Fuzzy stability control of robotic manipulator with input delays

Haiping Du
University of Wollongong, hdu@uow.edu.au

Fazel Naghdy
University of Wollongong, fazel@uow.edu.au

David A. Stirling
University of Wollongong, stirling@uow.edu.au

Publication Details
Fuzzy stability control of robotic manipulator with input delays

Abstract
This paper studies the stabilisation control problem of a robotic manipulator with input delays. To deal with the highly nonlinear dynamics of a robotic manipulator, the model-based Takagi-Sugeno (T-S) fuzzy control strategy is applied. With representing the nonlinear robotic manipulator model as a T-S fuzzy model, sufficient conditions for designing a controller such that the system is stabilised with given decay rate are derived by constructing a less conservative Lyapunov-Krasovskii functional and using a tighter bounding technology for cross terms and the free weighting matrix approach. With appropriate derivation, all the required conditions are expressed as linear matrix inequalities (LMIs). Numerical simulations on a two-link manipulator are used to validate the effectiveness of the proposed approach. The results show that the designed controllers can stabilise a robotic manipulator with given decay rate when time delays exist in the control inputs.

Keywords
input, stability, control, delays, robotic, manipulator, fuzzy

Disciplines
Physical Sciences and Mathematics

Publication Details
Fuzzy Stability Control of Robotic Manipulator with Input Delays

Haiping Du, Fazel Naghdy and David Stirling

Abstract—This paper studies the stabilisation control problem of a robotic manipulator with input delays. To deal with the highly nonlinear dynamics of a robotic manipulator, the model-based Takagi-Sugeno (T-S) fuzzy control strategy is applied. With representing the nonlinear robotic manipulator model as a T-S fuzzy model, sufficient conditions for designing a controller such that the system is stabilised with given decay rate are derived by constructing a less conservative Lyapunov-Krasovskii functional and using a tighter bounding technology for cross terms and the free weighting matrix approach. With appropriate derivation, all the required conditions are expressed as linear matrix inequalities (LMIs). Numerical simulations on a two-link manipulator are used to validate the effectiveness of the proposed approach. The results show that the designed controllers can stabilise a robotic manipulator with given decay rate when time delays exist in the control inputs.

I. INTRODUCTION

Many practical control systems encountered time delays when acquiring, processing, communicating, and outputting signals such that the system stability and control performance degrade. For the classical robot control problem, the significant effect of time delay on the closed-loop system stability has been highlighted in the bilateral teleoperation, where the communication delay transmitted through a network medium has been received widespread attention and different approaches have been proposed to address this problem [1]. In addition, examples like processing delays in visual systems and communication delay between different computers on a single humanoid robot are also main sources that may cause time delays in a robotic control system [2], and the issue of time delay for robotic systems has been studied through the passivity property.

In recent decades, both delay dependent and delay independent control strategies have been extensively studied for both linear and nonlinear time delay systems, see [3] and references therein. For the control of nonlinear time delay systems, model-based Takagi-Sugeno (T-S) fuzzy control [4] is regarded as one of the most effective approach because some of linear control theory can be applied directly. Conditions for designing such kinds of controllers are generally expressed as linear matrix inequalities (LMIs) which can be efficiently solved by using most available software like Matlab LMI Toolbox, or bilinear matrix inequalities (BMIs) which could be transferred to LMIs by using algorithms like iteration algorithm or cone complementary linearisation algorithm. From the theoretical point of view, one of the current focus on the control of time delay systems is to develop less conservative approaches so that the controller can stabilise the systems or can achieve the defined control performance under bigger time delays [5], [6].

Be aware of the significance on the control of robotic systems with time delays, this paper focuses on stabilising a robotic manipulator with input delays. As a robotic manipulator is a highly nonlinear system, to design a controller so that the robotic manipulator can be stabilised with existing input time delays, the T-S fuzzy control strategy is applied. First, the nonlinear robotic manipulator model is represented by a T-S fuzzy model. Then, sufficient conditions for designing such a controller are derived with taking advantage of the recently proposed method [7] in constructing a Lyapunov-Krasovskii functional and using a tighter bounding technology for cross terms and the free weighting matrix approach to reduce the issue of conservatism. Furthermore, a decay rate constraint is added so that the designed feasible controller can stabilise the robotic manipulator with a given decay rate. With appropriate derivation, all the required conditions are expressed as LMIs. At last, simulation results on a two-link manipulator are used to validate the effectiveness of the proposed approach. The main contribution of the paper is to apply and develop an advanced technique to design a less conservative delay-dependent controller with decay rate constraint for a robotic manipulator.

This paper is organised as follows. In section II, the problem formulation and some preliminaries are introduced. The conditions for designing a stabilisation controller with decay rate constraint are derived in section III. In section IV, the simulation results on a nonlinear two-link robotic manipulator are discussed. Finally, conclusions are presented in section V.

The notation used throughout the paper is fairly standard. For a real symmetric matrix W, the notation of $W > 0$ ($W < 0$) is used to denote its positive-(negative-) definiteness. $|| ||$ refers to either the Euclidean vector norm or the induced matrix 2-norm. I is used to denote the identity matrix of appropriate dimensions. To simplify notation, * is used to represent a block matrix which is readily inferred by symmetry.

H. Du, F. Naghdy, and D. Stirling are with School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2562, Australia {hdu@uow.edu.au, fazel@uow.edu.au, stirling@uow.edu.au}
Fig. 1. Two-link robotic manipulator.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Manipulator System Description

To simplify the problem formulation, a two-link robot manipulator as shown in Fig. 1 is considered.

The dynamic equation of the two-link robot manipulator is expressed as [8]

\[
M(q)\ddot{q} + V(q, \dot{q}) + G(q) = u, \tag{1}
\]

where

\[
M(q) = \begin{bmatrix}
(m_1 + m_2)l_1^2 & m_1l_2(s_1s_2 + c_1c_2) \\
m_2l_1l_2(s_1s_2 + c_1c_2) & m_2l_2^2
\end{bmatrix},
\]

\[
V(q, \dot{q}) = m_2l_2l_2(c_1c_2 - s_1s_2) \begin{bmatrix} 0 & -\dot{q}_2 \\ -\dot{q}_1 & 0 \end{bmatrix},
\]

\[
G(q) = \begin{bmatrix}
-(m_1 + m_2)l_1gs_1 \\
-m_2l_2gs_2
\end{bmatrix},
\]

and \(q = [q_1, q_2]^T \) and \(u = [u_1, u_2]^T \) denote the generalised coordinates (radians) and the control torques (N-m), respectively. \(M(q) \) is the moment of inertia, \(V(q, \dot{q}) \) is the centripetal-Coriolis matrix, and \(G(q) \) is the gravitational vector. \(m_1 \) and \(m_2 \) (in kilograms) are link masses, \(l_1 \) and \(l_2 \) (in meters) are link lengths, \(g = 9.8 \) (m/s\(^2\)) is the acceleration due to gravity, and \(s_1 = \sin(q_1), s_2 = \sin(q_2), c_1 = \cos(q_1), \) and \(c_2 = \cos(q_2) \). After defining \(x_1 = q_1, x_2 = \dot{q}_1, x_3 = q_2, \) and \(x_4 = \dot{q}_2 \), (1) can be rearranged as

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= f_1(x) + g_{11}(x)u_1 + g_{12}(x)u_2 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= f_2(x) + g_{21}(x)u_1 + g_{22}(x)u_2,
\end{align*}
\]

where

\[
f_1(x) = \frac{(s_1c_2 - c_1s_2)}{l_1l_2((m_1 + m_2) - m_2(s_1s_2 + c_1c_2))}
\times[m_2l_1l_2(s_1s_2 + c_1c_2)x_3^2 - m_2l_2^2x_4^2] + \frac{1}{l_1l_2((m_1 + m_2) - m_2(s_1s_2 + c_1c_2))}
\times[(m_1 + m_2)l_2gs_1 - m_2l_2gs_2(s_1s_2 + c_1c_2)],
\]

\[
f_2(x) = \frac{(s_1c_2 - c_1s_2)}{l_1l_2((m_1 + m_2) - m_2(s_1s_2 + c_1c_2))}
\times[-(m_1 + m_2)l_1gs_1 + m_2l_1l_2(s_1s_2 + c_1c_2)x_3^2] + \frac{1}{l_1l_2((m_1 + m_2) - m_2(s_1s_2 + c_1c_2))}
\times[-(m_1 + m_2)l_1gs_2 + (m_1 + m_2)l_2gs_2],
\]

\[
g_{11}(x) = \frac{m_2l_2^2}{m_2l_1^2((m_1 + m_2) - m_2(s_1s_2 + c_1c_2))},
\]

\[
g_{12}(x) = \frac{-m_2l_1l_2(s_1s_2 + c_1c_2)}{m_2l_1^2((m_1 + m_2) - m_2(s_1s_2 + c_1c_2))},
\]

\[
g_{21}(x) = \frac{-m_2l_1l_2(s_1s_2 + c_1c_2)}{m_2l_2^2((m_1 + m_2) - m_2(s_1s_2 + c_1c_2))},
\]

\[
g_{22}(x) = \frac{(m_1 + m_2)^2}{m_2l_2^2((m_1 + m_2) - m_2(s_1s_2 + c_1c_2))}.
\]

Note that the time variable \(t \) is omitted in the above equations for brevity.

B. Fuzzy Model

The above described robotic manipulator is a nonlinear system. To deal with the controller design problem for the nonlinear system, the Takagi-Sugeno (T-S) fuzzy model is employed to represent the nonlinear system with input delay as follows:

\[
\text{Plant rule } i, \quad \text{IF } \theta_i(t) \text{ is } N_{i1} \ldots N_{ip} \text{ (t)} \text{ is } N_{in}, \text{ THEN}
\]

\[
\begin{align*}
\dot{x}(t) &= A_i x(t) + B_i u(t - \tau), \\
x(0) &= x_0, u(t) = \varphi(t), t \in [-\tau , 0], i = 1, 2, \ldots, k \tag{3}
\end{align*}
\]

where \(N_{ij} \) is a fuzzy set, \(\theta = \{ \theta_1(t), \ldots, \theta_p(t) \} \) are the premise variables, \(x(t) \in \mathbb{R}^n \) is the state vector, and \(u(t) \in \mathbb{R}^m \) is the control input, \(A_i \in \mathbb{R}^{n \times n} \) and \(B_i \in \mathbb{R}^{n \times m} \) are constant matrices. Scalar \(k \) is the number of IF-THEN rules. It is assumed that the premise control variables do not depend on the input \(u(t) \). The input delay \(\tau \) is an unknown constant time-delay, and the constant \(\tau > 0 \) is an upper bound of \(\tau \).

Given a pair of \((x(t), u(t))\), the final output of the fuzzy system is inferred as follows

\[
\begin{align*}
\dot{x}(t) &= \sum_{i=1}^{k} h_i(\theta(t))(A_i x(t) + B_i u(t - \tau)), \\
x(0) &= x_0, u(t) = \varphi(t), t \in [-\tau , 0], \tag{4}
\end{align*}
\]

where

\[
h_i(\theta(t)) = \frac{\mu_i(\theta(t))}{\sum_{i=1}^{k} \mu_i(\theta(t))}, h_i(\theta_j(t)) = \prod_{j=1}^{p} N_{ij}(\theta_j(t))
\]
and $N_{ij}(t_j(t))$ is the degree of the membership of $t_j(t)$ in N_{ij}. In this paper, we assume that $\mu_i(t_j(t)) > 0$ for $i = 1, 2, \ldots, k$ and $\sum_{i=1}^{k} \mu_i(t_j(t)) > 0$ for all t. Therefore, $h_i(t_j(t)) > 0$ for $i = 1, 2, \ldots, k$ and $\sum_{i=1}^{k} h_i(t_j(t)) = 1$.

For (4), based on the parallel distributed compensation (PDC) strategy, the following fuzzy control law is employed to deal with the problem of stability control via state feedback

Control rule i

IF $t_i(t)$ is $N_{i1} \cdots t_i(p(t))$ is N_{ip} THEN

$$u(t) = K_i x(t), \quad i = 1, 2, \ldots, k,$$

(5)

Hence, the overall fuzzy control law is represented by

$$u(t) = \sum_{i=1}^{k} h_i(t_j(t)) K_i x(t),$$

where K_i, $i = 1, 2, \ldots, k$, are the local control gains. When there exists an input delay τ, we have that $u(t) = \sum_{i=1}^{k} h_i(\theta(t) - \tau) K_i x(t - \tau)$, so, it is natural and necessary to make an assumption that the functions $h_i(\theta(t))$ $i = 1, 2, \ldots, k$ are well defined for all $t \in [-\tau, 0]$, and satisfy the following properties $h_i(\theta(t)) > 0$ for $i = 1, 2, \ldots, k$ and $\sum_{i=1}^{k} h_i(\theta(t) - \tau) = 1$. For convenience, let $\eta_i = h_i(\theta(t))$, $\eta_i(\tau) = h_i(\theta(t) - \tau), x(\tau) = x(t - \tau)$, and $u(\tau) = u(t - \tau)$.

The objective of the fuzzy controller design is to determine the feedback gains K_i $(i = 1, 2, \ldots, k)$ such that the resulting closed-loop system is asymptotically stable with the decay rate $\alpha > 0$. With the control law (5), the overall closed-loop system can be expressed as follows

$$\dot{x}(t) = \sum_{i,j=1}^{k} h_i h_j(\tau)(A_i x + B_i K_j x(\tau)).$$

(6)

To derive the conditions for designing such a controller, the following lemma will be used.

Lemma 1: [7] For any constant matrices $S_{11} \geq 0, S_{22} \geq 0, S_{12} = \begin{bmatrix} S_{11} & S_{12} \\ \ast & S_{22} \end{bmatrix} \geq 0$, scalar $\tau \leq \tilde{\tau}$, and vector function $x: [-\tilde{\tau}, 0] \rightarrow \mathbb{R}^n$ such that the following integration is well defined, then

$$-\int_{t-\tilde{\tau}}^{t} \begin{bmatrix} x(s) \\ x(T(s)) \end{bmatrix} T \begin{bmatrix} S_{11} & S_{12} \\ \ast & S_{22} \end{bmatrix} \begin{bmatrix} x(s) \\ x(T(s)) \end{bmatrix} ds$$

$$\leq \begin{bmatrix} x(t) \\ x(\tau) \end{bmatrix} T \begin{bmatrix} -S_{22} & -S_{12} \\ -S_{12} & -S_{11} \end{bmatrix} \begin{bmatrix} x(t) \\ x(\tau) \end{bmatrix} - \int_{t-\tilde{\tau}}^{t} x(T(s)) ds$$

$$= \sum_{i,j=1}^{k} h_i h_j(\tau) \left(A_i x + B_i K_j x(\tau) - x \right) \leq 0$$

i.e.,

$$0 = 2 \sum_{i,j=1}^{k} h_i h_j(\tau) \begin{bmatrix} x^T \\ x(T(\tau)) \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix}$$

$$= \sum_{i,j=1}^{k} h_i h_j(\tau) \left(A_i B_i K_j - I \right) \begin{bmatrix} x(t) \\ x(\tau) \end{bmatrix}$$

III. STABILITY CONTROLLER DESIGN

Choose a delay-dependent Lyapunov-Krasovskii functional candidate as

$$V = x^T P x + \int_{t-\tilde{\tau}}^{t} e^{2\alpha(s-t)} (s - (t - \tilde{\tau})) \eta(s) S \eta(s) ds,$$

where $\eta(s) = \begin{bmatrix} x^T(s) \\ x^T(\tau) \end{bmatrix}^T, P > 0, S = \begin{bmatrix} S_{11} & S_{12} \\ \ast & S_{22} \end{bmatrix}, S_{11} > 0, S_{22} > 0, \begin{bmatrix} S_{11} & S_{12} \\ \ast & S_{22} \end{bmatrix} > 0$.

The derivative of V along the trajectory of (6) satisfies that

$$\dot{V} = 2 x^T P \dot{x} + \int_{t-\tilde{\tau}}^{t} e^{2\alpha(s-t)} \dot{\eta}(s) S \eta(s) ds$$

$$\leq -2 \alpha \int_{t-\tilde{\tau}}^{t} e^{2\alpha(s-t)} \eta(s) S \eta(s) ds$$

$$\leq -2 \alpha (V - x^T P x) + 2 x^T P \dot{x} + \int_{t-\tilde{\tau}}^{t} e^{2\alpha(s-t)} \eta(s) S \eta(s) ds$$

$$\leq -2 \alpha (V - x^T P x) + 2 x^T P \dot{x} + \int_{t-\tilde{\tau}}^{t} e^{2\alpha(s-t)} \eta(s) S \eta(s) ds$$

If follows from (6) that

$$0 = 2 \left(x^T T_1 + x^T(\tau) T_2 + x^T T_3 \right)$$

$$\sum_{i,j=1}^{k} h_i h_j(\tau) \left(A_i x + B_i K_j x(\tau) - x \right)$$

i.e.,

$$0 = 2 \sum_{i,j=1}^{k} h_i h_j(\tau) \begin{bmatrix} x^T \\ x(T(\tau)) \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix}$$

$$= \sum_{i,j=1}^{k} h_i h_j(\tau) \left(A_i B_i K_j - I \right) \begin{bmatrix} x(t) \\ x(\tau) \end{bmatrix}$$

$$= \sum_{i,j=1}^{k} h_i h_j(\tau) \left(A_i B_i K_j - I \right) \begin{bmatrix} x(t) \\ x(\tau) \end{bmatrix}$$

$$= \sum_{i,j=1}^{k} h_i h_j(\tau) \left(x^T x^T(\tau) x \right)$$

i.e.,

$$0 = 2 \sum_{i,j=1}^{k} h_i h_j(\tau) \begin{bmatrix} x^T \\ x(T(\tau)) \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix}$$

$$= \sum_{i,j=1}^{k} h_i h_j(\tau) \left(A_i B_i K_j - I \right) \begin{bmatrix} x(t) \\ x(\tau) \end{bmatrix}$$

$$= \sum_{i,j=1}^{k} h_i h_j(\tau) \left(x^T x^T(\tau) x \right)$$
\[
\begin{bmatrix}
T_1A_i + A_i^T T_1^T & T_1B_i K_j + A_i^T T_3^T & -T_1 \\
T_2A_i & T_2B_i K_j + A_i^T T_3^T & -T_2 \\
+K_i^T B_i^T T_1^T & +K_i^T B_i^T T_3^T & +K_i^T B_i^T T_3^T \\
-T_3 & -T_3 & -T_3 \\
\end{bmatrix}
\text{with diag}[Q\ Q\ Q\ Q]\text{ and their transpose, defining new variables} Q = T_1^{-1}, S_{11} = Q S_{11} Q^T, S_{12} = Q S_{12} Q^T, S_{22} = Q S_{22} Q^T, P = Q P Q^T, \text{ and } K_j = K_j Q^T, \Sigma_{ij} < 0
\]
is equivalent to \(\Xi_{ij} < 0 \) where
\[
\Xi_{ij} =
\begin{bmatrix}
\frac{\partial^2 S_{11}}{\partial x_{11}} & S_{21} & -S_{11} & P_+ \\
-S_{21} & \frac{\partial^2 S_{22}}{\partial x_{22}} -S_{11} & -S_{12} & -Q_{12}^T \frac{\partial^2 S_{12}}{\partial x_{12}} -S_{12} & -S_{12} & -d_2 K_i^T B_i^T & -d_2 Q_{12}^T \\
-2\alpha P & -S_{21} & -S_{12} & -d_2 Q_{12}^T \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
S_{11} \\
S_{12} \\
S_{22} \\
\end{bmatrix} < 0, \\
(9)
\]
\[
\Xi_{ij} + \Xi_{ji} < 0, \\
(10)
\]
\[
\begin{bmatrix}
S_{11} \\
S_{12} \\
S_{22} \\
\end{bmatrix} > 0. \\
(11)
\]

Moreover, the control gain matrix is given by \(K_j = K_j (Q^T)^{-1} \).

IV. NUMERICAL SIMULATIONS

(7) Take two-link robotic manipulator as an example, the T-S fuzzy model with nine rules can be used to represent the original nonlinear system with acceptable accuracy when link mass \(m_1 = m_2 = 1 \text{ (kg)}, \) link length \(l_1 = l_2 = 1 \text{ (m)}, \) and angular position are constrained within \([-\pi/2, \pi/2]\). Triangle type membership functions are used for all the rules. For more details on the T-S fuzzy model, readers can refer to [8] for details.

In the reference [9], to reduce the complexity caused by the number of fuzzy rules, a region based rule reduction approach was proposed and the simplest case was obtained with one rule, which is regarded as a robust controller and the design result for a decay rate 0.5 was given as
\[
K = \begin{bmatrix}
-115.6439 & -49.9782 & -13.4219 & -3.7453 \\
\end{bmatrix}
\]
\[
(12)
\]
For comparison purpose, we call this controller as controller I. The simulation results for the nonlinear model (2) with initial condition \(x(0) = [1.2, 0, -1.2, 0]^T \) and controller I without input delays are shown in Fig. 2.

It can be seen from Fig. 2 that all the state variables converge to equilibrium states from initial conditions quickly. We now introduce input delays to the two control inputs. As an example, input delays for both control
inputs are given as 24 ms. The simulation results for all state variables are shown in Fig. 3.

It is observed that the state variables do not converge to equilibrium states in this case and controller I is not able to stabilise the system when input time delays are given as 24 ms.

We now design a fuzzy controller using the proposed approach. For given $\tau = 30$ ms, $d_2 = 0.1$, $d_3 = 0.1$, and $\alpha = 3.5$, the LMIs are feasible to find a solution, and the controller gain matrices for nine rules are given as

$$K_{fr2} = \begin{bmatrix} -87.0516 & -23.3088 & -1.4633 & -0.5275 \\ -0.9148 & -0.3282 & -47.8832 & -13.5136 \end{bmatrix}$$

$$K_{fr3} = \begin{bmatrix} -69.1222 & -18.0379 & 30.5473 & 8.6986 \\ 31.2782 & 8.9476 & -30.1957 & -8.9625 \end{bmatrix}$$

$$K_{fr4} = \begin{bmatrix} -90.4670 & -23.5990 & -1.8147 & -0.3720 \\ 3.0053 & -0.1322 & -49.6101 & -13.6206 \end{bmatrix}$$

$$K_{fr6} = \begin{bmatrix} -89.9913 & -23.5249 & -2.3335 & -0.4322 \\ 2.4136 & -0.2087 & -49.1740 & -13.5866 \end{bmatrix}$$

$$K_{fr7} = \begin{bmatrix} -69.0524 & -18.0351 & 30.4202 & 8.7214 \\ 31.4674 & 8.9693 & -30.2271 & -8.9684 \end{bmatrix}$$

For simplicity, we denote this controller as controller II. The simulation results for the nonlinear model (2) with controller II with input delays as 30 ms under the same initial condition are shown in Fig. 4.

It can be seen from Fig. 4 that all the state variables can quickly converge to equilibrium states from their initial conditions even when the input time delays (30 ms) exist. In fact, from numerical simulations, it can observe that when input delays are larger than the designed 30 ms to some extent, controller II can also stabilise the system responses. It shows that the presented approach still has space to further reduce its conservativeness, this, however, is beyond the scope of this paper.

The above designed controller II is a nine rules fuzzy controller. Although it can stabilise the system with a bigger input delays, its complexity in implementation can also be observed. To reduce this complexity, reference [9] proposed a region based controller design concept. Following the similar idea, a robust controller which uses only one rule and considers the fuzzy model as a polytopic uncertain model can also be designed using the presented conditions (9)-(11). For given $\tau = 30$ ms,
$d_2 = 0.06$, $d_3 = 0.04$, and $\alpha = 2$, the LMIs (9)-(11) are feasible to find a solution, and the controller gain matrix is given as

$$K_f = \begin{bmatrix} -51.6925 & -17.9993 & -2.7943 & -0.6520 \\ 1.6673 & -0.4347 & -26.2372 & -9.5655 \end{bmatrix}$$

For simplicity, this controller is called controller III and the simulation results are shown in Fig. 5 when input delays are given as 30 ms. It is seen that all the state variables converge to equilibrium states. Similarly, controller III can stabilise the system responses even when input delays are larger than 30 ms to some extent in spite of its simplicity in structure. Both controller II and controller III prove that the proposed controller design approach is effective in designing a controller for robotic manipulator with bigger input delays.

V. CONCLUSIONS

A delay-dependent fuzzy controller with decay rate constraint is designed for a robotic manipulator. Based on the recently proposed techniques in constructing a Lyapunov-Krasovskii functional and using a tighter bounding technology for cross terms and the free weighting matrix approach, the conservatism in deriving the conditions is reduced. Numerical simulations on a two-link robotic manipulator is used to validate the effectiveness of the proposed approach. It can be seen that for some given parameters, the presented LMIs conditions are feasible in finding a controller such that the system is stable under given input delays. In addition, the presented conditions can be used to design both a fuzzy controller with full rules and a so-called robust controller with only one rule.

References

ROBIO 2010 PROCEEDINGS

Additional copies may be ordered from:

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331 U.S.A.

IEEE Catalog Number: CFP10581-ART
ISBN: 978-1-4244-9318-0
IEEE Catalog Number (CD-ROM): CFP10581-CDR

Copyright and Reprint Permission:

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. All rights reserved. Copyright ©2010 by the Institute of Electrical and Electronics Engineers, Inc.

The Institute of Electrical and Electronics Engineers, Inc.
Table of Contents

We1-1: Humanoid Robot Motion (I)

1. Effect of Step Size and Step Period on Feasible Motion of a Biped Robot
 Muhammad Jafar Sadigh, Saeed Mansouri
 1

2. Modeling and Planning for Stable Walking of a Novel 6-DOF Biped Robot
 Xuelong Zhou, Yisheng Guan, Chuanwu Cai, Li Jiang, Haifei Zhu, Xianmin Zhang
 7

3. Fast Bipedal Walk Using Large Strides by Modulating Hip Posture and Toe-heel Motion
 Zhibin Li, Bram Vanderborght, Nikos Tsagarakis, Darwin Caldwell
 13

4. Gait Generation and Transitions of Quadruped Robot Based on Wilson-Cowan Weakly Neural Networks
 Bin Li, Yibin Li, Xuewen Rong
 19

5. Gait Analysis of Powered Bionic Lower Prosthesis
 Jian Zhang, Ling Shen, Lixing Shen, Aiping Li
 25

6. A Switching Formula for Optimal Gait Transitions
 Hyuk Kang, Byungchul An, Frank Park
 30

We1-2: Medical Robots (I)

1. Continuous Blood Pressure Monitor with Wireless Interface
 Houda Dai, Lorenzo T. D’Angelo, Tim Lueth
 36

 Yongping Zhai, Yunhui Liu, Dongxiang Zhou, Shun Liu
 41

3. Design and Implementation of a Medical robot for Celiac Minimally Invasive Surgery
 Mei Feng, YiLi Fu, Bo Pan, ShuGuo Wang
 47

4. Squirm Robot with Full Bellow Skin for Colonoscopy
 Kundong Wang, Zhiwu Wang, Yilu Zhou, Guozheng Yan
 53

We1-3: Upper-limb Rehabilitation

 Zhibin Song, Shuxiang Guo
 58

2. A Wearable Robot for Upper Limb Rehabilitation of Patients with Neurological Disorders
 Yupeng Ren, Hyung Soon Park, Yue Li, Liang Wang, Li-Qun Zhang
 64

3. Implementation of Virtual Control Strategies for Natural Rehabilitation of Arm with Visual and Force Feedback
 Venkatesh Dubey, Wital Klopot, Piotr Skupin
 69

4. Active and Passive Control Algorithm for an Exoskeleton with Bowden Cable Transmission for Hand Rehabilitation
 Shuang Wang, Jiting Li, Ruoyin Zheng
 75

5. Kinematics and Workspace Analysis of an Exoskeleton for Thumb and Index Finger Rehabilitation
 Ruoyin Zheng, Jiting Li
 80

6. Analysis of Eye Movement during Generation of a Trajectory using Human Upper Limb
 Nozomi Toyota, Ryohui Yamamoto, Jian Huang, Tetsuro Yabuta
 85

We1-4: Multiple Robots (I)

1. An Online Coalition Based Approach for Solving Resource Constrained Multirobot Task Allocation Problem
 Jian Chen, Dong Sun
 92

2. ANCHOR - Self-Configuring Robotic Network
 Chi Ho Chiu, Wei-Min Shen
 98
An Evolutionary Swarm Self-assembly Robot: from Concept to Prototype
Hongxing Wei, Haiyuan Li, Tianmiao Wang

Multi-robot Odor-plume Tracing in Indoor Natural Airflow Environments Using an Improved ACO Algorithm
Qing-Hao Meng, Wei-Xing Yang, Yang Wang, Ming Zeng

Quantitative Analysis of Distributed Control Paradigms for Robot Swarms
Trung Dung Ngo

Two Foraging Algorithms for Robot Swarms Using Only Local Communication
Nicholas Hoff, Amelia Sagoff, Robert Wood, Radhika Nagpal

We1-5: Mobile Robots (I)

Naive Bayes novelty detection for a moving robot with whiskers
Nathan Lepora, Martin Pearson, Ben Mitchinson, Mat Evans, Charles Fox, Tony Pipe, Kevin Gurney, Tony Prescott

Contact Angle Estimation Based on Kinematics Modeling Analyses for Rover with Caster and Camber
He Xu, Zhenyu Zhang, Yonglian Wu, Long He

Single Odor Source Declaration in Outdoor Time-variant Airflow Environments
Ji-Gong Li, Qing-Hao Meng, Yang Wang, Ming Zeng

Simultaneous Operation of Dual Arm and Body of Mobile Robots
Mizuho Shibata, Takayuki Saito, Norimitsu Sakagami, Sadao Kawamura

Pedestrian Detection using a LRF and a Small Omni-view Camera for Outdoor Personal Mobility Robot
Manabu Saito, Kimitoshi Yamazaki, Naotaka Hatao, Ryo Hanai, Kei Okada, Masayuki Inaba

Determination of Time to Contact and application to timing control of mobile robot
Yukimasa Kaneta, Yuki Hagisaka, Kazuyuki Ito

We1-6: Human-Robot Interaction (I)

Simulation of Humanoid Motion based on the Foot with One Active Joint
Weimin Zhang, Fei Chen, Mingbo Li, Qiang Huang

Human Coordination Based on Spatial Relationships
Jean-Christophe Palyart Lamarche, Olivier Bruneau, Jean-Guy Fontaine

Operation Stability of Power Assist System with Multi-portal Human Interface
Fumiya Shibukawa, Takayuki Tanaka, Shunichi Kaneko

Incremental Gesture Discovery for Interactive Robots
Yasser Mohammad, Toyoaki Nishida

Human/Robot Interaction for Human Support System by Using A Mobile Manipulator
Yunyi Jia, Hai Wang, Philipp Stürmer, Ning Xi

We2-1: Humanoid Robot Motion (II)

Recognition and Manipulation Integration for a Daily Assistive Robot Working on Kitchen Environments
Kimitoshi Yamazaki, Yoshiaki Watanabe, Kotaro Nagahama, Kei Okada, Masayuki Inaba

Matrix Differential Expression with Application in Biped Robot
Hongbing Xin, Qiang Huang

The Realization of a Real-time Distributed Control Systems using IEEE-1394 for Humanoid Robot
Young-Su Cha, Eun-Ho Son, Doik Kim, Bum-Jae You

Online Immediate Foot Placement Modification for Humanoid Robots by Synthesis Method
Teng-Hu Cheng, Han-Pang Huang, Jiu-Lou Yan

Simulation Study of a Bipedal Robot Jumping Motion Approach on Moon Gravity
Aiman Omer, Hun-ok Lim, Atsuo Takanishi
We2-2: Medical Robots (II)

Treatment Modes and Clinical Experiment of Medical Robot Assisted Photodynamic Therapy of Port Wine Stains
Xingtao Wang, Xingguang Duan, Qiang Huang, Guibin Bian, Honghua Zhao, Naiyan Huang, Ying Gu

Towards Anthropomorphic Robot Thereminist
Yan Wu, Polake Kuvinchkul, Peter Cheung, Yiannis Demiris

Development of Large Intestine Endoscope Changing Its Stiffness -2nd report: Improvement of Stiffness Change Device and Insertion Experiment-
Issel Kumagai, Shuichi Wakimoto, Koichi Suzuki

Objective Evaluation of Laparoscopic Surgical Skills Using Waseda Bioinstrumentation System WB-3
Zhuohua Lin, Munenori Uemura, Massimiliano Zecca, Salvatore Sessa, Hiroyuki Ishii, Luca Bartolomeo, Kazuko Itoh, Morimasa Tomikawa, Takeshi Odsira, Kazuo Tanoue, Satoshi Ieiri, Kozo Konishi, Makoto Hashizume, Atsuo Takanishi

Assembly Skill Transfer System for Cell Production
Feng Duan, Qi Gao

We2-3: Gait and Walking Rehabilitation

Subject Tailored Gait Pattern Planning for Robotic Gait Rehabilitation
Trieu Phat Luu, Hue Boon Lim, Xingda Qu, Khan Huat Low

Evaluation on Interaction Ability of a Walking Robotic Suit with Synchronization Based Control
Xie Zhang, Minoru Hashimoto

Effects of body-weight support locomotion training (BWSLT) on EMG activation in healthy and SCI subjects
Ping Wang, K. H. Low, Adela Tow

Basic Study on Gait Rehabilitation System with Intelligently Controllable Walker (i-Walker)
Takahito Kikuchi, Toshimasa Tanaka, Soouke Tanida, Keigo Kobayashi, Kazuhisa Mitobe

A Study on Control Method of Above Knee Robotic Prosthesis Based on CPG model
Xin Guo, Lingling Chen, Yang Zhang, Peng Yang, Liquan Zhang

Rimless Wheel with Asymmetric Flat Feet
Jian Jiao, Mingguo Zhao, Chundi Mu

We2-4: Multiple Robots (II)

Controller Design of a Truck and Multiple Trailer System
TianRan Ren, Ngai Ming Kwok, Chao Sui, DaLong Wang, Jinan Luo, Weldon Su

Rearrangement Task of Multiple Robots Using Task Assignment Applicable to Different Environments
Naoki Oyama, Zhaojia Liu, Lounell Gueta, Jun Ota

A Hierarchical Multi Robotic Collision Avoidance Scheme through Robot Formations
Sujith Kumar, Tejas Parekh, Madhav Krishna

Fuzzy Rule Based Neuro-Dynamic Programming for Mobile Robot Skill Acquisition on the basis of a Nested Multi-Agent Architecture
John N. Kariotiannis, Theodoros I. Rekatsinas, Costas S. Tzafestas

Group Escape Behavior of Multiple Mobile Robot System by Mimicking Fish Schools
Hongkyu Min, Zhidong Wang

Research of Topological Analysis of Modular Reconfigurable Robots
Xinan Pan, Hongguang Wang, Yong Jiang, Neng He, Cen Yu
We2-5: Mobile Robots (II)

User Authentication on Mobile Devices with Dynamical Selection of Biometric Techniques for Optimal Performance
Xiaobu Yuan, Md. Saiful Rahim

Parameters of the Drive System for a Transformable Wheel-Track Robot with Self-adaptive Mobile Mechanism
Zhiqing Li, Shugen Ma, Bin Li, Minghui Wang, Yuechao Wang

Global Asymptotic Stabilization and Tracking of Wheeled Mobile Robots with Actuator Saturation
Yuxin Su, Chunhong Zheng

Proposal for Step-up Gait of RT-Mover, A Four-Wheel-Type Mobile Robot for Rough Terrain with Simple Leg Mechanism
Shuro Nakajima

Research on the Control Station System for a Shape-shifting Search and Rescue Robot
Minghui Wang, Nan Wang, Chengdong Wu, Bin Li

Automatic laser-based geometrical modeling using multiple mobile robots
Yukihiro Tobata, Ryo Kuraizumi, Yumi Iwashita, Tsutomu Hasegawa

We2-6: Human-Robot Interaction (II)

Static and Dynamic Collision Safety for Human Robot Interaction using Magneto Rheological Fluid Based Compliant Robot Manipulator
Muhammad Rehan Ahmed, Ivan kalaykov

Rebound Model of Table Tennis Ball for Trajectory Prediction
Zhengao Zhang, Xu De, Ping Yang

Admittance Control Based Walking Support and Power Assistance of an Omnidirectional Wheelchair Typed Robot
Chi Zhu, Masashi Oda, Masataka Yoshioka, Tomohiro Nishikawa, Shota Shimazu, Xiang Luo

Evaluating the Performance of a Face Movement based Wheelchair Control Interface in an Indoor Environment
Lai Wei, Huosheng Hu, Tao Lu, Kui Yuan

Embedded Artificial Gestures: Modulating behavioral coupling in human-machine via motion modification
Gonzalo de Guzman, Ravi Mistry, Emmanuelle Tognoli, Scott Kelso

Facial Expression Recognition Approach Based on Least Squares Support Vector Machine with Improved Particle Swarm Optimization Algorithm
Shuaisi Liu, Yantao Tian, Cheng Peng, Jinsong Li

We3-1: Humanoid Robot Control

Autonomous Task Execution of a Humanoid Robot using a Cognitive Model
KangGeon Kim, Ji-Yong Lee, Dongkyu Choi, Jung-Min Park, Bum-Jae You

A Novel Modifiable Walking Pattern Generator on an Inclined Plane in Pitch and Roll Directions for Humanoid Robots
Young-Dae Hong, Jong-Hwan Kim

The Architecture and Recognition Algorithm in Haibao Perceptual Development Robot
Xiaoying Song, Yuekai Wang, Wenqiang Zhang, Xiaofeng Wu, Hong Lu, Xiangyang Xue, Juyang Weng

Network-based Humanoid Operation in Home Environment
KangGeon Kim, Ji-Yong Lee, Sin-Jung Kim, Mun-Ho Jeong, Bum-Jae You

Classification of Gaze Preference Decision for Human-Machine Interaction using Eye Tracking Device
Sota Shimizu, Takumi Hashizume

We3-2: Medical Image Processing

A Local Geometric Preserving Approach For Interior Deformation Fields Measurement From MR Volumetric Images of Human Tissues
Penglin Zhang, Shinichi Hirai
We3-3: Robot Control

Motion Control of Parallel Manipulator Using Pneumatic Artificial Actuators
Akihito Ito, Koh Kiyotou, Nobuyuki Furuya

A Dynamic Shape-shifting Method for a Transformable Tracked Robot
Nan Li, Shugen Me, Bin Li, Minghui Wang, Yuechao Wang

Model-Based Control for Nonprehensile Manipulation of a Two-Rigid-Link Object by Two Cooperative Arms
Zakarya Zyada, Yoshikazu Hayakawa, Shigeyuki Hosoe

Sliding-mode Position Control of Robot Joint Based on Self-adaptive Parameters Adjusting
Guanjun Bao, Qingfeng Zhang, Junyi Lu, Yi Xin, Qinghua Yang

Robot Controller Architecture for User Friendly Application Deployment
Christian Richter, Tim Christian Lueth

We3-4: Parallel Manipulator

Kinematics Analysis of a Novel Over-constrained Parallel Manipulator
Bin Li, Xinhua Zhao, Guangzhu Meng

Inverse Dynamic Modeling for a 3-RRRT Parallel Manipulator
Guangzhu Meng, Xinhua Zhao, Bin Li

Impedance Control of a Redundantly Actuated 3-DOF Planar Parallel Link Mechanism Using Direct Drive Linear Motors
Takashi Harada, Motoya Nagase

Adaptive Compensation of Dynamics and Friction for a Planar Parallel Manipulator with Redundant Actuation
Weiwei Shang, Shuang Cong

Application of a Novel 6-DOF Parallel Robot with Redundant Actuation for Earthquake Simulation
Jianzheng Zhang, Hongnian Yu, Feng Gao, Xianchao Zhao, Chunxiang Ma, Xu Huang

We3-5: Mobile Robot Navigation

Biologically inspired navigation on a mobile robot
Christian Papaschek, Michael Zillich

Natural Landmark Extraction in 2D Laser Data based on Local Curvature Scale for Mobile Robot Navigation
Mingyong Liu, Xiaokang Lei, Siqi Zhang, Bingxian Mu

A New Bug-type Navigation Algorithm Considering Practical Implementation Issues for Mobile Robots
Yi Zhu, Tao Zhang, Jingyan Song, Xiaqin Li

Mobile Robot Localization using Appearance Based Place Recognition
Masahito Mitsuhashi, Atsushi Sakai, Yoji Kuroda

Building Human Motion Map for Mobile Robot in the Indoor Dynamic Environment
Tetsuya Wada, Zhidong Wang, Tomokazu Matsuo, Yuji Ogawa, Yasuo Hayashibara, Yasuhiro Hirata, Kazuhiro Kosuge

We3-6: Human-Robot Interaction (III)

Towards Human-Robot Cooperative Object Transfer: Perceiving Different Part of the Object During Task and Motion Smoothness
Ahmad Fazal Salleh, Ryojun Ikeura, Soichiro Hayakawa, Hideki Sawai
Robot's Emotion Generation Model for Transition and Diversity using Energy, Entropy, and Homeostasis Concepts
Won Hyung Lee, Jeong Woong Park, Woo Hyun Kim, Ju Chang Kim, Myung Jin Chung

Human-Robot Interaction by Reading Human Intention based on Mirror-Neuron System
Ji-Hyeong Han, Jong-Hwan Kim

An Emotional Engine Model Inspired by Human-Dog Interaction
Csanad Szabo, András Roka, Marta Gácsi, Adam Miklós, Peter Baranyi, Peter Korondi

A Framework for an Interactive Robot-based Tutoring System and Its Application to Ball-passing Training
Dong-Hyun Lee, Jong-Hwan Kim

We-P: Poster Session (Robotics)

Grasping Analysis for A Biped Climbing Robot
Li Jiang, Yisheng Guan, Xuefeng Zhou, Xianmin Zhang, Hong Zhang

Experimental Research on Locomotion Characters of Water Strider and Movement realization on a Water Strider Robot
Lan Wang, Tiehong Gao, Peng Gao, Yonghong Xue, Yu Wang

Design, modelling and control of a hyper-redundant 3-RPS parallel mechanism
Julien Mitternecken, Ramon Estana

Control for a Class of Nonlinear Systems with Uncertainties Based on Disturbance and State Observer
De-jun Liu, Yan-tao Tian, Jianfei Li

Dynamic Model based Ball Trajectory Prediction for a Robot Ping-Pong Player
Xiaopeng Chen, Ye Tian, Qiang Huang, Weimin Zhang, Zhangpuo Yu

Dynamic Adaptive Equilibrium Control for a Self-Stabilizing Robot
Chaoquan Li, Fangxing Li, Shusen Wang, Fuquan Dai, Yang Bai, Xueshan Gao, Kehzie Li

Velocity Performance Analysis of a Novel 2-DOF Fully-Decoupled Spherical Parallel Mechanism Based on Performance Atilises
Yunxia Qu, Anping Xu, Weimin Li, Shuncheng Fan

High Precision Pose Measurement for Humanoid Robot Based on PnP and OI Algorithms
Guodong Chen, De Xu, Ping Yang

Simulation Study on Robot Active Olfaction Based on Concentration and Equilateral Triangle Search
Qian Liu, Chun-shu Li, Xiao-tian Guan

An Auditory System of Robot for Sound Source Localization Based on Microphone Array
Hao Sun, Peng Yang, Linan Zu, Qinqi Xu

Robot Sound Source Search Strategy Based on Multi-blackboard Model
Xiaoling Lv, Mingyi Zhang, Guangming Yuan, Qiang Chen, Haixian Zhao

A Signal Conditioning and Data Acquisition System for Micro/Nano Displacement Sensor
Hanyu Sun, Yong Yu, Ranbing Chen, Yunjian Ge

A Novel Human Robot Interaction using the Wiimote
D Balakrishna, PV Sailaja, RVV Prasad Rao, Bipin Indurkhya

Kinematic and Dynamic Analysis of 2-RRC+SPS Parallel Manipulator
Yongci Han, Xinhua Zhao, Guangzhuo Meng

Study of precise positioning and antiswing for the Varying rope length in 3D crane systems base on the combination of partial decoupling and fuzzy control
Shijie Dai, Zhi Lv, Zhidong Liu, Xiaotian Guan

Automatic Monitoring System Concerning Extra-high-rise Building Oscillating Based on Measurement Robot
Yanhua Mi, Lixin Liu, Hong Zhao

Trajectory Tracking Control of a Macro-Micro Welding Robot Based on the Vision Navigation
Haiyong Chen, Jiangwei Li, Guangshen xing, Jia Xing, Hexu Sun
Th1-1: Humanoid Robot Construction

Analysis and Control of a Cable-driven 3 DOF Manipulator with Joint Angle Feedback
Suqing Liu, Jianhua Wang, Weihai Chen, Jingmeng Liu

673

Development of a Hybrid Humanoid Platform and Incorporation of the Passive Actuators
Vitor Santos, Rui Moreira, Miguel Ribeiro, Filipa Silva

679

A Human Hand Compatible Optimised Exoskeleton System
Jawaher Iqbal, Nikos G. Tsagarakis, Darwin G. Caldwell

685

Motion Planning for Vertical Jumping by a Small Humanoid with Structural Joint Stops
Yuichi Hasegawa, Chigusa Onishi, Masato Fukumori, Chunquan Xu, Aiguo Ming, Makoto Shimojo

691

Effect of Toe-Joint Bending on Biped Gait Performance
Ehsan Kouchaki, Mohammad Jafar Sadigh

697

Analysis of States Transition for a Humanoid Robot SJTU-HR1: Rising up from a Supine Position to Erect Stance
Kaicheng Qi, Feng Gao, Xiaotian Guan, Jiajun Yang, Yuzhuo Zhang

703

Th1-2: Force and Tactile Control

Micromanipulator with Integrated Force Sensor Based on Compliant Parallel Mechanism
Qieqang Liang, Dan Zhang, Quanjun Song, Yunjun Ge

709

The Analysis of Resolution for Cable-driven Haptic Device
Hao Hu, Yuru Zhang, Xiaowei Dai, Yanjun Zhang

715

Whisker-object contact speed affects radial distance estimation
Mat Evans, Charles Fox, Martin Pearson, Nathan Lepora, Tony Prescott

720

Contact Modeling and Parameter Switching for Simultaneous Reproduction of Rheological Force and Deformation
Zhongkui Wang, Shinichi Hirai

726

A Critical Look at Human’s Bimanual Lifting of Objects with a Power Assist Robot and Its Applications to Improve the Power-Assist Control
S.M.Mizanoor Rahman, Ryojun Ikeura, Soichiro Hayakawa, Hideki Sawai

732

Pinpointed Muscle Force Control In Consideration Of Human Motion And External Force
Ming Ding, Kotaro Hirasawa, Yuichi Kuña, Hiroshi Takemura, Jun Takamatsu, Hiroshi Mizoguchi, Tsukasa Ogasawara

739

Th1-3: Robotic Assistive Technology

Fundamental Study for New Assistive system based on Brain Activity during Car Driving
Noboru Takahashi, Shunzi Shimitzu, Yukihiro Hirata, Hiroyuki Nara, Fumikazu Miyakeichi, Nobuhide Hirai, Senichiro Kikuchi, Elji Watanabe, Satoshi Kato

745

Towards a Guideline for Clinical Trials in the Development of Humanistic Assistive Robots
Koji Hasebe, Hiroaki Kawamoto, Akira Matsuhita, Kiyotaka Kamibayashi, Yoshiyuki Sankai

751

Cooperative control of exoskeletal assistive system for paraplegic walk, -going up and down on stairs and transferring between sitting posture and standing posture-
Yasuhiisa Hasegawa, Junho Jang, Yoshiyuki Sankai

757

Contribution to a new robotic concept of prostate Brachytherapy
Vincent Coelen, Rochdi Merzouki, Eric Larigaud

763

Processing and Analysis of Bio-signals from Human Stomach
Wei Ding, Shujia Qin, Lei Miao, Xing Xi, Hongyi Li, Yuechao Wang

769

On Challenges of Robot Assisted Radiotherapy for Lung Tumors
Lei Ma, Christian Hermann, Klaus Schilling

773

Th1-4: SLAM (I)

Range Scan Matching and Particle Filter Based Mobile Robot SLAM
Li Xiuzhi, Cui Wei, Jia Songmin

779

A Dynamic Size MCL Algorithm for Mobile Robot Localization
Yuefeng Wang, Dan Wu, Libing Wu

785
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Large-scale SLAM with Improved Accuracy in Mobile Robot</td>
<td>791</td>
</tr>
<tr>
<td>Bo Zhao, Xiuorui Zhu</td>
<td></td>
</tr>
<tr>
<td>An Obstacle Avoidance Sonar Based SLAM Algorithm for AUV Integrated Navigation</td>
<td>797</td>
</tr>
<tr>
<td>Ming Liu, Demin Xu</td>
<td></td>
</tr>
<tr>
<td>A Hybrid Filtering and Maximum Likelihood approach to SLAM</td>
<td>803</td>
</tr>
<tr>
<td>Francesco Conte, Agostino Martelani</td>
<td></td>
</tr>
<tr>
<td>Data Association using Empty Convex Polygonal Regions in EKF-SLAM</td>
<td>810</td>
</tr>
<tr>
<td>Gunraj Kosuru, Satish Peddura, Madhava Krishna</td>
<td></td>
</tr>
<tr>
<td>Th1-5: Industrial Applications</td>
<td></td>
</tr>
<tr>
<td>A Modified Approach of POMDP-based Dialogue Management</td>
<td>816</td>
</tr>
<tr>
<td>Xiaobo Yuan, Libian Bian</td>
<td></td>
</tr>
<tr>
<td>A Tele-operative RMMT System Facilitating the Management of Cooling and Energy in Data Centers</td>
<td>822</td>
</tr>
<tr>
<td>Yu Zhou, Xionghe Li, Xu Zhong, Levente Klein, Michael Schappert, Hendrik F. Hamann</td>
<td></td>
</tr>
<tr>
<td>A Sampling Robot for High Dust and Strong Corrosion Environment</td>
<td>828</td>
</tr>
<tr>
<td>Qijing Tang, Hui Bian, Xingbin Tian, Tieshi Zhao</td>
<td></td>
</tr>
<tr>
<td>Indium Solder Printing for Low Temperature Applications and Modeling of a Droplet Generator</td>
<td>833</td>
</tr>
<tr>
<td>Oliver Kesaling, Konstantin Werner, Franz Infinger, Tim Lueth</td>
<td></td>
</tr>
<tr>
<td>Th1-6: Information Acquisition</td>
<td></td>
</tr>
<tr>
<td>Autonomous Sensing Strategy for Parameter Identification of Contact Conditions by Active Force Sensing</td>
<td>839</td>
</tr>
<tr>
<td>Takayoshi Yamada, Akira Tanaka, Manabu Yamada, Hidehiko Yamamoto, Yasuyuki Funahashi</td>
<td></td>
</tr>
<tr>
<td>Basing on the Olfaction and Vision Information Fusion for Robot's Odor Source Localization</td>
<td>845</td>
</tr>
<tr>
<td>Jianhua Zhang, Xiaojun Zhang, Lingyu Sun, Minglu Zhang</td>
<td></td>
</tr>
<tr>
<td>Dynamic Monitoring Approach for Verification of Control Software of Robot Using Synchronized Petri Nets</td>
<td>850</td>
</tr>
<tr>
<td>Weijun Zhang, Jianjun Yuan, Wei Zhang</td>
<td></td>
</tr>
<tr>
<td>Design of an actuated phantom to mimic the motion of cardiac landmarks for the study of image-guided intracardiac interventions</td>
<td>856</td>
</tr>
<tr>
<td>Nicholas von Stemberg, Yousel Hedayati, Erol Yeniaras, Efychios Christofilou, Nikolaos Tsakos</td>
<td></td>
</tr>
<tr>
<td>Structures and information acquisition algorithms for three-dimensional flexible tactile sensor</td>
<td>862</td>
</tr>
<tr>
<td>Junxiang Ding, Fei Xu, Shanhong Li, Yunjian Ge, Feng Shuang</td>
<td></td>
</tr>
<tr>
<td>Th2-1: Underwater Robotics</td>
<td></td>
</tr>
<tr>
<td>Hydrodynamic performance calculation of Mini-AUV in uneven flow field</td>
<td>868</td>
</tr>
<tr>
<td>Xianzhang Yu, Yumin Su</td>
<td></td>
</tr>
<tr>
<td>A Novel Multifunctional Underwater Microrobot</td>
<td>873</td>
</tr>
<tr>
<td>Liwei Shi, Shuxiang Guo, Kinji Asaka</td>
<td></td>
</tr>
<tr>
<td>Sensor model for the navigation of underwater vehicles by the electric sense</td>
<td>879</td>
</tr>
<tr>
<td>Brahim Jawed, Pol Bernard Gossiaux, Frédéric Boyer, Vincent Labastard, Francesco Gomez, Noël Servagent, Stéphane Bouvier, Alexis Girin, Mathieu Ponz</td>
<td></td>
</tr>
<tr>
<td>Modeling of Tail Dynamic Behavior and Trajectory Control of a Fish-Robot Using Fuzzy Logic</td>
<td>885</td>
</tr>
<tr>
<td>Alireza Alamdar, Mohammadreza Dehghanli, Aria Aliasty</td>
<td></td>
</tr>
<tr>
<td>Th2-2: Robot Design</td>
<td></td>
</tr>
<tr>
<td>effects of elasticity on an under-actuated tendon-driven robotic finger</td>
<td>891</td>
</tr>
<tr>
<td>Ryuta Ozawa, Michinori Moriya</td>
<td></td>
</tr>
<tr>
<td>Design of a Hyper-Flexible Assembly Robot Using Artificial Muscles</td>
<td>897</td>
</tr>
<tr>
<td>Jan Schmitl, Frank Grabert, Annika Raatz</td>
<td></td>
</tr>
<tr>
<td>A Semiautonomous Sprawl Robot based on Remote Wireless Control</td>
<td>903</td>
</tr>
<tr>
<td>Hongkai Li, Zheqdong Dai</td>
<td></td>
</tr>
</tbody>
</table>
Study on Modular Configuration Design Method for Special Robot
Xuan Liu, Minglu Zhang, Wei Liu

Modeling and Simulating the Nonlinear Characters of Robot Joints
Yongqiang Xiao, Zhijiang Du, Wei You, Ruiqiang Li

Singularity-Robust Modular Inverse Kinematics for Robotic Gesture Imitation
Kang Peng Tang, Rui Yan, Yuanwei Chua, Zhongyou Huang

Th2-3: Controller Design (I)

Geometry Stabilizing Control of the Extended Nonholonomic Double Integrator
Yan Peng, Mei Liu, Zhijie Tang, Shaorong Xie, Jun Luo

Robust Adaptive Motion Control for Remotely Operated Vehicles with Velocity Constraints
Nan Ding, Zhijun Li, Chenguang Yang, Tong Ge

Outlier Removal Method for Robust Visual Servo Control in Complex Environment
Jaehoon Jeong, Sukhun Lee

Optimal Control Model for Reproducing Human Rising Movements from Chair and Its Effectiveness Verification
Toshikazu Matsu

Adaptively target tracking method based on double-Kalman filter in existence of outliers
Peng Yang, Hairong Sun, Linan Zu, Hao Sun

Fuzzy Stability Control of Robotic Manipulator with Input Delays
Helping Du, Fazel Naghd, David Stirling

Th2-4: SLAM (II)

Multi-Scale Bag-Of-Features for Large-Size Map Retrieval
Kensuke Kondo, Kanji Tanaka

Discriminative Parameter Determination of Divided Difference Filter for Mobile Robot Localization
Yuto Fujii, Atsushi Sakai, Yoji Kuroda

Robust Localization Method based on Free-space Observation Model using 3D-Map
Eiji Takeuchi, Kazunori Ohno, Satoshi Tadokoro

Dictionary-based Map Compression Using Modified RANSAC Map-Matching
Tomomi Nagasaka, Kanji Tanaka

Augmented EKF Localization for Mobile Robots in Urban Environments
Christland Christland, Yu-Chue Lee, Wonpil Yu, Jaeil Cho

Th2-5: Micro/Nano Systems

An Extended PI Model for Hysteresis and Creep Compensation in AFM Based Nanomanipulation
Zhiyu Wang, Lianqiong Liu, Zhidong Wang, Zaili Dong, Yuan Shuai

Ultra-miniatuized WB-3 Inertial Measurement Unit: performance evaluation of the attitude estimation
Salvatore Sessa, Massimiliano Zecca, Zhuohua Lin, Luca Bartolomeo, Hiroyuki Ishii, Kazuko Itoh, Yoshikazu Mukaeda, Yuto Suzuki, Atsuo Takanishi

Research of pH Gradient on Swimming Bacteria Control
Bin He, Sha Liu, Yonggang Li, Kun Wang

Design and Analysis of a Completely Decoupled Compliant Parallel XY Micro-motion Stage
Jiming Huang, Yangmin Li

The 3D shape analysis of elastic rod in shape sensing medical robot system
Xinhua Yi, Fenglian Niu, Jinbao He, Hongchao Fan

Cell Stiffness Measurement Using Two-fingered Microhand
Daiki Kawakami, Kenichi Ohara, Tomohito Takubo, Yasushi Mae, Akihiko Ichikawa, Tamio Tanikawa, Tatsuo Arai
Th2-6: Path Planning

On geodesic paths and least-cost motions for human-like tasks
Adrien Datas, Jean-Yves Fourquet, Pascale Chiron

Generation of the Optimal Trajectory for the Biped Robot
Limei Liu, Jianfei Li, Yantao Tian, Yuhong Yang

Multi-agent Missions Planning for Mobile Manipulators
Abdelfattah Hantout, B. Bouzouia, R. Toumi

Multi-robot System Based on Model of Wolf Hunting Behavior to Emulate Wolf and Elk Interactions
John Madden, Ronald Arkin, Daniel MacNulty

Fast Any-angle Path Planning on Grid Maps with Non-collision Pruning
Sunglok Choi, Jae-Yeong Lee, Wonpil Yu

An Online Motion Planning Algorithm for a 7DOF Redundant Manipulator
Hei Wang, Yunyi Ji, Ning Xi, John BUether

Th3-1: Fish Robots

Realization of Fish Behavior in Edge Region Using Mobile Robot and Its Chaos Analysis
Koji Fukuda, Ryuzaburo Sugino, Mio Musashi, Noboru Morizumi

Locomotion Generator for Robotic Fish Using an Evolutionary Optimized Central Pattern Generator
Ki-In Na, Chang-Soo Park, In-Bae Jeong, Seungbeom Han, Jong-Hwan Kim

Design and Optimization of a Robotic Fish Mimicking Cow-nosed Ray
Licheng Zheng, Shusheng Bi, Yueer Cai, Chuanneng Niu

On Solving Inverse Problems for Electric Fish Like Robots
Mazen Alamir, Oumayma Omar, Noel Servagent, Alexis Girin, Pascal Béllemain, Vincent Lebastard,
Pol Bernard Gossiaux, Frédéric Boyer, Stéphane Bouvier

Experimental and Numerical Analysis for Influence of the Caudal Fin Shape on the Biomimetic Propulsion performance
Yumin Su, Xi Zhang, Liang Yang, Zhaoil Wang

Th3-2: Mechanism Design

A novel coupled gesture-changeable under-actuated robotic finger with linkage and gear-rack mechanism
Tianyu Luo, Wenzeng Zhang, Hongbing Liu

Design of an Eccentric Paddle Locomotion Mechanism for Amphibious Robots
Yi Sun, Shugen Ma, Xin Luo

A Novel Semi-Active Assist System Considering Low-Powered Actuator Limitations
Andre Rosendo, Takayuki Tanaka, Shun'ichi Kaneko

Study on Coupled and Self-adaptive Finger for Robot Hand with Parallel Rack and Belt Mechanisms
Guoxuan Li, Wenzeng Zhang

Design and Realization of Local Oscillator for VHF Survival Receiver
Wei Wang, Jian Jiao, Na Liu

Research of the Automatic Insertion System of a Searching and Rescuing Robot
Cao Xu, Yanan Zhang, Linying Shen, Jiemin Xu, Zhenbang Gong

Th3-3: Controller Design (II)

Robojelly Bell Kinematics and Resistance Feedback Control
Alex Villanueva, Shashank Priya, Colin Smith, Chris Anna

Modeling and Control of a Novel Narrow Vehicle
Feng Ding, Jian Huang, Yongji Wang, Takayuki Matsuno, Toshio Fukuda, Kosuke Sekiyama
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Novel Trajectory Prediction Approach for Table-tennis Robot Based on Nonlinear Output Feedback Observer</td>
<td>1136</td>
</tr>
<tr>
<td>Yingshi Wang, Lei Sun, Jingtai Liu, Qi Yang, Lu Zhou, Shan He</td>
<td></td>
</tr>
<tr>
<td>An effective trajectory optimization method of robotic belt grinding based on intelligent algorithm</td>
<td>1142</td>
</tr>
<tr>
<td>Wei Liang, Yixu Song, Hongbo Lv, Peifa Jia, Lihse Qi, Zhongxue Gan</td>
<td></td>
</tr>
<tr>
<td>Performance Evaluation of Three Schemes Applied to Bilateral Control of a Hydraulic Actuator Interacting with Deformable Environments</td>
<td>1148</td>
</tr>
<tr>
<td>Masoumeh Esfandiari, Kourosh Zarei-nie, Wei-keung Fung, Nariman Sepetahi</td>
<td></td>
</tr>
<tr>
<td>Identifying a two linked robot with non-symmetrical modified friction and backlash-flexibility models</td>
<td>1154</td>
</tr>
<tr>
<td>Javad Bahrami, Mehdi Keshmiri, Mohammad Keshmiri, Hamid Reza Taghirad</td>
<td></td>
</tr>
<tr>
<td>Th3-4: Localization</td>
<td></td>
</tr>
<tr>
<td>Research on the Mobile Robot's Odor Source Localization by Biomimetics</td>
<td>1160</td>
</tr>
<tr>
<td>Gengun Cui, Xiaojun Zhang, Yuhong Liu, Minglu Zhang</td>
<td></td>
</tr>
<tr>
<td>An Hybrid Localization System based on Optics and Magnetics</td>
<td>1165</td>
</tr>
<tr>
<td>Wei Liu, Chao Hu, Qing He, Max Q.-H. Meng, Li Liu</td>
<td></td>
</tr>
<tr>
<td>The Extraction Technology of Weak Coupling AC Signal in an Electromagnetic Localization System</td>
<td>1170</td>
</tr>
<tr>
<td>Xueqing Wang, Shuang Song, Chao Hu</td>
<td></td>
</tr>
<tr>
<td>3D reconstruction of Indoor Scenes by Casting Visual Rays in an Occupancy Grid</td>
<td>1176</td>
</tr>
<tr>
<td>Samir Shaker, Daniel Asmar, Imad ElHajj</td>
<td></td>
</tr>
<tr>
<td>Multi-Scale Matching for Data Association in Vision-based SLAM</td>
<td>1183</td>
</tr>
<tr>
<td>Lei Chen, Mingtao Pei, Jiaolong Yang</td>
<td></td>
</tr>
<tr>
<td>Monocular Vision based Robot Self-localization</td>
<td>1189</td>
</tr>
<tr>
<td>Jiaolong Yang, Lei Chen, Wei Liang</td>
<td></td>
</tr>
<tr>
<td>Th3-5: Image Processing</td>
<td></td>
</tr>
<tr>
<td>Super Resolution Reconstruction Based on Total Variation Regularization</td>
<td>1194</td>
</tr>
<tr>
<td>Baikun Wan, Hongmei Zeng, Weibo Yi, Lan Ma, Rui Xu, Xiang Zheng, Yannu Bai, Hongzhi Qi, Dong Ming, Wejie Wang</td>
<td></td>
</tr>
<tr>
<td>Quantifying the Contribution of Feature Maps for Goal-Directed Visual Attention</td>
<td>1200</td>
</tr>
<tr>
<td>Ming Zeng, Youfu Li, Qinghao Meng, Ting Yang, Jian Liu, Tiemao Han</td>
<td></td>
</tr>
<tr>
<td>Face Detection and Tracking Algorithm in Video Images with Complex Background</td>
<td>1206</td>
</tr>
<tr>
<td>Xinzhuo, Yanlo, Tian, Shuashi Liu, Jinsong Li, Cheng Peng</td>
<td></td>
</tr>
<tr>
<td>Efficient robot object recognition technique based on distance kernel PCA</td>
<td>1212</td>
</tr>
<tr>
<td>Jinfu Yang, Min Song, Ming-ai Li</td>
<td></td>
</tr>
<tr>
<td>A Gesture Recognition System using Localist Attractor Networks for Human-Robot Interaction</td>
<td>1217</td>
</tr>
<tr>
<td>Rui Yan, Keng Peng Tee, Yuanwei Chu, Huajin Tang</td>
<td></td>
</tr>
<tr>
<td>Th-P: Poster Session (Biomimetics)</td>
<td></td>
</tr>
<tr>
<td>Research and Development of Micro-instrument for Laparoscopic Minimally Invasive Surgical Robotic System</td>
<td>1223</td>
</tr>
<tr>
<td>Ruqi Ma, Dongmei Wu, Zhiyuan Yan, Zhijiang Du, Gang Li</td>
<td></td>
</tr>
<tr>
<td>Study on Fatigue Feather from Forearm SEMG Signal Based on Wavelet Analysis</td>
<td>1229</td>
</tr>
<tr>
<td>Dong Ming, Baikun Wan, Lifeng Xu, Yue Ren, Lu Wang, Shuang Qiu, Xiaojia Liu, Xiuyun Liu, Hongzhi Qi, Wejie Wang</td>
<td></td>
</tr>
<tr>
<td>Research of the Walking Gait Coordination of the Lower Limb Rehabilitation Robot</td>
<td>1233</td>
</tr>
<tr>
<td>Xiaojun Zhang, Xiangzhen Kong, Gongjian Liu, Yongfeng Wang</td>
<td></td>
</tr>
<tr>
<td>Experimental Evaluation of an Assistive Knee Brace with Magnetorheological Actuator</td>
<td>1238</td>
</tr>
<tr>
<td>Jinzhuo Chen, Wei-Hsin Liao</td>
<td></td>
</tr>
<tr>
<td>A Basic Study of Event-Related Potentials (ERPs) on Human Audiovisual Spatial Integration for Human-machine Interface</td>
<td>1244</td>
</tr>
<tr>
<td>Yulin Gao, Jingjing Yang, Qi Li, Ryota Morikawa, Jinglong Wu</td>
<td></td>
</tr>
</tbody>
</table>
Multi-model Fitting Using Particle Swarm Optimization for 3D Perception in Robot Vision
Kai Zhou, Michael Zillich, Markus Vincze, Alen Vrecks, Danijel Skocej 1250

A Surveillance Robot with Human Recognition Based on Video and Audio
Zhu Cheng, Xuezhen Zhang, Shiqi Yu, Yongsheng Ou, Xinyu Wu, Yangsheng Xu 1256

Spatial Direction Estimation for Multiple Sound Sources in reverberation environment
Huakang Li, Qunfei Zhao, Akira Saji, Kenta Tanno, Jie Huang 1262

Design, Simulation and Manufacturing of a Tracked Surveillance Unmanned Ground Vehicle
Abolfazl Mohabbi, Shahrar Saffee, Mohammad Keshmiri, Mehdi Keshmiri, Sojood Mohabbi 1268

Kinematics and dynamics Modeling of a Small Mobile Robot with Track Locomotion Mode
Honghua Zhao, Xingguang Duan, Ge Yang 1276

Foot Shape for Passive Dynamic Kneel Biped Robot
Jianfei Li, Yantao Tian, Xiaolong Huang, Hongshuai Chen 1281

Graphic and Haptic Rendering of a 4-DOF Virtual Finger Interacted with the Virtual Object at Multiple Contact Points
Miao Feng, Jiting Li 1287

Towards a Hand Exoskeleton for a Smart EVA Glove
Alain Favetto, Fai Chen Chen, Elisab Paola Ambrotso, Diego Manfredi, Giuseppe Carlo Calafiore 1293

Event-related Perturbation in Spectral Power and in Potentials during Periodic Fast and Slow Motor Imagination for Brain-controlled Robots Interface
Yunfa Fu, Baolei Xu, Lili Pei, Hongyi Li 1299

Tension Research of Cable-driven Biomimetic Shoulder Robot
Yangyi Yang, Wenhui Chen, Xingming Wu, Quanwu Chen 1305

A closed-loop calibration for fiber optic gyro unit
Guiling Zhao, Wei Gao, Zhaibing Li, Xin Zhang 1310

Design and analysis of a kind of biomimetic continuum robot
Qiang Zhao, Fang Gao 1316

Theoretical Modeling and Experimental Research on Load Capacity of Supporting Legs of Water Strider Robot
Lan Wang, Tiehong Gao, Feng Gao, Jianlin Zhao, Junnan Wu 1321

Dynamic Olfactometer Used as a Professional "Nose"
Welling Liu, Jingling Gao, Kehua Zuo, Changjian Li, Yan Xu, Lijuan Wang 1327

Feature Selection Study of P300 Speller Using Support Vector Machine
Dong Ming, Hongzhi Qi, Minpeng Xu, Wen Li, Ding Yuan, Weixi Zhu, Xingwei An, Balkun Wan, Weijie Wang 1331

Fr1-1: Legged Robotics
Evolving legged robots using biologically inspired optimization strategies
Beatrice Smith, Chakravarthini Saaj, Elia Allouis 1335

Design, Construction and a compliant gait of "ModPod": a Modular Hexpod robot.
Sriranjian Rasakallia, Madhav Krishna, Bipin Indurkhya 1341

Research of a Quadruped Robot Walking on a Slope Based on 4-Leg Supporting Period
Lei Zhang, Lili Wang, Shugen Ma, Shao Gao 1346

Virtual Realization of Automatic Stair-climbing Motion by Leg-wheeled Hybrid Mobile Robot
Jianjun Yuan, Richard Paisley, Yongtao Song, Weijun Zhang 1352

An Adaptive Locomotion of a Quadruped Robot on Irregular Terrain using Simple Biomimetic Oscillator and Reflex Controllers without Visual Information
Katsuyoshi Tsujita, Masashi Matsuda, Tatsuya Masuda 1358

Fr1-2: Surgical Robots
Design and Kinematic Analysis of the Pedicile Screws Surgical Robot
Haiyang Jin, Peng Zhang, Ying Hu, Jianwei Zhang, Zhizeng Zheng 1364

Development of a Novel Mechanism for Minimally Invasive Surgery
Jianmin Li, Shuxin Wang, Xiaofei Wang, Chao He, Linan Zhang 1370