a symmetric conference matrix of order 14 so \(S = W(14,13) \) exists and \(S \oplus S \) and \(S \times H_2 \) and \(W(28,13) \) and \(W(28,26) \) respectively.
We use the following first rows in construction 4:

15: 1 0 0 0 0 0 0, 0 1 1 0 1 0 0, -1 1 0 1 0 0, 1 1 1 - 1 - -
16: 0 0 0 0 0 0 0, 1 1 1 0 1 0 0, 0 1 1 - 1 - -, 0 1 1 - 1 - -
 -1 1 0 1 0 0, 1 - 1 0 1 0 0, 1 1 0 1 0 0, 1 1 1 0 - 0 0
17: 1 0 0 0 0 0 0 0, 1 1 1 0 1 0 0, 0 1 1 - 1 - -, 0 1 1 - 1 - -
18: 0 1 1 0 1 0 0, 0 1 1 0 1 0 0, 0 1 1 - 1 - -, 0 1 1 - 1 - -
19: 0 1 1 0 1 0 0, 0 1 1 0 1 0 0, 1 1 1 - 1 - -, 0 1 1 - 1 - -
20: 0 1 1 0 1 0 0, 0 1 1 0 1 0 0, 1 1 1 - 1 - -, 1 1 1 - 1 - -
21: 0 1 1 1 - 1 -, 0 - 1 - - - 1, 0 1 1 - - - 1, 0 1 1 1 1 1 1
22: 1 1 1 0 1 0 0, -1 1 0 1 0 0, 1 1 1 - 1 - -, 1 1 1 - 1 - -
23: 0 1 1 0 1 0 0, 1 1 1 - 1 - -, -1 1 0 1, -1 1 1 1 1 -
24: 0 1 1 1 - 1 -, 0 - 1 - - - 1, 0 1 1 - - - 1, 0 1 1 1 1 1
25: -1 1 1 1 1 1, 0 1 1 - 1 - -, 0 1 1 - 1 - -, 0 1 1 - 1 - -
26: -1 1 1 1 1 1, 1 1 1 - 1 - -, 0 1 1 - 1 - -, 0 1 1 - 1 - -

we have the conjecture for \(w = 28 \).

LEMMA 15. The conjecture is true for \(w = 40 \).

PROOF. Since the conjecture is true for 20 by Lemma 2 we have the results for \(k = 0, 1, 2, \ldots, 20, 21, 22, 24, 26, \ldots, 38, 40 \).

\(W(40,39) \) exists since there is a skew-Hadamard matrix of order 40. By Lemmas 4 and 11, \(W(40,k) \) exists for \(k = 0,3,6,12,15,24,27; \) and by Lemma 11 and construction 8 we have \(W(40,k) \) for \(k = 38,27,28,36,29 \).

Let \(B \) the matrix generated by the first row

\[
\begin{align*}
0 & \quad 1 & \quad - & \quad - & \quad 1.
\end{align*}
\]
Then using

\[A_1 = J, \ A_2 = A_3 = A_4 = A_5 = A_6 = B, \ A_7 = A_8 = 0 \]

in construction 2 gives \(W(40,25) \), while using

\[A_1 = J, \ A_2 = A_3 = B + I, \ A_4 = A_5 = B - I, \ A_6 = B, \ A_7 = A_8 = I \]

gives \(W(40,31) \).

Let \(C \) and \(D \) be the matrices generated by the first rows

-1 0 0 1 and -0 1 1 0

respectively then using

\[A_1 = J - I, \ A_2 = A_3 = A_4 = C, \ A_5 = A_6 = A_7 = D, \ A_8 = I \]

in construction 2 gives \(W(40,23) \).

Let \(E \) and \(F \) be the matrices generated by the first rows

1 0 1 1 0 and 0 0 1 1 0

then \(A_1 = A_2 = J - 2I, \ A_3 = B + I, \ A_4 = B - I, \ A_5 = A_6 = B, \ A_7 = E \) and \(A_8 = F \) used in construction 2 gives \(W(40,33) \), while using

\[A_1 = A_2 = J - 2I, \ A_3 = A_4 = B + I, \ A_5 = A_6 = B - I, \ A_7 = E \] and \(A_8 = F \)

gives \(W(40,35) \).

Thus we have the result

OTHER RESULTS

LEMMA 16. There exists a \((0,1,\pm1)\)-matrix \(W = W(18,k) \) satisfying (2) for \(k = 0, 1, 2, 4, 5, 8, 10, 17 \).

PROOF. Since \(W(10,k) \) and \(W(8,k) \) exist for \(k = 0, 1, 2, 4, 5, 8 \), we have \(W(18,k) = W(10,k) \oplus W(8,k) \) exists for these \(k \) values.
If we use the following first rows to generate the circulant matrices to use in (4) we get the remaining results.

8: \[\begin{align*}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0, \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{align*} \]

or \[\begin{align*}
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0, \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{align*} \]

10: \[\begin{align*}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0, \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{align*} \]

or \[\begin{align*}
-1 & 0 & 1 & 0 & 0 & 0 & 0, \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0
\end{align*} \]

17: \[\begin{align*}
-1 & -1 & 1 & 1 & 1 & 1 & 1 & - =, \\
0 & -1 & -1 & -1 & -1 & -
\end{align*} \]

(We note this leaves \(k = 9, 13, 16 \) which were not ruled out by the theorem).

LEMMA 17. There exists a \((0,1,-1)\)-matrix \(W = W(36,k) \) satisfying (2) for \(k = 0, 1, 2, \ldots, 22, 25, 27, 32, 33, 34, 35, 36 \).

PROOF. Since there exists a \(W(20,k) \) and \(W(16,k) \) for \(0 \leq k \leq 16 \) there exists a \(W(36,k) = W(20,k) \oplus W(16,k) \) for these \(k \). \(W(36,20), W(36,34) \) and \(W(36,17) \) exist using Lemmas 1 and 15. \(W(36,36) \) and \(W(36,35) \) exist because there is a skew-Hadamard matrix of order 36.

If we use the following first rows in construction 4, we get the other results of the lemma.

18: \[\begin{align*}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0, \\
0 & 1 & 1 & 0 & 0 & - & 0 & 1
\end{align*} \]

or \[\begin{align*}
1 & 1 & 1 & 0 & 1 & - & 0 & 0, \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{align*} \]

19: \[\begin{align*}
1 & - & 1 & 1 & 1 & 1 & - - - & , \\
0 & - & 1 & - & - & - & - & -
\end{align*} \]

21: \[\begin{align*}
1 & - & 1 & 1 & - & - & - & - - - , \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{align*} \]

22: \[\begin{align*}
1 & 1 & 1 & 1 & - & 0 & 0 & 0, \\
1 & 1 & 1 & - & 1 & - & 0 & 0
\end{align*} \]

\[\begin{align*}
-1 & 1 & 0 & 1 & 0 & 0, \\
-1 & 1 & 0 & 1 & 0 & 0
\end{align*} \]
LEMMA 18. There exists a $W(22,k)$ for $k \in \{0, 1, 2, 4, 5, 8, 9, 10, 16, 17, 20\}$.

PROOF. There exists a $W(10,\ell)$ and a $W(12,\ell)$ by Lemmas 9 and 11 for $\ell \in \{0, 1, 2, 4, 5, 8, 9\}$ so $W_1 \oplus W_2$ is the required matrix for ℓ.

To obtain the other matrices use the following first rows to generate A and B in (5).

10: 0 0 1 1 - 0 - 0 0 0 1, 0 1 0 0 0 1 0 1 1 - 0 (a)
16: - 1 0 1 1 1 0 0 0 1 0, 0 1 - 1 1 - - 1 - (b)
17: - 1 0 1 1 1 0 0 0 1 0, 1 1 - 1 1 - - 1 - (c)
20: 0 1 1 1 - 1 - 1 1 - 1 0 1 - - 1 1 1 1 - - (d)

LEMMA 19. There exists a $W(44,k)$ for $k \in \{i : 0 \leq i \leq 20, 21, 25 \leq i \leq 28, 30, 32, 33, 34, 36 \leq i \leq 40, 42 \leq i \leq 44\}$.

PROOF. Since the conjecture is true for 24 and 20, there exists a $W_1(20,m)$ and a $W_2(24,m)$ for $m \in \{i : 0 \leq i \leq 20\}$ and $W_1 \oplus W_2$ is the required matrix for m.

$W(44,44)$ and $W(44,43)$ exist as there is a skew-Hadamard matrix of order 44.
If we use the matrices used to form $W(22,k)$ with the indicated matrices in construction 4 we get $W(44,n)$ for $n \in \{21, 22, 26, 27, 30, 32, 33, 34, 36, 37, 40\}$

- $k = 21$: (d) 0 and I_{11};
- $k = 22$: (d) I_{11}, I_{11};
- $k = 26$: (a) and (b);
- $k = 27$: (a) and (c);
- $k = 30$: (a) and (d);
- $k = 32$: (b) and (b);
- $k = 33$: (b) and (c);
- $k = 34$: (c) and (c);
- $k = 36$: (b) and (d);
- $k = 37$: (c) and (d);
- $k = 40$: (d) and (d);

Let A be the circulant incidence matrix of an $(11, 6, 3)$ configuration and $B = J - I - 2A$. Then

$$AA^T = 3I + 3J \quad \text{and} \quad BB^T = III - J,$$

and have 6 and 10 non-zero elements respectively.

Further $A - I$ and $B + I$ satisfy

$$(A - I)(A - I)^T = 5I + 2J \quad \text{and} \quad (B + I)(B + I)^T = III - J,$$

and have 7 and 11 non-zero elements respectively.

So we may use the following matrices in construction 4 to get $W(44, k)$:
LEMMA 20. There exists a \(W(26,k) \) for \(k \in \{0, 1, 2, 4, 5, 8, 9, 10, 25\} \).

PROOF. This follows from the existence of \(W(12,k) \) and \(W(14,k) \) for \(k \in \{0, 1, 2, 4, 5, 8, 9, 10\} \).

The following first rows generate matrices which can be used in (5) to form a \(W(26,25) \):

\[
\begin{bmatrix}
0 & 1 & - & - & 1 & - & - & 1 & 1 & 1 \\
1 & 1 & - & - & 1 & 1 & 1 & - & - & - \\
\end{bmatrix}
\]

LEMMA 21. There exists a \(W(52,k) \) for \(k \in \{i : 0 \leq i \leq 24, 32, 34, 39, 48, 51, 52\} \).

PROOF. The existence of a \(W(52,k) \) for \(k \in \{i : 0 \leq i \leq 24\} \) follows from the existence of Hadamard matrices of orders 24 and 28. The \(W(52,52) \) and \(W(52,51) \) exist because there is a skew-Hadamard matrix of order 52.

\(W(52,48) \) may be obtained by using the following first rows to generate matrices which are then used in (4):
Write \(B \) for the last of these four matrices.

Let \(Q \) be the circulant incidence matrix of a \((13, 4, 1)\) configuration then

\[
BB^T = 13I - J \quad \text{and} \quad QQ^T = 12I + J.
\]

So if we use the following four matrices in (4) we get \(W(52,k) \) for \(k \in \{32, 34\} \):

\[
k = 32: \quad Q, \; Q, \; B, \; -B; \\
k = 34: \quad Q, \; Q, \; B+I, \; B-I.
\]

We get a \(W(52,39) \) by putting \(A = B = C = 1, D = 0 \) in the \(52 \times 52 \) Hadamard array.

Lemma 22. There exists a \(W(56,k) \) for \(k \in \{i: 0 \leq i \leq 30, 32, 33, 34, 36, 37, 38, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56\} \).

Proof. This follows from Lemmas 2 and 14, the existence of a skew-Hadamard matrix of order 56 and from construction 9, since there exists a \(W(14,13) \).
REFERENCES

