2006

A new approach in determining the load transfer mechanism in fully grouted bolts

Hossein Jalalifar

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Jalalifar, Hossein, A new approach in determining the load transfer mechanism in fully grouted bolts, PhD thesis, School of Civil, Mining and Environmental Engineering, University of Wollongong, 2006.

http://ro.uow.edu.au/theses/855
A NEW APPROACH IN DETERMINING THE LOAD TRANSFER MECHANISM IN FULLY GROUTED BOLTS

A thesis submitted in fulfillment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

By

HOSSEIN JALALIFAR

B.Sc, M.Sc. Rock Mechanics

School of Civil, Mining and Environmental Engineering

2006
IN THE NAME OF GOD

THE MOST GRACIOUS, THE MOST MERCIFUL

This thesis is especially dedicated to my family. To my mother, for her unfailing support and long patience, I am extremely grateful of her. To my wife, Zahra Jamali, for her support, understanding and sacrifice over these years and also to my little beautiful daughter, Fatemeh Jalalifar, who was eagerly waiting for me every night to come back home, although I could not spend as much time as I wished with her, I am truly grateful.

My brother, Mohammad, who lost his children in Bam’s Quack

And other relatives who suffered intensively from the Bam’s Quack

For their love, encouragement, support and patience
AFFIRMATION

I, Hossein Jalalifar, declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Civil, Mining and Environmental Engineering, Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The thesis was completed under the supervision of A/Prof. N.I.Aziz and A/Prof. M.S.N. Hadi and has not been submitted for qualification at any other academic institution.

Hossein Jalalifar

2006
The following publications are the result of this thesis project:

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my thesis supervisor A/Prof. Naj.I. Aziz, faculty of engineering University of Wollongong, for his supervision, generous support, encouragement, and guidance provided during the research and also providing the necessary facilities to conduct my research work during three years. I would also like to express my sincere thanks to A/Prof. Muhammad Hadi my thesis co-supervisor for his helpful advice in this thesis particularly in numerical simulations.

I also wish to express my sincere thanks for helpful contributions and comments made by Dr Seedsman and also Dr Alex for helpful assistance in Numerical modelling.

I also would like to thank the technical staff in the School of Civil, Mining and Environmental Engineering, especially Bob Rowlan, Alan Grant, for laboratory assistance and also Ian Bridge and Ian laird.

I greatly appreciate the contributions made by Mr Des Jemison, Mrs Leonie McIntyre and Mr Peter Turner of the ITS staff. The assistance provided by the Faculty of Engineering, University of Wollongong, in particular Mrs Lorelle Pollard is also appreciated.

I would like to acknowledge with sincere appreciation, the financial support of the Ministry of Science, Research and Technology of the Islamic Republic of Iran and the Kerman University for awarding me a research scholarship through which the complete financial support for this research was provided.

I also would like to thank Bill Huuskes manager of the Metropolitan Colliery and Rod Doyl geotechnical engineer of Appin Colliery for their great assistance in field work.

Most importantly, I would also like to express my great thanks to my wife and little daughter for their patients here and mother and brothers in Iran who have provided continued support throughout this study.

I would also like to thank all my fellow Iranian at Wollongong University in Particular Mr Saeid Hesami, Mr Mohammad Hosseini and Mr Mahdi Emamjomeh for their support and encouragement.
ABSTRACT

Rock bolts are used as temporary and permanent support systems in tunnelling and mining operations. In surface mining they are used for slope stability operations and in underground workings to develop roadway, sink shafts, and stoping operations. Rock bolting technology has developed rapidly over the past three decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are placed into discontinuous rock to prevent movement between the discontinuity planes, depending on the direction of installation and nature of the discontinuity surfaces. Rock bolting can increase the tension and shear properties of the rock mass.

Nowadays, the application of rock bolts for ground reinforcement and stabilisation is worldwide, but its effectiveness depends on rock type, strata lithology, and encapsulation characteristics. Thus the bolt, rock interaction, particularly near the shear joints, and how a bolt reacts to surrounding conditions require continuous evaluation and research. Work provides an in depth study of the bolt, grout, concrete interaction during under axial and lateral loading.

To better understand load transfer characterisation bolt shearing across joint and planes, this research programme consists of three parts. Accordingly, a series of experimental studies and field work was undertaken. A numerical technique was developed to obtain the stress and strain developed along the bolt and surrounding materials under axial and lateral loading. Finally, a field investigation programme was undertaken to obtain the load developed along different bolt profiles (another objective of this thesis). Bolt profiles were also investigated by laboratory studies.
A double shearing system (DSS) was used to examine bolts shearing. Testing was undertaken in 20, 40, and 100 MPa strength concrete to simulate different rock strengths. Only three bolt types were used in axial loading tests and different thicknesses of resin were evaluated under axial and lateral loading. Tests subjected to lateral loading were undertaken in 0, 5, 10, 20, 50 and 80 kN pre-tension loads, which revealed that the strength of the concrete significantly affects the bolt - joint contribution. Also shear displacement was dramatically reduced when the strength of the concrete was increased. Pre-tension increases the shear resistance of the system. The profile of a rock bolt affects the shear performance and load transfer under axial and lateral loads.

The 3-D FE code, ANSYS V. 9.1 was used. To investigate the load transfer and interaction between bolt, grout, and concrete under non-linear conditions, special element types for the materials and contact interfaces were introduced. The stress and strain built up along the materials under axial and lateral loads was examined.

A laboratory study on shearing at the bolt, resin interface of fully grouted bolts was extended to field studies in Appin and Metropolitan Collieries in the Southern Coalfields of the Sydney Basin, NSW, Australia. Twelve instrumented bolts were installed at both mines. Both installation sites were in the heading of a retreating long wall mine. The field investigation revealed that the load transfer on a bolt is affected by horizontal in-situ stresses and profile of the bolt surface. It showed that bolt with higher ribs and wider spacing offered greater shear resistance at the bolt - resin interface, which agreed with the laboratory results.
TABLE OF CONTENTS

TITLE

AFFIRMATION..i
LIST OF PUBLICATIONS...ii
ACKNOWLEDGMENTS ...iv
ABSTRACT..v
LIST OF FIGURES..xv
LIST OF TABLES..xxviii
LIST OF SYMBOLS AND ABBREVIATIONS..xxx

CHAPTERS

CHAPTER ONE

INTRODUCTION 1

1.1. GENERAL..1
1.2. KEY OBJECTIVE...4
1.3. METHODOLOGY...5
1.4. SCOPE...5

CHAPTER TWO

ROCK BOLT SYSTEM AND REVIEW OF BOLTS UNDER AXIAL LOADING 9

2.1. INTRODUCTION..9
2.2. HISTORICAL..9
2.3. ROOF BOLT PRACTICE AND APPLICATION...10
2.4. REINFORCEMENT MECHANISM..11
2.5. BOLT THEORIES..12
CHAPTER THREE

REVIEW OF SHEAR BEHAVIOUR OF BOLTS AND MATERIAL PROPERTIES

3.1. INTRODUCTION ... 51
3.2. PAST RESEARCH .. 53
3.3. PRE-TENSION EFFECT IN FULLY GROUTED BOLTS .. 76
3.4. MECHANICAL PROPERTIES OF REINFORCING MATERIALS 78
 3.4.1. Bolt types .. 78
 3.4.2. Bolt strength tests .. 80
 3.4.2.1. Tensile strength test .. 80
 3.4.2.2. Three point load bending test ... 83
 3.4.2.3. Direct shear test ... 84
 3.4.3. Resin grout .. 85
 3.4.4. Concrete ... 90
 3.4.4.1. Uniaxial compressive strength ... 90
 3.4.4.2. Concrete joint surface properties .. 91
3.5. SUMMARY .. 94
CHAPTER FOUR

FAILURE MECHANISM OF RESIN INTERFACES DUE TO AXIAL LOAD

4.1. INTRODUCTION ..96
4.2. LOAD TRANSFER MECHANISM ...96
4.3. BOND CHARACTERISTICS ..98
4.4. PUSH AND PULL ENCAPSULATION TESTS ...99
 4.4.1. Push encapsulation test ...101
 4.4.2. Pull encapsulation test ...103
4.5. DISCUSSION ...104
 4.5.1. Effect of bolt profile ..107
 4.5.2. Bolt yielding and necking ..110
 4.5.3. Effective shear stress at the bond interface111
 4.5.4. Bolt core behaviour subjected to axial loading115
 4.5.5. Effect of annulus ...116
4.6. SUMMARY ...117

CHAPTER FIVE

DOUBLE SHEARING OF BOLTS ACROSS JOINTS

5.1. INTRODUCTION ..119
5.2. EXPERIMENTAL PROCEDURE ..120
 5.2.1. Block casting ...120
 5.2.2. Bolt installation in concrete blocks ..121
5.3. DOUBLE SHEAR BOX ...122
5.4. TESTING ..123
5.5. BOLT TYPES ...125
5.6. RESULTS AND DISCUSSION ..127
 5.6.1. Shear load and shear displacement ..127
 5.6.1.1. Profile description ...127
 5.6.1.2. Shear loading for a limited displacement129
 5.6.1.3. Shear loading of bolt to ultimate failure138
CHAPTER 6

ROLE OF BOLT ANNULUS THICKNESS ON BOLT SHEARING

6.1. INTRODUCTION..168
6.2. TEST METHOD ..168
6.3. EXPERIMENTAL RESULTS AND DISCUSSION.................................169
 6.3.1. Shear load/ shear displacement ..170
 6.3.2. Axial load built up ..174
 6.3.3. Failure mechanism of reinforced element ...175
 6.3.4. Effect of resin thickness on shear ..180
6.4. NUMERICAL SIMULATION WITH DIFFERENT THICKNESS OF RESIN
 ...182
6.5. RESIN ANNULUS EFFECT ON INDUCED STRESSES184
 6.5.1. Induced shear stress ..185
 6.5.2. Induced tensile stress ...185
 6.5.3. Induced compression stress ...186
6.6. EFFECT OF CONCRETE MODULUS..187
6.7. EFFECT OF GROUT MODULUS..188
6.8. EFFECT OF BOLT MODULUS ...189
6.9. SUMMARY ...191

CHAPTER 7

NUMERICAL ANALYSES OF FULLY GROUTED ROCK BOLTS

7.1. INTRODUCTION..193
7. 2. FE IN ANSYS..193
8.5.1. Elastic behaviour ...258
8.5.2. Plastic behaviour ...261
8.6. HINGE POINT POSITION AND SHEAR DISPLACEMENT265
8.7. SHEAR DISPLACEMENT AND BOLT MODULUS OF ELASTICITY ..266
8.8. ANALYSIS OF A FULLY GROUTED ELASTIC BOLT IN PLASTIC ROCK MASS ...268
8.9. SUMMARY ...281

CHAPTER 9
FIELD INVESTIGATIONS

9.1. INTRODUCTION ..282
9.2. SITE DESCRIPTION ...282
 9.2.1. Metropolitan Colliery ...282
 9.2.2. Appin Colliery ...286
9.3. INSTRUMENTATION ..289
 9.3.1. Instrumented bolts ..289
 9.3.2. Intrinsically safe strain bridge monitor291
9.4. FIELD MONITORING AND DATA PROCESSING293
 9.4.1. Metropolitan Colliery ...293
 9.4.2. Appin Colliery ...299
 9.4.3. Comparison of load transfer in bolt type T1 and bolt type T3 ...302
9.5. SUMMARY ...304

CHAPTER 10
CONCLUSIONS AND RECOMMENDATIONS

10.1. EXPERIMENTAL INVESTIGATIONS307
 10.1.1. Axial loading conditions ..307
 10.1.2. Lateral loading conditions ..308
10.2. NUMERICAL AND ANALYTICAL STUDIES309
10.3. FIELD INVESTIGATIONS ..311
10.4. SUGGESTIONS FOR FURTHER RESEARCH311
REFERENCES………………………………………………………………………313

APPENDIX A
Short encapsulation pull and push test data..A.1

APPENDIX B
Double shear results in different conditions...B.1

APPENDIX C
Double shear results in different resin thickness..C.1

APPENDIX D
Numerical techniques..D.1

APPENDIX E
Load distribution along the bolt...E.1

APPENDIX F
Numerical program for bolt axial behaviour..F.1
List of Figures

Figure 1.1. Structure of Chapters ... 6

Figure 2.1. Usage of rock bolts in the world .. 11

Figure 2.2. Continuous mechanically coupled rock bolt 20

Figure 2.3. Load transfer in fully grouted rock bolts 21

Figure 2.4. Rate of load transfer along the fully grouted rock bolts 22

Figure 2.5. The mechanism of load transfer ... 24

Figure 2.6. Results of load deformation in different bolts (Stillborg 1994) 25

Figure 2.7. Bolt installation to the joint a: perpendicular, b: incline (after Obert and Duvall 1967) ... 27

Figure 2.8. Stress situation in a grouted anchor (after Farmer, 1975) 30

Figure 2.9. Theoretical stress distribution along a resin anchor in a rigid hole with thin resin annulus (after Farmer 1975) 31

Figure 2.10. Load displacement, strain distribution, and computed shear stress distribution curves in concrete, a) strain distribution at the specified anchor load, b) theoretical shear stress distribution curves (after Farmer 1975) 31

Figure 2.11. Stress distribution model for grouted bolt (after Yu and Xian, 1983) ... 34

Figure 2.12. Stress Component in a small section of a bolt (after Stillberg & Li, 1999) .. 34

Figure 2.13. Shear stress along a fully coupled rock bolt subjected to an axial load before de-coupling ... 35

Figure 2.14. Distribution of shear stress along a fully grouted rock bolt subjected to an axial load in coupled rock bolt .. 36

Figure 2.15. Variables used in a closed form solution (after Serbousek and Singer 1987) ... 38

Figure 2.16. Schematic illustration of different conical lugged bolts: (a) Single, (b) Double and (c) Triple conical lugged bolt .. 39

Figure 2.17. Shear stress versus shear displacement in bolt /grout interface at different bolt diameter (after Aydan 1989) 42
Figure 2.18. Dilation behaviour of joint plane a) two smooth plane, b) bolt and resin interface.

Figure 2.19. Pull test gear arrangement (after Singer 1990).

Figure 2.20. Comparison of load distribution along the bolt length.

Figure 2.21. Schematic diagram reflecting the geometry of a rough bolt (after Yazici and Kaiser, 1992).

Figure 2.22. Load/displacement curves for rebar with various amounts of bar deformation removed (after Fabjanczyk and et al, 1992).

Figure 3.1. Stability issues in rock mass reinforced by fully grouted bolts.

Figure 3.2. Shear test arrangement in (a) and (b) probable load generation (after Dulasck 1972).

Figure 3.3. Components of shear resistance by a bolt (after Bjurstrom, 1974).

Figure 3.4. (a) Block splitting in one side of shear joint (b) non equilibrium situation in vicinity of shear joint.

Figure 3.5. (a) Finite element mesh and (b) deviatoric of stress distribution across the joint (Afridi and et al. 2001).

Figure 3.6. Arrangement for bolt shear testing (after Hass, 1981).

Figure 3.7. General deformation patterns for a dowel in shear.

Figure 3.8. Shear test machine used by Schubert (after Schubert1984).

Figure 3.9. Relationship between shear stress and shear displacement (after Yoshinaka 1987).

Figure 3.10. Direct shear test device (after Egger and Zabuski 1991).

Figure 3.11. Bolt grout behaviour (after Holmberge 1991).

Figure 3.12. A grouted rock bolt subjected to lateral force.

Figure 3.13. Ferrero’s shear test machine.

Figure 3.14. Resistance mechanism of a reinforced rock joint (after Ferrero 1995).

Figure 3.15. Forces acting on the failure mechanism (after Ferrero 1995).

Figure 3.16. Force components and deformation of a bolt, a) in elastic zone, and b) in plastic zone (after Pellet and Eager 1995).
Figure 3.17. Evolution of shear and axial forces in a bolt, a) in elastic zone, and b) in plastic zone (after Pellet and Egger, 1995) ..72

Figure 3.18. Joint displacement as a function of angle β for different UCS value (after Pellet 1994) ...74

Figure 3.19. Shear block test assembly (after Goris and et al. 1996)75

Figure 3.20. Different Bolt Types used for axial and shear behaviour tests79

Figure 3.21. Profiles specification ...79

Figure 3.22. Bolt clamped in Instron Universal testing Machine81

Figure 3.23. Stretching of the bolts after tensile test ..82

Figure 3.24. Load- deflection curve at tensile test in various bolts83

Figure 3.25. Load- deflection curve at tensile test of Bolt Type T5 and T683

Figure 3.26. Load- deflection curve at tensile test in cable bolt83

Figure 3.27. Load- deflection curve at tensile test of Bolt Type T483

Figure 3.28. Three point load bending test set up ...84

Figure 3.29. Load- displacement behaviour of 3PLBT ...84

Figure 3.30. direct shear test trend in Bolt Types T1 and T385

Figure 3.31. Typical fracture plane and fracture angle for compression test samples 87

Figure 3.32. Compression test set up ...88

Figure 3.33. Stress strain curve for resin ..88

Figure 3.34. Load versus displacement ..89

Figure 3.35. Double shear test set up (a) shear box set up (b) induced loads90

Figure 3.36. Concrete sample: (a) concrete under the test (b) concrete after 30 days 91

Figure 3.37. Variation of peak shear stress versus different normal stress in shear joint plane in a: 20 MPa and b: 40 MPa concrete93

Figure 3.38. Shear load –versus shear displacement in joint plane in 40 MPa concrete ..93

Figure 4.1. Sketch of real bolt profile specifications and interfaces98
Figure 4.2. (a) Resin-bolt load transfer under various confining pressures (b) resin bolt separation after post encapsulation

Figure 4.3. (a) The actual push test configuration (b) the schematic of the test

Figure 4.4. Preparing the bolt resin samples

Figure 4.5. Post-test sheared Bolt Type T2 out of steel cylinder in push test

Figure 4.6. Pull test arrangement

Figure 4.7. Post-test sheared bolt out of steel cylinder

Figure 4.8. Shear load as a function of displacement in pull test

Figure 4.9. Shear load as a function of displacement in push test

Figure 4.10. General trend of push and pull test view

Figure 4.11. The effect of Rib spacing on shear load

Figure 4.12. Shear load versus shear displacement in smooth bolt

Figure 4.13. De-bonding at pull test

Figure 4.14. Shear stress versus bond displacement in push test

Figure 4.15. Shear stress versus bond displacement in pull test

Figure 4.16. Annulus thickness effect

Figure 5.1. Bolt bending behaviour (after Indraratna et al. 2000)

Figure 5.2. Laboratory and numerical model

Figure 5.3. Hole reaming for hole rifling

Figure 5.4. An assembled bolt fitted with load cells on both ends of the bolt

Figure 5.5. Schematic of post failed assembled shear box (a), and a set up of the high strength capacity machine - Avery machine (b)

Figure 5.6. The set up of the Instron machine with load cell connection

Figure 5.7. Different bolt types

Figure 5.8. Typical shear load displacement profile stages of the sheared bolt
Figure 5.9 (a-f). Shear load and vertical displacement profiles of Bolts Types T1, T2 and T3 in both 20 and 40 MPa concrete ...133

Figure 5.10 (a-f). Shear load versus vertical shear displacement profiles of various bolts in 20 and 40 MPa concrete at different pretension load134

Figure 5.11. Shear yield load values in different concrete strength of various bolt types and various pretension loads ...135

Figure 5.12. Bolt slippage along the bolt -grout interface in case of non-pre-tension loading and non- plate ...137

Figure 5.13. Axial fracture along the concrete and grout breaking off in the tensile zone in Bolt Type T1 in 40 MPa concrete with 80 kN pre-tension loading138

Figure 5.14. Shear load versus shear displacement in 0, 5 and 10 kN pretension load in Bolt Types T5 and T6 in 40 MPa concrete ...142

Figure 5.15. Bolt failure view in different pretensioning142

Figure 5.16. (a) Relationship between failure load and maximum tensile strength on one side of the shear joint on Bolt Type T5, (b) bolt failure angle143

Figure 5.17. Shear load versus shear displacement in 100 MPa concrete and different pre-tension loading in Bolt Type T1 ...143

Figure 5.18. Excessive bolt necking in 100 MPa concrete, 80 kN pretension load .144

Figure 5.19. Bolt/ joint concrete interaction at shear joint in 100 MPa concrete with 80 kN pre-tension load ..144

Figure 5.20. Bolt imprint on resin in 100 MPa concrete at 50 and 80 kN pre-tension loads ...145

Figure 5.21. The ratio of axial load developed along the bolt over ultimate tensile strength of the bolt versus shear displacement in concrete 100 MPa with 80 kN pre-tension load ...147

Figure 5.22. Shear load versus load cell readings on tensile load applied on a bolt installed in a 20 MPa concrete ...148

Figure 5.23(a-f). Shear load and pretension loads (load cell readings) for various bolts with an initial pre-tension load of 20, 50 and 80 kN149

Figure 5.24. End crushing of the concrete in high pre-tension load150

Figure 5.25. Axial load developed along the bolt versus shear displacement in Bolt Type T2 in 40 MPa concrete ..150
Figure 5.26. Effect of pre-tension load, bolt profile and concrete strength on the bolt resistance .. 151

Figure 5.27. Schematic diagram of the strain gauges locations in the reinforcing element (a) without pretension load and (b) 20 kN pre-tension load153

Figure 5.28. Shear load versus strain measurements in non-pretension load155

Figure 5.29. Bolt surface with strain gauges installed.. 156

Figure 5.30. Strain rate along the bolt, as measured on the bolt, in zero pretension load .. 156

Figure 5.31. Shear load versus strain gauge measurements along the bolt in 20 kN of pre-tension .. 156

Figure 5.32. The variation of the strain gauge measurements along the bolt at 20 kN pre-tension load ... 157

Figure 5.33. Axial fracture developed along the bolt through the 20 MPa concrete 159

Figure 5.34. The created gap in plastic stage .. 160

Figure 5.35. Effect of concrete strength on the factor of movement................. 163

Figure 5.36. Expected cumulative results versus observed cumulative results165

Figure 5.37. Bolt contribution in Bolt Type T5 and T6.. 166

Figure 6.1. Shear load as function of displacement in different resin thickness......170

Figure 6.2. Effect of resin thickness on shear displacement 171

Figure 6.3. The effect of resin thickness on shear yield load 171

Figure 6.4. Shear load and shear displacement in concrete 20 and 100 MPa and 20 kN pretension load and different resin thickness in Bolt Type T1 172

Figure 6.5. Gap creation between bolt grout at high resin thickness in concrete 20 MPa with 20 kN preload (5 mm thick) .. 173

Figure 6.6. Bolt resin bending at high resin thickness in concrete 40 MPa with 20 kN preload (5 mm thick) .. 173

Figure 6.7. Shear load and axial load build up along the bolt in concrete 20 MPa and 20 kN pretension load and thin resin thickness in bolt Type T1 (25 mm) 174

Figure 6.8. Shear load versus axial load developed along the bolt in different thicknesses of resin in 20 MPa concrete .. 175
Figure 6.9. Axial load versus shear displacement in bolt T1 and 20 kN pre-load in 27 mm diameter hole surrounded by 20 MPa of concrete.................................176

Figure 6.10. Axial stress versus shear displacement in Bolt Type T1 in 20 kN pre-load in 36 mm diameter hole surrounded by 20 MPa of concrete..........................177

Figure 6.11. A comparison of axial load induced along the bolt in different thicknesses of resin thickness in 20 MPa strength (axial resistance factor is equal to axial load over ultimate tensile strength)...178

Figure 6.12. Side profile of failed Bolt Type T1 surrounded by 20 MPa of concrete and a 36 mm diameter hole under 20 kN of pre-tension load b) typical end profile of a failed reinforcing element..178

Figure 6.13. The effect of hole diameter versus stiffness ..180

Figure 6.14. Effect of hole diameter and resin thickness on shear displacement in numerical design..183

Figure 6.15. Effect of resin thickness and concrete strength on shear displacement in numerical design in un-pretension load ..183

Figure 6.16. Induced shear stress versus concrete modulus of elasticity in different annulus size (grout modulus is considered 12 GPa)..185

Figure 6.17. Induced tensile stress versus grout modulus of elasticity in soft concrete (20 GPa) ..186

Figure 6.18. Induced compression stress versus concrete modulus of elasticity187

Figure 6.19. Shear displacement versus concrete modulus of elasticity in different resin thickness, (grout modulus is 12 GPa)...188

Figure 6.20. Shear displacement versus grout modulus of elasticity in different resin thickness, concrete modulus is 20 GPa...189

Figure 6.21. Shear displacement as a function of bolt modulus variations in different strength rocks ..190

Figure 7.1. FE Simulation of bolted rock mass (after Hollingshead, 1971).........196
Figure 7.2. Three-Dimensional rock bolt element (after John and Dillen, 1983)196
Figure 7.3. Bolt-Rock interaction model (after Peng and Guo, 1988)197
Figure 7.4. The process of FE simulation (Dof = degrees of freedom)..............200
Figure 7.5. (a) 3D concrete Solid 65 (b) Concrete mesh201
Figure 7.6. Finite element mesh for grout ..202
Figure 7.7. Finite element mesh for bolt ...203
Figure 7.8. Geometry of the model and mesh generation ..205
Figure 7.9. Load-deflection in 80 kN pretension bolt load and 40 MPa concrete ...206
Figure 7.10. Numerical model (s = symmetric planes, c = compression zone, T = tension zone) ..208
Figure 7.11. Bolt displacement in 20 MPa, without Pre-tension209
Figure 7.12. Shear displacement as a function of bolt length sections in 20 MPa concrete ...210
Figure 7.13. Bolt deflection at the moving side and hinge point versus loading process, in 40 MPa concrete without pre-tension load ...210
Figure 7.14. Stress built up along the bolt axis in 20 MPa concrete without pre-tension ...211
Figure 7.15. Trend of stress built up along the bolt axis 20 MPa concrete with 80 kN pre-tension ...212
Figure 7.16. Von Mises stress trend in 20 MPa concrete without pre-tension213
Figure 7.17. Shear stress contour in the concrete 20 MPa without pre-tension213
Figure 7.18. The rate of shear stress along the bolt axis in concrete 20 MPa without pre-tension ...214
Figure 7.19. The rate of shear stress along the bolt axis in concrete 20 MPa without pre-tension in one side of the joint plane ...215
Figure 7.20. Shear stress trend in bolt – joint intersection in concrete 20 MPa at post failure region without pre-tension load ...215
Figure 7.21. Deformed bolt shape in post failure region in 20 MPa concrete216
Figure 7.22. Plastic strain contour along the bolt axis in concrete 20 MPa without pre-tension ...217
Figure 7.23. Strain trend along the bolt axis in concrete 20 MPa without pre-tension in upper fibre of the bolt ...217
Figure 7.24. Yield strain trend as a function of time stepping concrete 20 MPa in 20 kN pre-tension load ..218
Figure 7.25. Tension and pressure strain along the bolt in 20 MPa concrete and 20 kN pre-tension ..219

Figure 7.26. Von Mises strain trend along the bolt axis in concrete 40 MPa and 80 kN pre-tension ...219

Figure 7.27. Von Mises strain along the bolt in concrete 20 MPa concrete without pre-tension ..220

Figure 7.28. Von Mises strain trend in concrete 20 MPa without pre-tension in upper fibre of the bolt ..220

Figure 7.29. Concrete displacement in non-pretension condition in 20 MPa221

Figure 7.30. Yield stress induced in 20 MPa without pre-tension condition222

Figure 7.31. Induced stress and displacement trend in 20 MPa concrete without pre-tension ..223

Figure 7.32. Strain contours in 20 MPa concrete without pre-tension224

Figure 7.33. Induced strain in concrete 20 MPa in grout and concrete versus loading without a pre-tension and 27 mm diameter hole224

Figure 7.34. Concrete displacement versus loading time in concrete (a) 20 and (b) 40 MPa without pre-tension load ...225

Figure 7.35. Induced strain rate along the contact interface in 40 MPa concrete and without pre-tension. ..225

Figure 7.36. Induced strain in concrete and bolt as a function of loading steps in 20 MPa concrete with 80 kN pre-tension ..226

Figure 7.37. Maximum induced stress contours in grout layer without pre-tension and 20 MPa ...227

Figure 7.38. Gap formation in post failure region in 20 MPa concrete in the Numerical simulation ..228

Figure 7.39. Gap formation in post failure region in 20 MPa concrete in the laboratory test ...228

Figure 7.40. Grout displacement in different location along the bolt axis in 40 MPa concrete ...229

Figure 7.41. The rate of induced strain along the grout layer without pre-tension in an axial direction ..230
Figure 7.42. The grout displacement as a function of plastic strain generated in bolt, joint intersection through the grout without pre-tension

Figure 7.43. The rate of contact pressure changes between (a) grout - concrete interface (b) bolt - grout interface in 20 MPa concrete without pre-tension

Figure 7.44. Contact pressure at the (a) bolt - grout interface (b) concrete - grout interface in 20MPa concrete in high resin thickness (36mm hole diameter) in 80kN pretension load

Figure 7.45. Shear load versus bolt-grout contact pressure at 36 mm hole and 20 MPa concrete with 80kN pre-tension load

Figure 7.46. Finite element mesh: a quarter of the model

Figure 7.47. The bolt movement in pulling test

Figure 7.48. Rate of the bolt displacement in pull test

Figure 7.49. Bolt displacement contour in Bolt Type T1 in case of push test

Figure 7.50. Induced strain along the bolt profiles in pull test

Figure 7.51. Shear strain in bolt ribs in push test

Figure 7.52. Von Mises Stress and shear stress along the bolt axis

Figure 7.53. Shear stress contours along the grout interface

Figure 7.54. The effect of grout modulus on shear displacement in push test

Figure 7.55. Effect of grout modulus on shear displacement in pull test

Figure 7.56. Shear displacement as a function of grout modulus of elasticity in case of push and pull test

Figure 8.1. Assembled model (concrete, grout and steel bolt)

Figure 8.2. Load generation along the bolt during shearing

Figure 8.3. Stress strain relationship for bolt type T1

Figure 8.4. Elastic – plastic stress sequence in bending

Figure 8.5. Deformed shape, shear force, bending moment and shear displacement diagrams

Figure 8.6. Applied loads on joint intersection
Figure 8.7. Reaction forces in bolt loaded laterally ..258
Figure 8.8. Hinge point distance versus axial force ..260
Figure 8.9. Bolt diameter versus hinge point distance in different rock strength ... 261
Figure 8.10. The relationship between axial load and hinge point distance in different rock strength in plastic situation ...263
Figure 8.11. The relationship between the axial load and hinge point distance in both elastic and plastic situation ...263
Figure 8.12. Hinge point position in different concrete strength264
Figure 8.13. Relationship between hinge point position and axial deformation 264
Figure 8.14. Hinge point location as a function of shear displacement in elastic region ..265
Figure 8.15. Comparison of the numerical and analytical results in 20 MPa 268
Figure 8.16. Notation for numerical formulation ..272
Figure 8.17. Axial load along the bolt versus bolt length, with 25 MPa initial stress and 15 GPa modulus of surrounding rock, no face plate ..274
Figure 8.18. Normalised displacement versus bolt length for a bolt without a plate with 25 MPa initial stress and 15 GPa modulus of surrounding rock274
Figure 8.19. Normalised displacement versus bolt length for a bolt without a plate, with 25 MPa initial stress and 15 GPa modulus of surrounding rock at different k values ..275
Figure 8.20. Normalised displacement versus bolt length for a bolt without a plate, with 15 MPa initial stress and 15 GPa modulus of surrounding rock at different k values ..275
Figure 8.21. Load developed along the bolt versus bolt length with no face plate with 15 MPa initial stress and 25 GPa modulus of surrounding rock at different k values ..276
Figure 8.22. Load developed along the bolt versus bolt length in case of a bolt without a plate, with 15 GPa modulus of surrounding rock at different initial stresses ...276
Figure 8.23. Load developed along the bolt versus bolt length in case of a bolt without a plate, with 25 MPa initial stress and different modulus of surrounding rock at k=10 ..277
Figure 8.24. Load developed along the bolt versus bolt length in case of a bolt without plate, with 25 MPa initial stress and different modulus of surrounding rock at k=10, L=10 m

Figure 8.25. Load developed along the bolt versus bolt length in case of using end plate with 25 MPa initial stress and different k, at $E_r = 5\text{GPa}$

Figure 8.26. Normalised displacement versus bolt length in case of using end plate with 25 MPa initial stress and different k, at $E_r = 5\text{GPa}$

Figure 8.27. Axial load versus bolt length in case of using end plate with 25 MPa initial stress and different rock modulus and bolt length, k=10

Figure 8.28. Normalised displacement versus bolt length in case of using end plate with 25 MPa initial stress and different rock modulus and bolt length, k=10

Figure 8.29. Axial load versus bolt length in case of using end plate in different initial stress with 5 GPa rock modulus, k=10

Figure 8.30. Axial load versus bolt length in case of using end plate in different plastic zone radius with 5 GPa rock modulus, k=10

Figure 9.1. Geographical location of (a) Metropolitan and (b) Appin Colliery

Figure 9.2. Modelled geological section and strength profiles (SCT report 2002)

Figure 9.3. Detailed layout of the panel under investigation indicating instrumentation site at Metropolitan Colliery

Figure 9.4. Photograph of the site with installed bolts in Metropolitan Colliery

Figure 9.5. Detail site plane of the instrumented bolts at Metropolitan Colliery

Figure 9.6. Status of the horizontal stress in Appin Colliery

Figure 9.7. Detailed layout of the panel under investigation indicating instrumentation site at Appin Colliery (M= main gate, T = bolt type)

Figure 9.8. Photograph of the site with installed bolts in Appin Colliery

Figure 9.9. Bolt segment showing channels

Figure 9.10. Strain gauge and bolt layout

Figure 9.11. A section of an instrumented bolt showing the strain gauge and wirings through the silicon gel

Figure 9.12. A general view of the SBM, while taking readings in underground
Figure 9.13. Load transferred on the bolt Type T1 installed at the travelling road in, Metropolitan Colliery ... 294

Figure 9.14. Load transferred on the bolt Type T3 installed at the travelling road in, Metropolitan Colliery ... 295

Figure 9.15. Shear stress developed at the bolt/resin interface of the Bolt Type T1, in Metropolitan Colliery ... 297

Figure 9.16. Shear stress developed at the bolt/resin interface of the Bolt Type T3, in Metropolitan Colliery ... 298

Figure 9.17. Load transferred on the Bolt Type T1, (a) middle of the belt road (b) close to the belt in Appin Colliery ... 299

Figure 9.18. Load transferred on the Bolt Type T3, (a) middle of the road (b) rib side in Appin Colliery .. 300

Figure 9.19. Shear stress developed at the bolt/resin interface of the Bolt Type T1, in Appin Colliery (a) middle of the road (b) belt side 301

Figure 9.20. Shear stress developed at the bolt/resin interface of the Bolt Type T3, in Appin Colliery (a) rib side (b) middle of the road 302

Figure 9.21. Load transferred on the Bolt Type T1 and T3, installed at the right side of the traveling road, Metropolitan Colliery 303

Figure 9.22. Load transferred on the Bolt Type T1 and T3, installed at the middle side of the belt road, Appin Colliery .. 304

Figure 10.1. Large scale of double shear box .. 312
LIST OF TABLES

Table 2.1. Bolt theories...13
Table 2.2. Bolt types and descriptions...15
Table 2.3. Bolt accessories..18
Table 3.1. A brief comparison of the used methods in bolt shear behaviour......77
Table 3.2. Physical specifications of different bolt types.................................80
Table 3.3. Bolt tensile strength...82
Table 3.4. Specification of bolt shear test...85
Table 3.5. Summary of the results obtained from UCS test..........................87
Table 3.6. Double shear test specifications...89
Table 3.7. Concrete joint properties...93
Table 4.1. Grout and steel properties...102
Table 4.2. The load transfer laboratory results of the bolts in both pull and push tests...105
Table 4.3. Comparison of the laboratory results in pull and push tests..............114
Table 4.4. Axial and lateral strains along the bolt in pull and push tests.............115
Table 5.1. Experimental schedule indicating the number of samples tested per bolt in 20 MPa concrete...126
Table 5.2. Experimental schedule indicating the number of samples tested per bolts in 40 and 100 MPa concrete..127
Table 5.3. Experimental schedule indicating the number of samples tested per bolts T5 and T6 (low strength steel in 40 MPa concrete)..............................127
Table 5.4. Yield point shear load values for different bolts under different environment..131
Table 5.5. Yield point shear load values for bolt type T1 under different environment..132
Table 5.6. Test results at bolt Types T5 and T6 surrounded by 40 MPa concrete..140
Table 5.7. Bolt Type T1 in 100 MPa concrete

Table 5.8. Joint confining specification

Table 6.1. The results of bolt tested in Type T1-20 MPa strength with 20 kN pretension load

Table 6.2. The results of shear test in different resin thickness and concrete strength

Table 6.3. Concrete strength effect on shear displacement reduction in different resin thickness

Table 7.1. Summary of created models
LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS

\[\sigma_p \] Horizontal stress;

\[\sigma_b \] Bolt axial stress

\[\beta \] Angle between the normal to the fracture plane and the horizontal plane

\[\varphi \] Friction angle of the fracture

\[\tau_s \] Shear stress in resin annulus

\[\xi_x \] Extension in the bolt

\[a \] Radius of bolt

\[x \] Distance along the length of bolt starting at free end of grout

\[R \] Radius of the borehole

\[G_g \] Shear modulus of grout

\[k_l \] Long term shear deformation modulus of rock

\[w(x) \] Expression for bolt displacement

\[u(x) \] Bolt displacement due to strain

\[u \] Neutral point displacement

\[P \] Radial distance to the neutral point

\[r_o \] Tunnel radius

\[A_b \] Bolt cross-section area

\[D_b \] Bolt diameter

\[\sigma_b \] Applied stress

\[\sigma \] Stress in the bolt at a distance \(y_d \)

\[\sigma_0 \] Stress at the point of applied force

\[\alpha \] Decay coefficient 1/in which depends on the stiffness of the system

\[y_d \] Distance along the bolt from the applied load

\[p_a \] Load applied at the bolt head

\[E_b \] Modulus of the bolt

\[\Delta l \] The deflection at the head of the bolt
 apparent dilation angle
\(\rho_a \) Reduction coefficient of dilation angle
\(\sigma_{\text{lim}} \) Limiting stress
\(\phi_0 \) Friction angle between the bolt and grout
\(P_p \) Ultimate pull out load
\(l_a \) Anchorage length
\(s \) Slip between anchorage and grout
\(k, t \) Coefficients which depend on the type of anchor, grout and stages of shear.
\(T \) Shear force carried by bolt
\(\sigma_c \) Uniaxial compressive strength of rock
\(T_{re} \) The reinforcement effect in shear resistance due to bolting
\(A_j \) Joint area
\(\sigma_n \) Normal stress on joint
\(p_u \) The bearing capacity of the grout or rock
\(t \) Axial bolt load in the position of the plastic moment,
\(t_y \) Axial load corresponding to the yield strength
\(\theta \) The angle between the normal vector to the joint and the bolt,
\(\phi_b \) The basic joint friction angle
\(t_r \) Load induced in the bolt
\(Q \) Force due to dowel effect
\(\alpha_j \) Angle between the joint and the dowel axis
\(F \) Global reinforced joint resistance
\(Q_{oe} \) Shear force acting at point O at the yield stress of the bolt
\(N_{oe} \) Axial force acting at shear plane at the yield stress of the bolt
\(\sigma_{el} \) Yield stress of the bolt
\(Q_{of} \) Shear force acting at shear plane at failure of the bolt
\(N_{of} \) Axial force acting at shear plane at failure of the bolt
\(\sigma_{ec} \) Axial failure stress of the bolt
\(l_e \) Hinge length
\(E_c\) Concrete Modulus of elasticity
\(\rho\) Concrete density
\(f_{cm}\) Mean value of the concrete compressive strength at the relevant age
\(\tau_p\) Peak shear stress,
\(T_{max}\) The peak shear load at bolt-grout interface
\(a_r\) Height of rib
\(D_s\) Rib spacing
\(U\) The shear displacement at each step of loading
\(\sigma_{aij}\) Change in axial stress between two adjacent gauges
\(\varepsilon_{ai}\) Axial strain at gauge 1
\(\varepsilon_{aj}\) Axial strain at gauge 2
\(\tau_y\) Grout shear strength
\(\tau_{res}\) Residual bond strength
\(\mu\) Friction coefficient between bolt-grout interface
\(N_c\) Confining load
\(c\) Cohesion between block joints
\(n\) Normal force
\(f(t)\) Bolt contribution
\(T_y\) Shear load
\(T_i\) Joint contribution
\(F_{max}\) Maximum tensile strength of the bolt
\(f(u)\) Dimensionless factor in terms of shear displacement,
\(u_b\) Shear displacement
\(T_h\) Yield point at shear load- displacement curve (bolt contribution)
\(f_{ty}\) Pretension load
\(u_y\) Joint movement, which is usually twice bolt deflection
\(D_h\) Hole diameter
\(Pr\) Pretension load
E_g Modulus of elasticity of the grout
I Bolt moment of inertia
K_s Bolt stiffness
t_a Resin thickness
σ_t Tensile stress in bolt
γ Shear strain at any point in the interface
γ_r Shear strain at residual shear strength
γ_{max} Shear strain at peak shear strength
τ_r Residual shear strength of the interface
τ_{max} Peak shear strength of interface
T_{ab} Actual bond stress in the grout
T_y Yield stress of the grout in shear
f Axial force in the bolt
A Contact interface area
y Deflection of the bolt
K_m Stiffness of subgrade reaction
E_m Modulus of subgrade
N_{cf} Normal force at yield limit
N_p Normal force at failure
Q_p Shear force at failure
M_D Bending moment at yield limit
M_p Bending moment at plastic limit
N_D Axial force in hinge point
σ_f Failure stress at bolt material
Q_e Shear force acting at point C in elastic limit
β_j Joint slope
p_r Pretensioning
K_i Interface load transfer factor
p_u Support reaction
\(K_m \) Lateral stiffness,
\(u_y \) Lateral deformation
\(S \) Section modulus.
\(\sigma_{\text{max}} \) Normal stress acting on the bolt
\(E_i \) Modulus of elasticity of intact subgrade
\(Q_{cf} \) Shear force
\(L_{cp} \) Reaction length
\(F_x \) Shear load due to bond per unit length in elastic behaviour
\(K \) Shear stiffness of interfaces (N/mm^2)
\(u_r \) Rock displacement along the bolt
\(u_{ro} \) Total deformation of the excavation wall
\(\nu \) Poison ration of rock mass
\(Po \) In situ stress
\(r_e \) The boundary between the zone of plastic and elastic
\(E_{as} \) The mean actual strain measured by an active gauge,
\(V_d \) The change in SBM reading, and
\(G \) The gauge factor of the strain gauge
\(\Delta \tau \) Average shear stress at the bolt-resin interface,
\(F_1 \) Axial force acting in the bolt at strain gauge position 1
\(F_2 \) Axial force acting in the bolt at strain gauge position 2
\(l \) Distance between strain gauge position 1 and strain gauge position 2.

ABREVIATIONS

\(JRC \) Joint roughness coefficient
\(JCS \) Joint compressive strength