1971

Combinatorial matrices

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Publication Details
Combinatorial matrices

Abstract
We investigate the existence of integer matrices B satisfying the equation $BB^T = rI + sJ$ where T denotes transpose, r and s are integers, I is the identity matrix and J is the matrix with every element $+1$.

Disciplines
Physical Sciences and Mathematics

Publication Details
Combinatorial matrices

Jennifer Wallis

We investigate the existence of integer matrices B satisfying the equation

\[(1) \quad BB^T = rI + sJ,\]

where T denotes transpose, r and s are integers, I is the identity matrix and J is the matrix with every element $+1$.

Hadamard matrices are $(1, -1)$ matrices of order $n = 2$ or $4t$ which have $r = n$ and $s = 0$ in (1). We discuss equivalence of Hadamard matrices over the integers and show that all Hadamard matrices of order $4t$, where t is odd and square-free are equivalent over the integers. Further, if t is even and square-free and there is a Hadamard matrix of order $2t$, then there is a Hadamard matrix of order $4t$ which is equivalent over the integers to the diagonal matrix

$$\text{diag}(1, 2, \ldots, 2m, \ldots, 2m, 4m).$$

We now develop many methods for constructing Hadamard matrices. Many of these constructions use skew-Hadamard matrices, that is Hadamard matrices $H = I + R$ where $R^T = -R$, or π-type matrices, that is $(1, -1)$ matrices $H = I + P$ of order n where $P^T = P$ and $P^2 = (n-1)I$. We first develop some theory on the Williamson method for constructing skew-Hadamard matrices and show if h is the order of a skew-Hadamard matrix (π-type matrix) then there exists a skew-Hadamard (π-type) matrix of order $(h-1)^u + 1$ where $u = 2^a \cdot 3^b \cdot 5^c \cdot 7^d \cdot 11^e \cdot 13^f \cdot 17^g \cdot 19^h \cdot 23^i \cdot 29^j$ with $a < b < c < d < e < f < g < h < i < j$ where a is a positive (non-negative) integer.

The concept of supplementary difference sets, that is, a set of subsets such that when we take all the differences in each subset and collect them, each difference occurs a fixed number of times in the totality, is introduced and an example given. Hadamard designs on \(n \) distinct letters are shown to exist for \(n = 2, 4 \) and \(8 \).

\((\nu, k, \lambda)\)-configurations are considered, that is, \((0, 1)\)-matrices \(B \) of order \(\nu \) such that \(r = k - \lambda \) and \(s = \lambda \) in (1). We show two similar but distinct methods for proving there exists a \((q^2(q+2), q(q+1), q) \) configuration whenever \(q \) is prime or \(q = 2^2, 2^3, 2^4, 3^2, 3^3 \) or \(7^2 \). We prove that whenever a \((q, k, \lambda)\)-configuration exists, \(q \) a prime power, then a \((q(k^2+\lambda), qk, k^2+\lambda, k, \lambda)\)-configuration exists.

We consider integer matrices satisfying
\[
BB^T = \nu I - J, \quad Bj = 0 = JB \quad \text{and} \quad B^T = -B
\]
and find that either the greatest common divisor of the elements of \(B \) is 1 or \(B \) has zero diagonal and +1 or -1 elsewhere. Also we show that if \(B \) is an integer matrix of order \(b \) satisfying
\[
BB^T = (p-q)I + qJ
\]
\[
Bj = dJ
\]
where \(p, q \) and \(d > 0 \) are constants then if \(z \), the least element of \(B \), satisfies
\[
z \leq \frac{d}{b} \quad \text{and} \quad z \leq \frac{|d|\nu}{\nu d + \omega d}
\]
where \(\omega \) is the greatest element of \(B \), then
\[
B = \frac{d}{b} J
\]

We give tables of the orders < 4000 of known Hadamard, skew-Hadamard and \(n \)-type matrices at the date of submission as well as lists of known classes of these matrices.