Three-dimensional-network Li3V2(PO4) 3/C composite as high rate lithium ion battery cathode material and its compatibility with ionic liquid electrolytes

Jiantie Xu
University of Wollongong, jx307@uowmail.edu.au

Shulei Chou
University of Wollongong, shulei@uow.edu.au

Cuifeng Zhou
University Of Sydney

Qinfen Gu
Australian Synchrotron Company

Hua-Kun Liu
University of Wollongong, hua@uow.edu.au

See next page for additional authors
Three-dimensional-network Li$_3$V$_2$(PO$_4$)$_3$/C composite as high rate lithium ion battery cathode material and its compatibility with ionic liquid electrolytes

Abstract
A high performance Li$_3$V$_2$(PO$_4$)$_3$ cathode material for lithium ion batteries was synthesized by the microwave-assisted hydrothermal method followed by a post annealing process. The synchrotron X-ray diffraction analysis results confirmed that single-phase Li$_3$V$_2$(PO$_4$)$_3$ with monoclinic structure was obtained. Scanning electron microscope and transmission electron microscope images revealed that the as-prepared Li$_3$V$_2$(PO$_4$)$_3$ was composed of nanowires and microsized particles. Electrochemical results demonstrated that the Li$_3$V$_2$(PO$_4$)$_3$ electrode measured at 10 C after 500 cycles can deliver discharge capacities of 85.4 mAh g$^{-1}$ and 103.4 mAh g$^{-1}$, with a capacity retention of 99.3% and 95.9%, in the voltage ranges of 3.0-4.3 V and 3.0-4.8 V, respectively, indicating good cycling stability. Furthermore, the electrochemical performance of Li$_3$V$_2$(PO$_4$)$_3$ in ionic liquid electrolytes between 3.0 V and 4.8 V was also measured.

Keywords
electrolytes, dimensional, liquid, three, ionic, compatibility, its, material, cathode, battery, ion, lithium, rate, high, composite, c, 3, po4, li3v2, network

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, and S X. Dou

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/911
Three Dimensional Structure $\text{Li}_3\text{V}_2(\text{PO}_4)_3$/C Prepared by Microwave Hydrothermal Method as Cathode Material for Lithium Ion Battery

Jiantie Xu, a Shu-Lei Chou, a * Cuifeng Zhou, b Qin-Fen Gu, c Hua-Kun Liu a and Shi-Xue Dou a

a Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia

b Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia

c Australian Synchrotron, 800 Blackburn Rd, Clayton 3168, Australia

*Corresponding author Email: shulei@uow.edu.au

ABSTRACT

A high rate performance $\text{Li}_3\text{V}_2(\text{PO}_4)_3$ cathode material for lithium ion batteries was synthesized by the microwave-assisted hydrothermal method followed by a post annealing process. The morphology and structure of $\text{Li}_3\text{V}_2(\text{PO}_4)_3$ were characterized by scanning electron microscope, transmission electron microscopy and synchrotron x-ray diffraction. Electrochemical results showed that the $\text{Li}_3\text{V}_2(\text{PO}_4)_3$ electrode measured at 10 C after 500 cycles can deliver discharge capacities of 85.4 mAh g$^{-1}$ and 107.8 mAh g$^{-1}$, with capacity retention of 99.3% and 95.9%, between 3.0 - 4.3 V and 3.0 - 4.8 V, respectively, indicating the good cycling stability. Furthermore, the electrochemical performance of $\text{Li}_3\text{V}_2(\text{PO}_4)_3$ in ionic liquid electrolytes between 3.0 V and 4.8 V were also measured.

Keywords: Lithium ion battery; Cathode materials; $\text{Li}_3\text{V}_2(\text{PO}_4)_3$; Microwave-assisted hydrothermal method; Ionic liquids.

1. Introduction

Since LiFePO_4 was proposed as a cathode material for the lithium ion battery by Goodenough et al. [1] in 1997, it has been widely viewed as one of the most promising for large-scale commercialization because of its high capacity, thermal stability, environmental benignity, and low cost [2]. Other lithium transition metal phosphates including LiMPO_4 ($\text{M} = \text{Mn, Co,}$
Ni) [3, 4], Li$_3$V$_2$(PO$_4$)$_3$ [5, 6], LiVOPO$_4$ [7, 8], Li$_6$M$_3$(PO$_4$)$_2$(P$_2$O$_7$)$_3$(M = V, Cr, Al, Ga) [9, 10], Li$_2$MP$_2$O$_7$ (M = Mn, Co, Fe) [11, 12] and their derivatives [13-15], have also received a lot of attention due to their great thermal stability and competitive energy density. For one particular, Li$_3$V$_2$(PO$_4$)$_3$ shows higher theoretical capacity (~197 mAh g$^{-1}$ vs. ~166 mAh g$^{-1}$ for LiFePO$_4$) and higher average operation voltage plateau (~4.0 V vs. ~3.5 V for LiFePO$_4$), leading to its higher energy density (~800 Wh g$^{-1}$ vs. ~560 Wh g$^{-1}$ for LiFePO$_4$) [1, 5]. However, the low intrinsic electronic conductivity (~2.4 × 10$^{-7}$ s cm$^{-1}$), high working potential (up to 4.8 V) and low Li$^+$ diffusion coefficient (10$^{-9}$ ~ 10$^{-10}$ cm2 s$^{-1}$) of Li$_3$V$_2$(PO$_4$)$_3$ leads to a poor high rate performance and unstable electrolyte, and thus limits its practical application [16]. To improve the high rate capabilities of Li$_3$V$_2$(PO$_4$)$_3$, there have been a few reports on Li$_3$V$_2$(PO$_4$)$_3$ in morphologies control, such as nanofibers [17], nanorods [18], nanoplates [19], nanobelts [20] and nanoporous [21] through various preparation methods and it is proved to be an effective way to improve the high rate capabilities of electrode materials. However, the large amount of nanosize materials with high surface area will reduce the volumetric energy densities of lithium ion batteries and improve the side reaction between active materials and electrolyte. Therefore, the micrometer-size particles consisting of aggregated nanometer-size particles, plates or wires is the ideal morphology for the electrode materials for lithium ion batteries with high energy densities at high C-rates [22].

Furthermore, to reach the high theoretical specific capacity (~197 mAh g$^{-1}$), the Li$_3$V$_2$(PO$_4$)$_3$ electrode must be fully charged to ~4.8 V (V$^{3+}$→V$^{5+}$). Conventional electrolytes (LiPF$_6$ in ethylene carbonate: diethyl carbonate (EC:DEC) or EC: dimethyl carbonate (DMC)), however, will decompose at such voltage (>4.6 V). The electrolyte decomposition will severely increase the explosion and fire risk of lithium ion batteries. Ionic liquids (ILs), on the other hand, have been receiving greater attention in the lithium ion battery field because of their non-flammability, negligible vapour pressure, and high thermal, chemical, and electrochemical stability. Among the large family of ILs, pyrrolidinium bis(trifluoromethanesulfonyl) amide salts in particular show high cathodic stability against lithium metal, relatively high ionic conductivity, non-flammability and also good electrochemical properties in battery tests [23-25].
The microwave assisted hydrothermal method is widely used because of combination of advantages of the conventional hydrothermal method [26-28] and microwave solid-state synthesis [29, 30], including morphology control, low cost, short reaction time, and high efficiency. Here, we successfully adopted a new synthesis route based on the microwave assisted hydrothermal method to obtain three dimensional (3D) Li$_3$V$_2$(PO$_4$)$_3$/C micro-size network morphology. The electrochemical performance of Li$_3$V$_2$(PO$_4$)$_3$ measured in conventional electrolyte and ionic liquids are also compared.

2. Experimental Section

The schematic representation of the preparation of 3D Li$_3$V$_2$(PO$_4$)$_3$/C nanowire and nanoparticle network morphology is illustrated in Figure 1(a). First of all, 0.0075 mol lithium acetate hydrate (CH$_3$COOLi·2H$_2$O), 0.005 mol ammonium metavanadate (NH$_4$VO$_3$) and 0.0075 mol ammonium dihydrogen phosphate (NH$_4$H$_2$PO$_4$) were dissolved in 20 mL distilled water to form a solution. 0.228 g glucose and 1 mL of ethylene glycol (EG) were then added to the solution. The solution was stirred for 2 min before being transferred into a 100 mL Teflon-lined microwave vessel. The microwave vessel was sealed, kept at 180 °C for 15 min in a microwave oven, and then cooled to room temperature naturally. After that, the solution with its black suspension was heated under continuous stirring in an 80 °C thermostatic water bath for several hours to remove the excess water. Finally, the powder was annealed at 750 °C for 10 h, with a heating rate of 5 °C min$^{-1}$ under high purity Ar atmosphere and then cooled down to room temperature under the same Ar atmosphere.

Synchrotron powder XRD data for Rietveld analysis was collected at room temperature over the range of 3° - 86° with a Mythen detector on Powder diffraction beamline at the Australian Synchrotron. The morphology of the Li$_3$V$_2$(PO$_4$)$_3$/C was examined by a high resolution field emission scanning electron microscope (SEM; JEO: FESEM-7500, 30 kV) and transmission electron microscope (TEM; JEO: 2200FS, 200 kV). The carbon content of the Li$_3$V$_2$(PO$_4$)$_3$/C, ~ 6.47%, was obtained by thermogravimetric analysis (TGA, Mettler Toledo). The specific surface area, 11.9 m2 g$^{-1}$, was measured by the Brunauer-Emmett-Teller (BET) method on a Quanta Chrome Nova 1000.
The cathodes were fabricated by blending the Li$_3$V$_2$(PO$_4$)$_3$/C with acetylene black carbon and PVDF, at a weight ratio of 8:1:1, respectively. N-methyl-2-pyrrolidone (NMP) was used as the blending solvent for the mixture. The slurries were prepared using a Kurabo MAZERUSTAR planetary mixer KK-250S for 15 min. The dried electrodes were loaded of about 7 mg of active materials. CR 2032 coin-type cells were assembled using Li$_3$V$_2$(PO$_4$)$_3$/C as the working electrode, Li foil as the counter electrode and reference electrode, porous polypropylene film as separator and 1 M LiPF$_6$ in a 1:2 (v/v) mixture of ethylene carbonate (EC) and diethyl carbonate (DEC), or 1 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf$_2$) in N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ([C$_4$mpyr][NTf$_2$]), or 1 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf$_2$) in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([C$_3$mpyr][NTf$_2$]) ionic liquids as the three different kinds of electrolyte. The cells were galvanostatically charged and discharged using an automatic battery tester system (Land®, China) at various current densities in the range of 3.0 - 4.3 and 3.0 - 4.8 V at room temperature and at current densities with various C-rates, with a theoretical specific capacity C = 140 and 197 mAh g$^{-1}$, respectively. The cyclic voltammetry was measured using Biologic VPM3 electrochemical workstation.

3. Results and discussions
Figure 1. (a) Schematic representation of formation mechanism of 3D Li$_3$V$_2$(PO$_4$)$_3$ nanowire and nanoparticle network system. (b) SXRD Rietveld refinement of Li$_3$V$_2$(PO$_4$)$_3$, where the observed data are indicated by the black symbols and the calculated profile is the red dotted line overlaying them. The lower curve is the difference between the observed and calculated intensities at each step, plotted on the same scale and shifted a little downwards for clarity. Inset of Figure 1: the crystal structure of Li$_3$V$_2$(PO$_4$)$_3$ based on the SXRD refinement.

Since small amounts of impurities affect the electrochemical properties, the precise XRD pattern was important for obtaining the details of the crystal structure. Figure 1(b) shows the Rietveld refinement results of the synchrotron X-ray diffraction (SXRD) data for Li$_3$V$_2$(PO$_4$)$_3$/C compound sintered at 750 °C, and a space group P2$_1$/n was chosen as the refinement model. The reasonably small profile R-factor, R$_p$ factor (~2.74%), suggests that single-phase Li$_3$V$_2$(PO$_4$)$_3$/C can be obtained with our experimental process. The cell parameters are a=8.6291(8) Å, b=12.0818(6) Å, c=8.6414(2) Å, β=90.022(1)$^\circ$ and the
unit-cell volume is $900.927(3) \, \text{Å}^3$. The cell parameters are consistent with previous report [31-33]. The detailed atomic coordination of $\text{Li}_3\text{V}_2(\text{PO}_4)_3/\text{C}$ from the SXRD refinement is listed in Table 1.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Multiplicity</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$U_{iso} \times 100$</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>4</td>
<td>0.2510(2)</td>
<td>0.4593(5)</td>
<td>0.1093(6)</td>
<td>0.77(2)</td>
<td>1</td>
</tr>
<tr>
<td>V2</td>
<td>4</td>
<td>0.7530(2)</td>
<td>0.4745(1)</td>
<td>0.3903(1)</td>
<td>0.74(2)</td>
<td>1</td>
</tr>
<tr>
<td>P1</td>
<td>4</td>
<td>0.1069(4)</td>
<td>0.0996(1)</td>
<td>0.1586(5)</td>
<td>1.7(1)</td>
<td>1</td>
</tr>
<tr>
<td>P2</td>
<td>4</td>
<td>0.6078(2)</td>
<td>0.1149(2)</td>
<td>0.3552(1)</td>
<td>1.7(1)</td>
<td>1</td>
</tr>
<tr>
<td>P3</td>
<td>4</td>
<td>0.0395(1)</td>
<td>0.2509(2)</td>
<td>0.4885(4)</td>
<td>1.7(1)</td>
<td>1</td>
</tr>
<tr>
<td>O1</td>
<td>4</td>
<td>0.9276(3)</td>
<td>0.1163(3)</td>
<td>0.1463(5)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O2</td>
<td>4</td>
<td>0.1482(2)</td>
<td>0.9769(4)</td>
<td>0.2404(1)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O3</td>
<td>4</td>
<td>0.1727(3)</td>
<td>0.0516(5)</td>
<td>0.0346(1)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O4</td>
<td>4</td>
<td>0.1618(2)</td>
<td>0.2609(4)</td>
<td>0.1845(0)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O5</td>
<td>4</td>
<td>0.4229(2)</td>
<td>0.0912(5)</td>
<td>0.3267(0)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O6</td>
<td>4</td>
<td>0.6959(1)</td>
<td>0.0045(2)</td>
<td>0.2841(4)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O7</td>
<td>4</td>
<td>0.6416(1)</td>
<td>0.0876(1)</td>
<td>0.4772(4)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O8</td>
<td>4</td>
<td>0.6437(1)</td>
<td>0.2933(1)</td>
<td>0.3143(1)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O9</td>
<td>4</td>
<td>0.9509(2)</td>
<td>0.1284(1)</td>
<td>0.5695(5)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O10</td>
<td>4</td>
<td>0.9307(4)</td>
<td>0.3194(0)</td>
<td>0.4028(2)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O11</td>
<td>4</td>
<td>0.1725(4)</td>
<td>0.1635(1)</td>
<td>0.4314(5)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>O12</td>
<td>4</td>
<td>0.1059(7)</td>
<td>0.3662(4)</td>
<td>0.5761(1)</td>
<td>1.5(2)</td>
<td>1</td>
</tr>
<tr>
<td>Li1</td>
<td>4</td>
<td>0.2020(6)</td>
<td>0.7810(1)</td>
<td>0.1820(2)</td>
<td>0.6(1)</td>
<td>1</td>
</tr>
<tr>
<td>Li2</td>
<td>4</td>
<td>0.9340(5)</td>
<td>0.3120(6)</td>
<td>0.2260(7)</td>
<td>3.6(2)</td>
<td>1</td>
</tr>
<tr>
<td>Li3</td>
<td>4</td>
<td>0.5760(1)</td>
<td>0.4290(1)</td>
<td>0.2070(5)</td>
<td>5.8(1)</td>
<td>1</td>
</tr>
</tbody>
</table>

Space group: P2$_1$/n
Figure 2. (a, b) SEM and (c) TEM images of Li$_3$V$_2$(PO$_4$)$_3$/C; and (d) EDS spectra corresponding to the circled areas in (d); (e, f) Corresponding HRTEM image from the marked region showing the single-crystalline structure is maintained. Inset: Fourier transform image of (e).

The SEM image of Li$_3$V$_2$(PO$_4$)$_3$/C in Figure 2(a) shows that the bulk Li$_3$V$_2$(PO$_4$)$_3$/C was made up of agglomerated uniform micro-sized particles. Nanowires with ~50 nm diameter and big particles can be found in Figure 2(b). Moreover, transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were conducted to further confirm...
the microstructure of Li$_3$V$_2$(PO$_4$)$_3$/C. As shown in Figure 2(c) and (d), the selected areas all exhibit the characteristic peaks of V, P, C, and O in the sample. The intensities of the peak are related with the contents of the elements as we selected the spot for analysis without carbon covering in the TEM grid for both Li$_3$V$_2$(PO$_4$)$_3$ particles and nanowires. The nanowires show much higher intensity of carbon peak than particle sharp materials, indicating much higher carbon contents in nanowires structure. HRTEM and Fourier transform images were shown in the Figure 2(e), the Li$_3$V$_2$(PO$_4$)$_3$/C particle was well crystallized with small amount of amorphous carbon coating. Meanwhile, as HRTEM image shown Figure 2(f), the nanowires of the sample Li$_3$V$_2$(PO$_4$)$_3$/C are composed of large amount of carbon, which provide the 3D conducting matrix to improve the electron transporting along the nanowires. Meanwhile, the crystalized Li$_3$V$_2$(PO$_4$)$_3$/C particles are acting as the host of lithium ion.

![Figure 3](image.png)

Figure 3. Initial charge-discharge curves (a, b) and dQ/dV (c, d) for Li$_3$V$_2$(PO$_4$)$_3$/C in the voltage ranges of 3.0 - 4.3 V (a, c) and 3.0 - 4.8 V (b, d).

Figure 3(a, b) shows typical charge/discharge profiles of Li$_3$V$_2$(PO$_4$)$_3$/C in the voltage ranges of 3.0 - 4.3 V and 3.0 - 4.8 V, respectively, at various current rates. As shown in Figure 3(a, b), along with increased charging/discharging current densities, these plateaus
become shorter, and the difference potential (ΔV) between the charging and discharging plateaus increases gradually, because of the electrode polarization at high C-rates. The differential capacity vs. voltage (dQ/dV) curves for Li$_3$V$_2$(PO$_4$)$_3$/C in the voltage ranges of 3.0 - 4.3 V and 3.0 - 4.8 V are shown in Figure 3(c, d), respectively. Li$_3$V$_2$(PO$_4$)$_3$/C presents three pairs of oxidation and reduction peaks in the voltage range of 3.0 - 4.3 V, while four oxidation peaks and three reduction peaks are observed in the voltage range of 3.0 - 4.8 V, corresponding to the relevant extraction/reinsertion of Li$^+$. For example, if the cell is charged to 4.8 V, all three Li$^+$ ions are extracted from monoclinic Li$_3$V$_2$(PO$_4$)$_3$ over four two-phase electrochemical plateaus at 3.60 V, 3.68 V, 4.08 V, 4.53 V during the charge process, which correspond to different phases of Li$_x$V$_2$(PO$_4$)$_3$ at $x = 3.0, 2.5, 2.0, 1.0, 0.5$, respectively. Three plateaus at 4.03 V, 3.65 V, 3.57 V are observed during the discharge process, which correspond to different phases of Li$_x$V$_2$(PO$_4$)$_3$ at $x = 2.0, 1.0, 0.5$, respectively. This electrochemical behaviour agrees well with previous results [19, 33].

Figure 4. (a) Rate performance of Li$_3$V$_2$(PO$_4$)$_3$/C electrodes; (b) discharge capacity retention at various current densities; (c) cycling performance of Li$_3$V$_2$(PO$_4$)$_3$/C, with (d) coulombic efficiency at 10 C.
In order to investigate the rate and cycling performance of Li$_3$V$_2$(PO$_4$)$_3$/C, the Li$_3$V$_2$(PO$_4$)$_3$/C cells were charged and discharged for 120 cycles in the voltage ranges of 3.0 - 4.3 V and 3.0 - 4.8 V, respectively, at various current rates. As shown in Figure 4(a), the first cycle discharge capacity in the voltage range of 3.0 - 4.3 V of Li$_3$V$_2$(PO$_4$)$_3$/C at 0.1 C was 128.5 mAh g$^{-1}$, while the discharge capacity of 162.7 mAh g$^{-1}$ was delivered by the Li$_3$V$_2$(PO$_4$)$_3$/C in the voltage range of 3.0 - 4.8 V at 0.1 C in the first cycle. After 120 cycles at different C-rates (0.1 - 20 C), the capacity retention for Li$_3$V$_2$(PO$_4$)$_3$/C measured in the voltage ranges of 3.0 - 4.3 V and 3.0 - 4.8 V is 36.2% and 52.9% of initial capacity, respectively, as shown in Figure 4(b). In Figure 4(c, d), the relatively long-term cycling performance and the coulombic efficiency for Li$_3$V$_2$(PO$_4$)$_3$/C are compared at 10 C in the voltage ranges of 3.0 - 4.3 V and 3.0 - 4.8 V. It can be found in Figure 4(c) that the Li$_3$V$_2$(PO$_4$)$_3$/C has an initial discharge capacity of 86 mAh g$^{-1}$ and 107.8 mAh g$^{-1}$ at 10 C in the voltage ranges of 3.0 - 4.3 V and 3.0 - 4.8 V, respectively. Even after 500 cycles, the Li$_3$V$_2$(PO$_4$)$_3$/C cells can still deliver discharge capacities of 85.4 mAh g$^{-1}$ and 107.8 mAh g$^{-1}$, with capacity retention of 99.3% and 95.9%, between 3.0 - 4.3 V and 3.0 - 4.8 V, respectively, indicating the good cycling performance. The Li$_3$V$_2$(PO$_4$)$_3$/C electrodes measured in the voltage ranges of 3.0 - 4.3 V and 3.0 - 4.8 V, however, both present high average coulombic efficiency, approaching 99.5% at 10 C (Figure 4(d)), indicating that the Li$_3$V$_2$(PO$_4$)$_3$/C has an excellent stable monoclinic structure. The good high rate cycling performance and high coulombic efficiency could be attributed to the 3D network structure of Li$_3$V$_2$(PO$_4$)$_3$/C, which could effectively facilitate lithium ion extraction and insertion, leading to the improvement in high rate capacity. Moreover, the long-term cycling stability at high rate of this Li$_3$V$_2$(PO$_4$)$_3$/C compound is much better than those of previous reports using hydrothermal method [18, 19, 34-37] and microwave assisted method [29, 30]. For examples, Liu et al. [18] reported that nanorod-like Li$_3$V$_2$(PO$_4$)$_3$ gave a discharge capacity of 101.1 mAh g$^{-1}$ at 10 C (1 C = 180 mAh g$^{-1}$) in the voltage of 3.0 - 4.6 V, but there were no long tern cycling performance for Li$_3$V$_2$(PO$_4$)$_3$ (only 5 cycles). Qiao et al. [19] found that plate-like Li$_3$V$_2$(PO$_4$)$_3$ showed a discharge capacity of 111.8 mAh g$^{-1}$ can still be sustained at 3 C in the voltage of 3.0 - 4.8 V. However, the cell retains 66.0% of its initial discharge capacity after 500 cycles. Sun et al. [34] reported that the reversible specific capacity of Li$_3$V$_2$(PO$_4$)$_3$ was 60 mA h g$^{-1}$ at 5 C in
the voltage of 3.0 - 4.8 V. Yan et al. [30] employed a fast sol–gel assisted microwave heating approach to prepare Li$_3$V$_2$(PO$_4$)$_3$/C with the particle size ranging from 0.5 to 1.5 mm. The prepared sample Li$_3$V$_2$(PO$_4$)$_3$/C delivered a reversible discharge capacity of 100 mAh g$^{-1}$ after 100 cycles at 20 C in the voltage of 3.0 - 4.3 V, exhibiting excellent rate capability and cycling performance. However, there was no report on the long term test for Li$_3$V$_2$(PO$_4$)$_3$/C.

Figure 5. (a) Cyclic voltammograms of Li$_3$V$_2$(PO$_4$)$_3$/C at different scan rates from 0.05 to 0.25 mV s$^{-1}$. (b) Linear fits of the peak current i_p for the oxidation and reduction peaks as functions of the square root of the scan rate ($v^{1/2}$).

The cyclic voltammetry (CV) technique is widely employed to estimate the Li$^+$ diffusion coefficient [19, 32, 33]. Figure 5(a) shows the CV of Li$_3$V$_2$(PO$_4$)$_3$/C at various scan rates in the voltage range of 3.0 - 4.3 V: the peaks of a/a', b/b' and c/c' correspond to the 0.5, 0.5 and 1 Li extraction/reinsertion, respectively. Figure 5(b) show the fitted line plots of the peak current (i_p) of the CV as a function of the square root of the scan rate ($v^{1/2}$), indicating diffusion-controlled behaviour. The diffusion coefficient of Li$^+$ could be calculated based on Equations (1) and (2), expressed as
\[i_p = 2.69 \times 10^5 n^{3/2}AD^{1/2}v^{1/2}C_0^* \] \hspace{1cm} (1)

\[D = \left(\frac{i_p}{v^{1/2}} \right)/(2.69 \times 10^5 n^{3/2}AC_0^*) = \left[k/(2.69 \times 10^5 n^{3/2}AC_0^*) \right]^2 \] \hspace{1cm} (2)

where \(k \) is the slope of the linear fit of the peak current \(i_p \) as a function of the square root of the scan rate \((v^{1/2}) \), \(n \) is the number of electrons per reaction species, \(A \) is the surface area of the electrode \((\text{cm}^2) \), \(D \) is the diffusion coefficient of \(\text{Li}^+ \) \((\text{cm}^2 \text{s}^{-1}) \), \(C_0^* \) is the concentration of lithium ions corresponding to the different specific electrochemical reaction steps \((\text{mol cm}^{-3}) \).

For the \(\text{Li}^+ \) diffusion in the electrode, \(C_0^* \) is calculated as \(3.687 \times 10^{-3} \text{ mol cm}^{-3} \), the numbers of \(\text{Li} \) per unit cell divided by the volume of cell \((900.927(3) \text{ Å}^3) \). Therefore, according to Eq. (2), the \(\text{Li}^+ \) diffusion coefficient \(D_s \) in the solid state cathode electrode and the electrolyte were calculated and are listed in Table 2. The \(\text{Li}^+ \) ion diffusion coefficient of the \(\text{Li}_3\text{V}_2(\text{PO}_4)_3/C \) is calculated to be on the order of \(\sim 10^{-9} \text{ cm}^2 \text{s}^{-1} \), which is very close to Liu et al. results \[33\], which present excellent cycling performance on the carbon coated-\(\text{Li}_3\text{V}_2(\text{PO}_4)_3 \) and nanocomposite \(\text{Li}_3\text{V}_2(\text{PO}_4)_3/\text{graphene} \). Therefore, the 3D network structure of \(\text{Li}_3\text{V}_2(\text{PO}_4)_3/C \) shows good kinetic properties for the lithium diffusion during the charge/discharge processes, leading to its excellent rate capabilities and cycling performance.

Table 2. The calculated lithium diffusion coefficients for \(\text{Li}_3\text{V}_2(\text{PO}_4)_3/C \).

<table>
<thead>
<tr>
<th>(\text{Li}_3\text{V}_2(\text{PO}_4)_3/C)</th>
<th>Peak</th>
<th>(D_s) ((10^{-9} \text{ cm}^2 \text{s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation (charge)</td>
<td>c</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>6.09</td>
</tr>
<tr>
<td>Reduction (discharge)</td>
<td>c'</td>
<td>5.38</td>
</tr>
<tr>
<td></td>
<td>b'</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td>a'</td>
<td>2.68</td>
</tr>
</tbody>
</table>
Figure 6. (a) Initial charge/discharge profiles and (b) cycling performances of Li$_3$V$_2$(PO$_4$)$_3$ electrodes measured with different electrolytes at the 0.1 C rate in the voltage of 3.0 - 4.8 V at room temperature.

Figure 6(a) shows the initial charge-discharge profiles obtained with the Li$_3$V$_2$(PO$_4$)$_3$/C electrode in the conventional and ionic liquid electrolytes at the 0.1 C rate in the voltage of 3.0 - 4.8 V at room temperature. The Li$_3$V$_2$(PO$_4$)$_3$/C delivered higher discharge capacity in conventional electrolyte, 162.3 mAh g$^{-1}$, than in the ionic liquids, 153.9 mAh g$^{-1}$ and 150.1 mAh g$^{-1}$ for [C$_4$mpyr][NTf$_2$] and [C$_3$mpyr][NTf$_2$]) electrolytes, respectively. The Li$_3$V$_2$(PO$_4$)$_3$/C delivered higher initial coulombic efficiency, however, in 1M LiNTf$_2$ in [C$_4$mpyr][NTf$_2$] and [C$_3$mpyr][NTf$_2$] electrolytes, 82.5% and 81.2%, respectively, which are both higher than in conventional electrolyte, 79.8%. The high initial cumbic efficiency indicated the highly reversible nature of the reaction for Li$_3$V$_2$(PO$_4$)$_3$ cycled in 1M LiNTf$_2$ in [C$_4$mpyr][NTf$_2$] and [C$_3$mpyr][NTf$_2$] ionic liquid electrolytes. The cycling performance of the Li$_3$V$_2$(PO$_4$)$_3$/C electrodes measured in the conventional and ionic liquid electrolytes is shown in Figure 6(b). The discharge capacity at the 50th cycle of Li$_3$V$_2$(PO$_4$)$_3$ is still retained at about 145.6 mAh g$^{-1}$, 130.1 mAh g$^{-1}$, and 124.7 mAh g$^{-1}$, with 89.7%, 84.5%, and 83.1% capacity retention, in the conventional electrolyte, and the [C$_3$mpyr][NTf$_2$] and [C$_4$mpyr][NTf$_2$] ionic electrolytes, respectively. These cycling performance results indicate that the Li$_3$V$_2$(PO$_4$)$_3$ could be cycled in the high voltage range in the high ionic conductivity, non-flammable ionic electrolytes.
Conclusions

A high performance at high C rates Li$_3$V$_2$(PO$_4$)$_3$ cathode material for lithium ion batteries was synthesized by the high efficient and low cost microwave assisted hydrothermal method, followed by a post-annealing process. Electrochemical results showed that the Li$_3$V$_2$(PO$_4$)$_3$ electrode measured at 10 C after 500 cycles can still deliver discharge capacities of 85.4 mAh g$^{-1}$ and 107.8 mAh g$^{-1}$, with capacity retention of 99.3% and 95.9%, between 3.0 - 4.3 V and 3.0 - 4.8 V, respectively, indicating the good discharge capacity and cycling stability. Furthermore, the Li$_3$V$_2$(PO$_4$)$_3$ can be cycled at 0.1 C in the voltage range of 3.0 - 4.8 V in the high ionic conductivity, non-flammable ionic liquid electrolytes, with relative acceptable capacities retention. Therefore, the ionic liquid electrolytes could be a good choice to address the problems of electrolyte degradation for high voltage cathodes (≥ 4.6 V) and increase the operating safety of lithium ion batteries.

Acknowledgements

Financial support was provided by the Australian Research Council through a Discovery project (DP110103909). The authors thank Dr. T. Silver for critical reading of the manuscript.

References