2009

Environmental impacts and the ecology of sponges and ascidians in south-eastern Australian coastal lakes and lagoons

Peter Brendan Barnes
University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
ENVIRONMENTAL IMPACTS AND THE ECOLOGY OF SPONGES AND ASCIDIANS IN SOUTH-EASTERN AUSTRALIAN COASTAL LAKES AND LAGOONS

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from the

UNIVERSITY OF WOLLONGONG

by

Peter Brendan Barnes

Department of Biological Sciences

2009
Frontispiece: *Suberites sp.* in Wallis Lake
Declaration

I, Peter Brendan Barnes declare that this thesis submitted in fulfilment of the requirements for the award of Doctor of Philosophy in the Department of Biological Sciences, University of Wollongong is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution.

..

Peter Brendan Barnes

15th July 2009
TABLE OF CONTENTS

Acknowledgements.. v
Abstract.. viii
List of tables.. xii
List of figures.. xiv

CHAPTER 1: General introduction... 1
1.1 Environmental impacts in estuaries and the need for effective management 1
1.2 Types of estuaries: Coastal lakes and lagoons ... 2
1.3 Habitats in coastal lakes and lagoons: Soft sediments and seagrasses................. 5
1.4 Sponges and ascidians in coastal lakes and lagoons .. 7
1.5 The detection of environmental impacts ... 9
1.6 This study ... 11

CHAPTER 2: Spatial scales of variation and the optimisation of sampling for sponges and ascidians in coastal lakes and lagoons ... 15
2.1 Introduction .. 15
2.2 Materials and methods ... 18
 2.2.1 Study sites and sampling methods ... 18
 2.2.2 Statistical analyses: Analyses of variance ... 19
 2.2.3 Statistical analyses: Cost–benefit analyses ... 21
2.3 Results .. 22
 2.3.1 List of taxa .. 22
 2.3.2 Spatial scales of variation .. 23
 2.3.3 Optimising replication: Cost–benefit analyses .. 27
2.4 Discussion .. 30

CHAPTER 3: Human impacts and patterns of distribution of sponges and ascidians among New South Wales coastal lakes and lagoons .. 35
3.1 Introduction .. 35
3.2 Methods ... 38
 3.2.1 Study-sites and sampling methods .. 38
 3.2.2 Statistical analyses .. 41
3.3 Results .. 43
 3.3.1 List of taxa .. 43
 3.3.2 Sponges: Open versus closed and big versus small lakes 43
 3.3.3 Ascidians: Open versus closed and big versus small lakes 47
 3.3.4 Sponges: Extensively modified versus less modified lakes 48
 3.3.5 Ascidians: Extensively modified versus less modified lakes 49
3.4 Discussion .. 50

CHAPTER 4: Associations of sponges and ascidians with aquatic vegetation 57
4.1 Introduction .. 57
4.2 Materials and methods ... 62
 4.2.1 Study-sites .. 62
 4.2.2 Sampling methods .. 63
 4.2.3 Statistical analyses .. 64
4.3 Results .. 66
CHAPTER 5: Anthropogenic impacts in estuaries: Cooling water discharge from power stations affects assemblages of sponges and ascidians in Lake Macquarie

5.1 Introduction .. 81
5.2 Materials and methods ... 85
 5.2.1 Site description and sampling methods 85
 5.2.2 Localised impacts on diversity within Lake Macquarie 87
 5.2.3 Larger scale impacts on diversity: comparing Lake Macquarie to other estuaries .. 88
 5.2.4 Localised impacts within Lake Macquarie: Spatial and temporal patterns of abundance of Mycale sp., Suberites sp. and Polyclinum nudum ... 88
 5.2.5 Larger scale impacts: Spatial and temporal patterns of abundance of Mycale sp. and Suberites sp. in Lake Macquarie and coastal lakes 89
5.3 Results .. 89
 5.3.1 Localised impacts on diversity within Lake Macquarie 90
 5.3.2 Larger-scale impacts on diversity: Comparing Lake Macquarie with other estuaries .. 98
 5.3.3 Localised impacts on spatial and temporal patterns of abundance of Mycale sp, Suberites sp., Polyclinum nudum and Botryllioideae leachi within Lake Macquarie .. 100
 5.3.4 Impacts on spatial and temporal patterns of abundance of Mycale sp., and Suberites sp: Comparisons of Lake Macquarie with other coastal lakes .. 102
 5.3.5 Associations of sponges and ascidians with habitat.................... 104
5.4 Discussion ... 105

CHAPTER 6: Effects of shading, water flow and predation on the sponge, Suberites sp. in the seagrass meadows of a temperate Australian coastal lake

6.1 Introduction .. 113
6.2 Materials and methods ... 116
 6.2.1 Study-sites and sampling methods ... 116
6.3 Results .. 121
6.4 Discussion ... 124

CHAPTER 7: General discussion.. 129

7.1 Overview ... 129
7.2 Patterns of distribution .. 130
 7.2.1 Comparisons with other taxa in coastal lakes and lagoons 134
 7.2.2 Considerations for sampling ... 135
7.3 Implications for conservation and management 138
 7.3.1 Ecological significance ... 138
 7.3.2 Geographical range ... 139
 7.3.3 Utility as bio-indicators .. 140
 7.3.4 Effects of opening regime ... 142
7.4 Conclusion ... 143

References .. 146
Acknowledgements

Wow! Now I’m at this stage of my thesis and look back, I realise just how many people have helped me with their time, knowledge and resources, and for whom I am extremely grateful. First, I thank Jillian Grayson for encouraging me to embark on the PhD journey in the first place. Thanks goes to all the people who volunteered for field work and snorkelled or swam in various conditions from the clear, tropical-like, 32º waters of Smiths Lake in summer to the somewhat murkier and colder 12º depths of a Lake Conjola winter, including Jillian Grayson, James Wraith, Andy Cairns, Adrian Ferguson, Jeff Kinley, Audrey Kucera, Cary Rogers, Brianna Clynick, Simon Tweed, Sian Towell, Nat Sullivan, Caitlin Grayson, Jason Everett and Pia Wynberg. Of course, like in most projects, I had some helpers who I’d like to thank in particular; Liz West for both her patience and enthusiasm for the project, my good mate Johnny B. Gomez for many hours spent underwater braving sea monsters and our subsequent scientific discussions, and my little brother Robby Kucera, who was unrivalled in both his unique levels of underwater excitability and his ability to spot a sponge even in the densest of seagrass meadows. I am also left with very fond memories of building an elaborate flow-through aquaria system during a clear summer on the sunny shores of Smiths Lake with my handyman dad, Peter Charles Barnes, who died before I managed to finish this thesis – thanks Dad.

Along with huge amounts of help with field work, there were a host of other areas in which I gained assistance and advice, without which this PhD would not have been possible. For help with taxonomy, many thanks go to John Hooper and staff of the Queensland Museum who identified the sponges, Xavier Turon from the University of
Barcelona who identified some of the ascidians and Nick Yee from the Royal Botanic Gardens (Sydney) who identified some of the algae. I thank David Ayre (University of Wollongong), who did some preliminary DNA analyses of *Suberites*, Kayley Usher (University of Western Australia) for confirming the presence of cyanobacteria in *Suberites* which opened up new avenues for exploring ecological hypotheses, Ron West for sharing his knowledge of coastal lakes and the use of his boat in the early stages of the project, Mariella Mercurio for kindly sending me a number of hard to get papers, Kylie Pitt for the use of her PAR sensor, David Hall from Hallprint in South Australia for kindly providing shellfish tags free of charge, Kerryn Stevens from Wollongong DEC for chasing data on the opening frequencies and salinity ranges of lakes, Dave Hair for arranging generous access to the University of New South Wales Field Station at Smiths Lake and my old friend ‘Mr Fixit’, Graham Housefield for sharing his knowledge of how to build aquaria from plastic drums and how to keep them working with cable ties and a tube of silicone. It was great to have the opportunity to chat with a couple of commercial fishers, Lyle Bramble from Smiths Lake and Les Biles from the Tuggerah Lakes who introduced me to some of the common names for lake sponges and provided insights into the habits of some of the creatures from the lakes which come from lifetimes spent on the water.

In addition to the more practical areas of help, I was extremely lucky to get advice on experimental design and statistical analyses from some fantastic people including Tim Glasby (who spent a lot of time answering my naïve questions at the start of the project), Tony Underwood, Gee Chapman, Marti-Jane Anderson, Bob Clarke and Nathan Knott. I thank each of you very much for your time and knowledge.

In the final stages of writing this thesis, I was also lucky enough to have a move to a new position at the University of Western Australia, where I found myself
immediately surrounded by seagrass and fish ecologists, who provided great discussion, some new ideas and terrific encouragement. Thanks to all the crew at UWA, but in particular Gary Kendrick, Marion Cambridge, Euan Harvey and Jessica Meeuwig.

Special thanks must go to the organisations which funded the project including a small grant from Lake Macquarie City Council (which included funds from Delta Electricity, Eraring Energy, Oceanic Coal and Hunter Water), Gosford City Council and in particular Wyong Shire Council who was the founding and major funding body.

Huge thanks go to my two supervisors, Andy Davis and Danny Roberts who came up with the initial concept (and money) for studying sessile invertebrates in coastal lakes. Thanks Andy for your great ability to always be positive, always be a source of ideas (some a little crazy, but most not so crazy), your extreme patience, encouragement and I think above all your sustained enthusiasm which really helped to keep me going. To the sometimes elusive Danny Roberts, thanks for all the effort and encouragement you have put in along the way, and especially for your bodyguard services in Buzios.

Finally, to Heather who got out the whip and told me to just finish writing it or else! Thanks babe.
Abstract

Estuaries worldwide are under threat from urbanisation and development and will need effective management for their successful conservation. Coastal lakes and lagoons have been identified as one of the estuary types most susceptible to human impacts largely because of their isolated nature and slow flushing times. Management of estuaries will be most effective when based on a sound scientific understanding of the patterns of distribution, biology and ecology over the full range of biodiversity of these systems, however, such an understanding is lacking for many systems and many taxa. Studies of sponges and ascidians in coastal lakes and lagoons are rare compared to other taxa, particularly in the southern hemisphere. This study represents the first detailed scientific investigation of the ecology of sponges and ascidian in coastal lakes and lagoons of southeastern Australia. Consequently, a large part of this thesis was devoted to quantifying basic patterns of distribution. I started with a pilot study to develop an effective sampling design, followed by large-scale comparisons among different types of lake, comparisons among habitats within lakes and an environmental impact study. I concluded with a manipulative experiment to examine processes responsible for small-scale patterns of distribution of sponges in seagrass meadows.

In the pilot study, distributions of sponges and ascidians were quantified at a hierarchy of three spatial scales in each of two coastal lakes. Nested analyses of variance were then used to identify spatial scales at which variation was significant. Most sponges and ascidians were very patchily distributed at a range of spatial scales from 10s of metres up to 100s of kilometres. Unlike other published examples of cost–benefit analyses, very few taxa were widespread over the larger spatial scales. Cost–benefit analyses done to determine the optimal sampling design revealed inclusion of
patchily distributed taxa in analyses improved the overall precision of sampling for comparisons of assemblages among lakes.

Large-scale comparisons of assemblages of sponges and ascidians were made among lakes of different size (big versus small), opening regime (mostly open to the ocean versus mostly closed) and level of environmental modification (extensively modified versus more pristine). Similar to other taxa studied in coastal lakes, in general there were more species in lakes mostly open to the ocean compared to the mostly closed lakes, and importantly, no sponges and only one species of ascidian was found in the small closed lakes. There also appeared to be an effect of the level of modification of a lake with relatively smaller abundances of ascidians in extensively modified lakes, and a complete absence of sponges from one of the extensively modified lakes.

Habitat-associated patterns were examined at smaller spatial scales by comparing the distributions of sponges and ascidians with the species composition and percentage cover of seagrass and macroalgae within two lakes; St Georges Basin and Wallis Lake. Several patterns of association were observed, but these varied among species of sponge and ascidian. In St Georges Basin, the most common sponge, *Aplysinella cf. rhax* and the native ascidian *Pyura stolonifera* were positively correlated with the seagrass, *Posidonia australis*. In contrast, the introduced ascidian, *Styela plicata* was more abundant in areas dominated by the seagrass, *Zostera capricorni*. In Wallis Lake, sponges were most diverse and some species most abundant in large beds of the macroalga, *Lamprothamnion* sp., while other sponges were found only on the holdfasts of brown macroalgae. In both lakes, sponges were generally less common in areas dominated by dense meadows of the seagrass, *Zostera capricorni*.

Among the many anthropogenic impacts threatening the ecology of coastal lakes, the discharge of cooling water from coal-fired power stations represents an
almost ideal case study from which to develop appropriate sampling regimes for
detecting impacts on sponges and ascidians. Using reference locations both within and
outside Lake Macquarie which has two cooling water outlets, I found assemblages of
sponges and ascidians were often more diverse, more abundant and less temporally
variable near to the outlets compared to reference locations.

Based on the observation that the sponge, *Suberites* sp. which contains
photosynthetic symbionts was absent from meadows of dense *Zostera capricorni*, I used
in situ manipulative experiments in Smiths Lake to investigate processes which maybe
affecting their distribution. Individual *Suberites* sp. were shaded, had water flow
reduced and were transplanted into areas of dense *Z. capricorni*. There were no
measurable short-term effects of shading or reduced water flow, but transplanted
sponges were quickly eaten and I concluded predation by fish was likely to be a key
process determining small-scale patterns of distribution of *Suberites* sp. in seagrass
meadows. This result was in stark contrast to the majority of previous studies of the
effects of seagrass habitat complexity on predation which have found predation to
decrease with increasing density or complexity.

In conclusion, I have sought to provide sound scientific information to aid in the
management of these systems. A simple, but nevertheless key finding was that sponges
and ascidians are indeed present and widespread in coastal lakes and lagoons of
southeastern Australia and should not be continually overlooked in the management and
conservation of these systems. Conservation will be complex and requires an
understanding of environmental impacts and the consequences of management on the
full range of biodiversity. The distributions of sponges and ascidians at large ‘lake-
wide’ scales appear to behave similarly to other taxa. Management strategies which
change the characteristics of a lake at these large spatial scales such as artificial
openings of entrances could therefore be predicted to have similar effects across a range of taxa including sponges and ascidians. In contrast, at smaller spatial scales such as the complexity of seagrass meadows, some species of sponges and ascidians may behave very differently from other taxa. At present, our understanding of these naturally variable and complex systems is incomplete and will require ongoing scientific investigation to identify natural patterns of distribution, environmental impacts, important natural processes and the ecological consequences of management strategies.
List of tables

Table 1.1. Examples of studies reporting sponges or ascidians in coastal lakes and lagoons. Numbers in parentheses indicate number of lakes and lagoons sampled. Lakes and lagoons that were also studied in this thesis are identified by name (see Figure 3.1) .. 14

Table 2.1. Taxa found in each location (1 to 6) in St Georges Basin and/or Wallis Lake (+ species present; – species absent) .. 23

Table 2.2. ANOVAs to examine variation for selected variables between and within St Georges Basin and Wallis Lake (n.s.- not significant, *** $p < 0.001$) 24

Table 2.3. ANOVAs to examine variation among locations and sites for abundances of *Aplysinella* cf. *rhax* and *Pyura stolonifera* in St Georges Basin (**$p < 0.01$, * $p < 0.05$) ... 24

Table 2.4. ANOVAs to examine variation among sites within specified locations in Wallis Lake for each of *Halichondria* spp., *Mycale* sp. and *Suberites* sp. Locations are indicated in parentheses (n.s. - not significant, *** $p < 0.001$) ... 26

Table 2.5. Variance estimates derived from ANOVA for selected variables calculated from untransformed data. Locations are indicated in parentheses (— variances were not calculated at that spatial scale) .. 27

Table 2.6. Replication at each spatial scale derived from cost–benefit analyses for sampling sponges and ascidians. Values in parentheses have not been rounded. Numbers in bold have been rounded to whole units of sampling. In cases where there was a choice between rounding up or down, the replication that produced the more precise estimate of the mean is given... 28

Table 2.7. Precision of estimating means measured as the standard error of the mean for selected variables at the scales of lake and location, using different numbers of locations, sites and transects. .. 29

Table 3.1. Locations in which species were found in each of ten NSW coastal lakes. Includes data from timed searches and transects. Refer to Figure 3.1 for positions of Locations in each lake. .. 44

Table 3.2. Analyses of variance to test for differences among Lakes with different opening regimes and sizes for selected variables. ns - not significant, *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$. Tests for main effects were constructed after non-significant sources of variation were pooled ($p > 0.25$). 48

Table 3.3. Analyses of variance to test for differences between Lakes with different levels of human impact. ns - not significant, *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$. Tests for main effects were constructed after non-significant sources of variation were pooled ($p > 0.25$). .. 49

Table 5.1. Sponges, ascidians and habitat found in each Site at Time 1 (March 2004). .. 92

Table 5.2. Sponges, ascidians and habitat found in each Site at Time 2 (August 2004) .. 94

Table 5.3. Sponges, ascidians and habitat found in each Site at Time 3 (March 2005) 96

Table 5.4. Distributions of sponges and ascidians found in the seagrass meadows of Lake Macquarie compared to Wallis Lake, Smiths Lake, Brisbane Water, Pittwater, Port Hacking and Lake Conjola in January-April 2004. Condition as classified by Healthy Rivers Commission (2002). Numbers in () indicate total number of sites where those species were found. 99
Table 5.5. Asymmetrical analyses of variance to test for differences in abundances of *Mycale* sp. in Lake Macquarie compared to Wallis Lake and Lake Conjola.

a Tests were constructed after lower order sources of variation were eliminated at $p > 0.25$.

b Transformations did not remove heterogeneity of variances.

Table 5.6. Asymmetrical analyses of variance to test for differences in abundances of *Suberites* sp. in Lake Macquarie compared to Wallis Lake and Smiths Lake.

a Tests were constructed after lower order sources of variation were eliminated at $p > 0.25$.

Table 7.1. Selected examples of studies investigating the effects of the physical characteristics of coastal lakes and lagoons on biota. Generalised conclusions on effects of opening regime on diversity and abundance are included. Numbers in brackets represent the numbers of lakes and lagoons sampled in the respective studies.
List of figures

Figure 2.1. Locations sampled in St Georges Basin and Wallis Lake.19
Figure 2.2. Mean (SE) numbers of taxa per transect (n = 20) at each site.25
Figure 3.1. Locations sampled in 10 New South Wales lakes and lagoons.40
Figure 3.2. MDS plots comparing assemblages of (a) sponges and (b) ascidians among
lakes. Each point represents the centroid for that lake. Note: Durras, Swan and Illawarra lakes are absent from (a) because no sponges were found and similarly Swan Lake is absent from (b) because no ascidians were found. 45
Figure 3.3. Mean (SE) numbers per transect in each lake. Note: axes are not to scale
in histograms which are split. + indicates taxa were found in timed searches
only... .. 46
Figure 4.1. Sites sampled in St Georges Basin and Wallis Lake.62
Figure 4.2. Mean (SE) percentage covers of seagrasses and macroalgae in St Georges
Basin and Wallis Lake (n=20).. ... 71
Figure 4.3. Mean (SE) numbers of taxa per transect (n = 20) at each site72
Figure 4.4. Dendrograms from Cluster analyses illustrating groups of Sites with
relatively similar assemblages of aquatic vegetation in St Georges Basin (a)
and Wallis Lake (b).. 73
Figure 4.5. nMDS ordinations illustrating associations of sponges and ascidians with
assemblages of aquatic vegetation at the scale of Site. Figs a and e illustrate
differences in assemblages of aquatic vegetation among Sites in St Georges
Basin and Wallis Lake respectively. In Figures b-e, abundances of
Aplysinella cf. rhax, Pyura stolonifera and Styela plicata, respectively, have
been superimposed on Fig. a. In Figures f-h, abundances of Mycale sp.,
Suberites sp. and S. plicata, respectively, have been superimposed on Fig. e.
The diameter of each circle is proportional to the abundance of each species
at that Site. Abundances are relative to each figure and cannot be compared
among figures.. .. 74
Figure 4.6. Correlations between number of Cystoseira trinodus with Halichondria
sp. and total number of C. trinodus per transect at each of 4 sites in
Location 3. n = 20 transects per site. *** correlations were significant at p <
0.001.. 75
Figure 5.1. Sites sampled at Time 1 (March 2004). Underlined sites were also sampled
at Times 2 & 3. Sites in red indicate presence of sponges and/or ascidians.
See Table 5.1 for details.. ... 93
Figure 5.2. Sites sampled at Time 2 (August 2004). Underlined sites were also
sampled at Times 1 & 3. Sites in red indicate presence of sponges and/or ascidians.
See Table 5.2 for details 95
Figure 5.3. Sites sampled at Time 3 (March 2005). Underlined sites were also sampled
at Times 1 & 2. Sites in red indicate presence of sponges and/or ascidians
(See Figure 5.3 for details).. 97
Figure 5.4. Means (SE) of abundances of invertebrates per transect in each of nine
locations in March 2004 (Time 1), August 2004 (Time 2) and March 2005
(Time 3). n = 6. .. 101
Figure 5.5. Means (SE) of abundances of Mycale sp. per transect in Sites near the
cooling water outlets compared to Sites in Wallis Lake and Lake Conjola in
March 2004 (Time 1), August 2004 (Time 2) and March 2005 (Time 3). n =
6.. 103
Figure 5.6. Means (SE) of abundances of *Suberites* sp. per transect in Sites near the cooling water outlets compared to Sites in Wallis Lake and Smiths Lake in March 2004 (Time 1), August 2004 (Time 2) and March 2005 (Time 3). n = 6

Figure 6.1. Study Sites in Smiths Lake

Figure 6.2. *In situ* experiments: a) reduced light, b) reduced water flow, c) procedural control for reduced light, d) procedural control for reduced current and e) untouched control. Experiments were repeated at each of two sites with n = 4 for each treatment at each site.

Figure 6.3. *In situ* experiment to test for effects of transplanting *Suberites* sp. to beds of dense and tall *Zostera capricorni*: a) transplantation into dense seagrass, b) translocation procedural control and c) untouched control. Experiments were repeated in each of two sites with n = 4 for each treatment at each site.

Figure 6.4. Number of sponges found one month after water flow was reduced compared to controls in Sites 1 and 2.

Figure 6.5. Number of sponges found one month after being transplanted to dense seagrass compared to controls in Sites 1 and 2.

Figure 6.6. Examples of effects of predation on *Suberites* sp. transplanted into dense *Zostera capricorni* meadows and a likely predator, *Meuschenia trachylepsis*. Note two obvious bite marks in b) and numerous bite marks in c).