2007

Temporal relationship between renal cyst development, hypertension and cardiac hypertrophy in a new rat model of autosomal recessive polycystic kidney disease

Jacqueline K. Phillips
Murdoch University

Deborah Hopwood
Murdoch University

Rhonda A. Loxley
Murdoch University

Kamaljit Ghatora
University of Sydney

Jason Coombes
Westmead Hospital

See next page for additional authors

Publication Details

Temporal relationship between renal cyst development, hypertension and cardiac hypertrophy in a new rat model of autosomal recessive polycystic kidney disease

Abstract
Background/Methods: We have examined the hypothesis that cyst formation is key in the pathogenesis of cardiovascular disease in a Lewis polycystic kidney (LPK) model of autosomal-recessive polycystic kidney disease (ARPKD), by determining the relationship between cyst development and indices of renal function and cardiovascular disease. Results: In the LPK (n = 35), cysts appear at week 3 (1.1 ± 0.1 mm) increasing to week 24 (2.8 ± 2 mm). Immunostaining for nephron-specific segments indicate cysts develop predominantly from the collecting duct. Cyst formation preceded hypertension (160 ± 22 vs. Lewis control 105 ± 20 mm Hg systolic blood pressure (BP), n = 12) at week 6, elevated creatinine (109 ± 63 vs. 59 ± 6 μmol/l, n = 16) and cardiac mass (0.7 vs. 0.4% bodyweight, n = 15) at week 12, and left ventricular hypertrophy (2,898 ± 207 vs. 1,808 ± 192 μm, n = 14) at week 24 (all p ≤ 0.05). Plasma-renin activity and angiotensin II were reduced in 10- to 12-week LPK (2.2 ± 2.9 vs. Lewis 11.9 ± 4.9 ng/ml/h, and 25.0 ± 19.1 vs. 94.9 ± 64.4 pg/ml, respectively, n = 26, p ≤ 0.05). Ganglionic blockade (hexamethonium 3.3 mg/kg) significantly reduced mean BP in the LPK (52 vs. Lewis 4%, n = 9, p ≤ 0.05). Conclusion: Cyst formation is a key event in the genesis of hypertension while the sympathetic nervous system is important in the maintenance of hypertension in this model of ARPKD.

Publication Details

Authors
Temporal Relationship between Renal Cyst Development, Hypertension and Cardiac Hypertrophy in a New Rat Model of Autosomal Recessive Polycystic Kidney Disease

A Division of Health Sciences, School of Veterinary and Biomedical Science, Murdoch University, Animal Resources Centre, Murdoch, and Cardiology Department, School of Medicine and Pharmacology, University of Western Australia, Perth, and Centre for Transplant and Renal Research, Westmead Millennium Institute, The University of Sydney at Westmead Hospital, Sydney, Australia

Key Words
Hypertension · Left ventricular hypertrophy · Cystogenesis · Autosomal-recessive polycystic kidney disease · Renin-angiotensin-aldosterone system · Sympathetic nervous system · Immunohistochemistry

Abstract
Background/Methods: We have examined the hypothesis that cyst formation is key in the pathogenesis of cardiovascular disease in a Lewis polycystic kidney (LPK) model of autosomal-recessive polycystic kidney disease (ARPKD), by determining the relationship between cyst development and indices of renal function and cardiovascular disease. Results: In the LPK (n = 35), cysts appear at week 3 (1.1 ± 0.1 mm) increasing to week 24 (2.8 ± 2 mm). Immunostaining for nephron-specific segments indicate cysts develop predominantly from the collecting duct. Cyst formation preceded hypertension (160 ± 22 vs. Lewis control 105 ± 20 mm Hg systolic blood pressure (BP), n = 12) at week 6, elevated creatinine (109 ± 63 vs. 59 ± 6 μmol/l, n = 16) and cardiac mass (0.7 vs. 0.4% bodyweight, n = 15) at week 12, and left ventricular hypertrophy (2.898 ± 207 vs. 1.808 ± 192 μm, n = 14) at week 24 (all p ≤ 0.05). Plasma-renin activity and angiotensin II were reduced in 10- to 12-week LPK (2.2 ± 2.9 vs. Lewis 11.9 ± 4.9 ng/ml/h, and 25.0 ± 19.1 vs. 94.9 ± 64.4 pg/ml, respectively, n = 26, p ≤ 0.05). Ganglionic blockade (hexamethonium 3.3 mg/kg) significantly reduced mean BP in the LPK (52 vs. Lewis 4%, n = 9, p ≤ 0.05). Conclusion: Cyst formation is a key event in the genesis of hypertension while the sympathetic nervous system is important in the maintenance of hypertension in this model of ARPKD.

Introduction
Hypertension is a common and early clinical feature of both autosomal-dominant and -recessive variants of polycystic kidney disease (PKD) [1, 2] and has a major role in the development of left ventricular hypertrophy (LVH) as well as the progression to end-stage renal failure.
An understanding of the pathogenesis and progression of hypertension is therefore critical to identifying key interventions and limiting morbidity in PKD.

The mechanisms of hypertension in PKD are not well defined and it has been hypothesised that one of the initial precipitants is the development of gross abnormalities in renal structure due to cyst formation causing local tissue ischaemia and the activation of a variety of mediators including the renin-angiotensin-aldosterone system (RAAS), vasoactive peptides and sympathetic nervous system (SNS) [5, 6]. This would suggest that hypertension occurs simultaneously with cyst formation, and precedes development of LVH. Indeed, this is consistent with clinical experience and cross-sectional studies of humans with PKD [5, 7]. The prospective evaluation of this hypothesis in humans is difficult and requires examination in animal models. In that regard, a number of mouse and rat models of PKD are described. In the rat, all known models are the result of spontaneous genetic mutations, while in mice many have been engineered through chemical induction or insertional mutagenesis including targeted mutagenesis of human PKD orthologs [8, for review]. However, to date these models of PKD including the heterozygous Han:SPRD PKD and autosomal-recessive PKD (ARPKD) wpk animals show either no or only mild-to-moderate elevations in blood pressure [9–11] and no evidence of progressive cardiovascular disease. Furthermore, genetically engineered mouse models may have specific defects in the cardiovascular system, which may make interpretation complicated [12].

We have examined the overriding hypothesis that cystogenesis is a key event in the pathogenesis of cardiovascular disease in PKD by undertaking a temporal analysis of renal morphology, indices of renal function, blood pressure and cardiac hypertrophy in a new Lewis rat model of PKD (LPK). In order to gain an appreciation of the mechanisms driving hypertension, we have also examined the respective contributions of RAAS and SNS. Preliminary data regarding the LPK model [13] indicates the key trait of marked hypertension from an early age, with inheritance features suggestive of ARPKD. Classically, the cystic lesions in ARPKD arise predominantly from the collecting duct [8] whereas in autosomal-dominant PKD (ADPKD), recent data suggest cysts arise predominantly from the distal nephron [14, 15]. Therefore, in order to determine the site of origin of cysts in the LPK model, we have performed immunohistochemistry to: (1) determine the nephron-segment origin of the cysts, and (2) assess the degree of tubulointerstitial damage, a common histological accompaniment of PKD and predictor of progression.

Materials and Methods

Animals

All experiments were carried out with the approval of the Animal Ethics committees of the respective institutions. Lewis rats with PKD arising as a spontaneous mutation were identified at the Animal Resources Centre, Perth Australia (2002) in a LEW/SsNAr (Lewis) inbred strain originally received from the Department of Health and Human Services, National Institute of Health, USA (1990). The Lewis animals with PKD (LPK) were inbred by brother/sister matings of affected litters and maintained as an inbred colony. Standard inbred Lewis rats (LEW/ CrlBR) bred at the Animal Resources Centre were used as a control strain. The LPK females produced one litter of 8–12 pups at 12–15 weeks of age and did not reproduce again. Animals did not survive beyond 26 weeks of age.

In order to characterise the mode of inheritance, mating experiments were performed. LPK × LPK crossings yielded offspring which all exhibited renal cysts (50 pairs, 345 [100%] polycystic progeny). Brown Norway (BN) × LPK crossings (F1) yielded offspring with no detectable cysts (3 pairs, 3 litters, 18 progeny). For the F1 × F1 crossings (F2; 16 pairs, 16 litters, 152 offspring), 38 developed cystic kidneys (25%, χ² value = 0.00, p < 0.05). This frequency of PKD in F2 animals supports an autosomal recessive pattern of Mendelian inheritance for a single gene mutation.

Experimental Design and Assessment of Blood Pressure

Whole body and tissue-specific measurements were collected from LPK and Lewis rats at the time points of 3, 6, 12, 16 and 24 weeks of age. At each time point, a minimum of 6 rats (3 female, 3 male) of each strain was used (n = 36 LPK rats, 31 Lewis rats). Prior to CO₂ euthanasia, body weight and tail-cuff blood pressure measurements were made (average of 3 measurements after acclimatization; NIBP controller, ADI Instruments, Castle Hill, NSW, Australia) and voided urine samples collected. Urine was not collected from 3-week-old animals. Immediately following euthanasia, blood was collected by cardiac puncture and arteria, heart, pancreas and liver weight recorded. Additional blood was collected for serum urea and creatinine levels. A final group of mixed sex 16-week-old animals was used for determination of arterial pressure and heart rate. Three other additional groups of animals were used. A group of mixed sex 1-week-old LPK and Lewis rats (n = 6 each strain, total 12 rats) were euthanised and renal tissue collected and processed for morphometric quantification. A group of mixed sex 10- to 12-week-old LPK and Lewis rats (n = 18 and 8, respectively, total 26 rats) were used for assessment of blood pressure using the Powerlab (AD Instruments) data system. The ganglionic blocking agent hexamethonium bromide (Sigma) was administered subcutaneously (3.3 mg/kg) during continuous measurement of arterial pressure and heart rate. Preliminary studies indicated this dosage as one that produced consistent and tolerated effects in the LPK. Systolic pressure, diastolic pressure,
Table 1. Primary and secondary antibodies used for kidney immunohistochemistry

<table>
<thead>
<tr>
<th>Primary antibodies</th>
<th>Dilution and source</th>
<th>Secondary antibodies</th>
<th>Antibody target/marker</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoclonal mouse α-rat, clone ED-1, IgG1 Isotype</td>
<td>1:400, Serotec, UK</td>
<td>biotinylated rabbit α-mouse IgG1</td>
<td>monocytes and macrophages/inflammation</td>
<td>tubulointerstitial damage</td>
</tr>
<tr>
<td>Monoclonal mouse α-smooth muscle actin (SMA) clone1A4, IgG2a Isotype</td>
<td>1:4,000; Sigma-Aldrich, Sydney, Australia</td>
<td>biotinylated rabbit α-mouse IgG2a</td>
<td>interstitial myofibroblast accumulation</td>
<td>tubulointerstitial damage</td>
</tr>
<tr>
<td>Monoclonal mouse α-proliferating cell nuclear antigen (PCNA), clone PC10, IgG2a Isotype</td>
<td>1:100; Dako, Carpinteria, Calif., USA</td>
<td>biotinylated rabbit α-mouse IgG2a</td>
<td>tubular epithelial cell (TEC) proliferation/inflammation</td>
<td>tubulointerstitial damage</td>
</tr>
<tr>
<td>Monoclonal mouse α-vimentin, clone V9, IgG1 Isotype</td>
<td>1:100; Dako, Sydney, Australia</td>
<td>biotinylated rabbit α-mouse IgG1</td>
<td>intermediate filament protein/dedifferentiated epithelia</td>
<td>tubulointerstitial damage</td>
</tr>
<tr>
<td>Monoclonal mouse α-rat Aquaporin-1 (AQP1), IgG2b Isotype</td>
<td>1:100; Abcam, Cambridge Science Park, Cambridge, UK</td>
<td>biotinylated goat α-mouse immunoglobulins IgG</td>
<td>proximal convoluted tubule (PCT) and thin descending limb of Henle’s loop (DL)</td>
<td>cyst origin</td>
</tr>
<tr>
<td>Polyclonal sheep α-Tamm-Horsfall glycoprotein (THG) IgG Isotype</td>
<td>1:200; Chemicon, Boronia, Vic., Australia</td>
<td>biotinylated rabbit α-sheep IgG</td>
<td>thick ascending limb (AL) and distal convoluted tubule (DCT)</td>
<td>cyst origin</td>
</tr>
<tr>
<td>Polyclonal rabbit α-rat Aquaporin-2 (AQP2) IgG Isotype</td>
<td>1:100; Abcam</td>
<td>biotinylated goat α-rabbit IgG</td>
<td>cortical and medullary collecting ducts (CD)</td>
<td>cyst origin</td>
</tr>
</tbody>
</table>

mean arterial pressure (MAP) and heart rate were continuously measured until reaching a steady level within 3–5 min of drug administration.

Clinical Biochemistry and Haematology

Full biochemical profiles were performed on animals at weeks 6, 12 and 24. At 3 and 16 weeks, only serum urea and creatinine were determined. Serum creatinine, urea, protein, bilirubin, alkaline phosphatase (ALP), aspartate amino transferase (AST) and alanine amino transferase (ALT) were measured using a Rx Daytona analyser (Randox Laboratories, Antrim, UK). Plasma aldosterone concentrations were ascertained using a radioimmunoassay kit (Count a Coat, Diagnostic Products Corporation, California, USA, undertaken by ProSearch International Australia, Malvern, Vic., Australia). Micro haematocrit tubes were used to determine packed cell volume (PCV). Urine specific gravity (USG) was measured using a refractometer and urine protein to creatinine ratio determined using a Cobas Mira analyser (Roche Diagnostics, Schweiz, AG).

Tissue Histology

The heart, liver and pancreas were placed into 4% formalin prior to embedding in paraffin wax for histological analysis. Liver, pancreas and a mid-ventricle section of the heart were stained with haematoxylin and eosin (HE) and examined by standard light microscopy. Coronal sections of the kidney were fixed in methyl Carnoy’s solution or 4% formalin and after paraffin embedding, 4-μm-thick sections were stained with periodic acid-Schiff (PAS) for cyst morphometric analysis and Gomori’s tri-chrome for histological assessment of collagen deposition.

Immunohistochemistry of the Kidney

To assess the degree of tubulointerstitial damage, and origin of cyst formation, immunohistochemistry using the primary and secondary antibodies as indicated in table 1 was performed. For tubulointerstitial damage, markers for interstitial inflammation (macrophage/monocytes, detected by ED-1 antigen), interstitial myofibroblast accumulation (α-smooth muscle actin, SMA), tubular dedifferentiation (vimentin, an intermediate filament protein expressed in dedifferentiated but not normal epithelia) and tubular epithelial cell (TEC) proliferation (proliferating cell nuclear antigen, PCNA) were used. For determination of cyst origin, the primary antibodies against the following specific nephron segments were used: aquaporin-1 (AQP1) which is a marker for the proximal convoluted tubule and the thin descending limb of Henle’s loop [16]; Tamm-Horsfall glycoprotein (THG) which is expressed by the thick ascending limb and distal convoluted tubule [17] and aquaporin-2 (AQP2), whose expression is localised to the apical domains in the principal cells of the cortical and medullary collecting ducts [18, 19].
Primary antibodies were incubated at 4°C overnight, followed by biotinylated species-specific secondary antibodies. All secondary antibodies were used at a dilution of 1:400 and were from Zymed Laboratories (San Francisco, Calif., USA) except for the biotinylated goat anti-mouse immunoglobulins IgG (1:400, Dako, Botany, NSW, Australia). Sections were incubated for 30 min with secondary antibodies. All primary and secondary antibodies were diluted using phosphate buffered saline (PBS; pH 7.4) with 1% bovine serum albumin (BSA) and 1% Tween-20. Immunoreactivity was visualised with Vectastain Elite ABC® reagent (Vector Laboratories, Burlingame, Calif., USA) and the chromogen diaminobenzidine (DAB; Sigma-Aldrich). Methyl-green 2% was used for counterstaining followed by dehydration and application of cover slips using Histomount® (Invitrogen Corporation, Carlsbad, Calif., USA).

Morphometric Quantification of the Kidney
Sections were viewed with a microscope and the images were digitalized using a video camera (BX51/ DP11; Olympus, Perth, WA, Australia) linked to image analysis software (Optimas Image Analysis, Version 5.2; Optimus Corp., Bothell, Wash., USA). A uniformly random cluster method was used to determine microscopic fields for evaluation [20].

To assess cyst formation, cross-sectional diameter of individual cortical cysts was measured using line morphometry, with diameter defined as the length of a straight line joining two points on the cyst circumference. Subjectively, the greatest length possible between two points was taken and the largest cysts within mid-cortical fields assessed. Mean average diameter for each section was determined.

Tubulointerstitial fibrosis was evaluated by quantitative image analysis for percentage area occupied by positive staining for interstitial α-SMA in five mid-cortical fields. Magnification ×200.

Interstitial collagen deposition (Trichrome blue) was assessed semiquantitatively from 0 to 4: 0, absent; 1, <25% of or deposition of interstitial collagen; 2, 25–50% of or deposition of interstitial collagen (25–50%); 3, 51–75% of or deposition of interstitial collagen (50–75%), and 4, 76–100% of deposition of interstitial collagen (>75%). An average grade was established for each section to determine a mean grade for each time point. Five medullary and five cortical fields from each animal were evaluated (magnification ×200, graticule 0.5 mm²).

For tubulointerstitial inflammation, ED-1-positive and PCNA-positive interstitial cells were quantified in five midcortical fields measured at ×200. The number of positive cells in each field was counted and an average count was generated for each section. Mean cell counts for each time point were established (cells per mm²).

For semi-quantitative analysis of tubular vimentin five cortical fields from each animal were examined at ×200 magnification and graded using a score as for collagen deposition. A tubule was defined as positive for vimentin if it contained ≥ one immunoreactive tubular epithelial cell.

Morphometric Quantification of the Heart
A composite image of the heart was taken using a light microscope (LEICA DMBRE, Wetzlar, Germany) and digital camera (NIKON DXM1200F, Nikon Corporation, Kawasaki, Kanagawa, Japan). The assessment of the thickness (μm) of the right ventricular free wall, interventricular septum and left ventricular free wall were determined using Image ProPlus image analysis software (version 4.5.1.29, Media Cybernetics, LP, Md., USA).

Statistical Analyses
Results are presented as means ± SD of combined male and female results unless otherwise stated. All analysis was conducted using the statistical package Statistical Package for the Social Sciences (SPSS; Chicago, Ill., USA). Analysis was performed using a univariate general linear model against the fixed factors of age, strain and sex. Significance was set at p ≤ 0.05 and the adjusted R² (relative predictive powers of the model adjusted for degrees of freedom) provided. For tissue weights, data was converted to percentage body weight. Unless otherwise stated, data was not influenced by blood pressure when entered as a covariate in the model. Level of statistical significance for the effect of strain is provided, and if present, age/strain and/or sex interactions. Results of the univariate analysis drove the Post Hoc analysis, performed using Tukey test (p ≤ 0.05). The correlation for aldosterone and creatinine was determined in the LPK using a Pearson correlation with a two-tailed test of significance, p ≤ 0.05.

Results
General Features
The gross phenotype of LPK rats was characterised by progressive nephromegaly (fig. 1a, b). Age, sex and strain all had a significant effect on bodyweight (table 2). There was no macroscopic or microscopic evidence of cyst formation in the liver or pancreas at any age (fig. 1c, d). The weight of the liver was significantly associated with age (proportionally smaller in younger animals) and was only different between the strains at 6 weeks (less in the LPK; table 2). The pancreas showed no significant differences at any age.

LPK Rats Develop Laboratory Abnormalities Consistent with Progressive Kidney Failure
Serum urea was significantly elevated from 3 weeks in LPK rats and serum creatinine by 12 weeks, and both increased with age (table 3). Sex had a significant effect on the levels of urea and creatinine in the LPK animals, with males showing overall higher levels of both markers but there was no age/sex interaction (fig. 2). Urinalysis demonstrated isosthenuria in the LPK rats from week 12 onwards (table 3) and the urine protein: creatinine ratio increased significantly in the LPK animals from 16 weeks of age onwards (table 3; p ≤ 0.05). At 12 weeks of age, protein (total and albumin) levels were significantly reduced in LPK animals when compared with the Lewis (table 4; p ≤ 0.05). Globulin levels were reduced in the LPK at 24 weeks of age (table 4; p ≤ 0.05). Bilirubin and
the hepatic enzymes ALT and AST did not vary between the strains (table 4). ALP levels showed an age effect, being higher in younger animals, which was more pronounced in the Lewis \((p < 0.05) \). The PCV was less in the LPK group than age matched Lewis from week 12, and continued to decrease with increasing age (table 4, \(p < 0.05) \). The anaemia was characterised as normocytic and normochromic.

In the group of animals tested for PRA, Ang II and aldosterone, PRA levels were significantly less in the LPK when compared to Lewis at 10–12 weeks of age (2.2 ± 2.9 vs. 11.7 ± 4.9 ng/ml/h, Adj \(R^2 = 0.599, p < 0.001, n = 26) \). Angiotensin II levels were also significantly less in the LPK (25.0 ± 19.1 vs. Lewis 94.9 ± 64.4 pg/ml, Adj \(R^2 = 0.646, p < 0.001) \). Angiotensin II levels showed a sex/strain interaction, due to significantly higher levels of Ang II in the male Lewis animals (109.6 ± 17.3 pg/ml, \(n = 4, p <

![Fig. 1. Gross and microscopic tissue features. In-situ images of kidneys from a 12-week-old Lewis control (a) and 12-week-old LPK (b) rat. Figure illustrates the dramatic increase in size of the kidneys in LPK (arrow is pointing to left kidney in both panels) and their pale and nodular appearance. Figure also illustrates the normal gross appearance of the liver in the LPK (*). c, d Light microscopy of histological sections of body tissues stained with HE. c shows histologically normal liver tissue from a 24-week-old LPK animal, while d shows histologically normal pancreas from a 12-week-old animal LPK. c, d Scale bar = 200 μm.](image)
Plasma aldosterone levels were not significantly different between the two groups (446.5 ± 442.3 vs. Lewis 412.2 ± 155.8 pg/ml), but there was a wide range in the LPK results. This prompted a correlation analysis that showed aldosterone levels in the LPK were positively correlated with creatinine (Pearson correlation co-efficient 0.607, p = 0.008, n = 18). Creatinine was significantly different between LPK and Lewis in this cohort (73.7 ± 38.3 vs. 46.2 ± 5.7 µmol/l, respectively, p < 0.05).

Kidney Cysts Arise from the Distal Nephron at Week 3

Kidney weight in LPK rats progressively increased (table 2), with the surface becoming more irregular due to cyst formation. Macroscopically, the reniform shape of the kidneys became distorted and irregular with the development of a number of small cysts. The ultrastructure of the kidneys was also changed, with cilia becoming more prominent on the surface. A significant difference in body weight was observed between LPK and Lewis rats (p < 0.001). Urea and creatinine levels increased with age for both sexes, and while there was no significant difference between males and females at any time point, overall there were significantly higher levels in the male rats (adjusted R² = 0.754, sex effect p = 0.033). This effect was more pronounced for serum creatinine (b; adjusted R² = 0.838, sex effect p < 0.001). * Significant difference between males and females at that age, p < 0.05. Data are means ± SD, n = 37.

Table 2. Body weight and tissue features in age-matched Lewis and LPK rats

<table>
<thead>
<tr>
<th>Tissue</th>
<th>3 weeks</th>
<th>6 weeks</th>
<th>12 weeks</th>
<th>16 weeks</th>
<th>24 weeks</th>
<th>Adjusted R² value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body, g</td>
<td>66 ± 11</td>
<td>40 ± 3</td>
<td>145 ± 21</td>
<td>160 ± 38</td>
<td>261 ± 75</td>
<td>210 ± 43</td>
</tr>
<tr>
<td>Liver, % BW</td>
<td>4.7 ± 0.4</td>
<td>4.5 ± 0.3</td>
<td>5.4 ± 0.3</td>
<td>4.0 ± 0.2</td>
<td>4.2 ± 0.5</td>
<td>3.5 ± 0.4</td>
</tr>
<tr>
<td>Pancreas, % BW</td>
<td>0.4 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.3 ± 0.1</td>
<td>0.3 ± 0.1</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>Kidneys, % BW</td>
<td>1.3 ± 0.1</td>
<td>6.5 ± 0.7</td>
<td>1.2 ± 0.05</td>
<td>6.2 ± 2.0</td>
<td>0.9 ± 0.1</td>
<td>8.3 ± 1.2</td>
</tr>
</tbody>
</table>

Data represent mean ± SD of combined male and female data. Minimum number of animals in each group indicated by superscript associated with age/strain column. Significance of strain effect: ***p < 0.001.

Table 3. Biochemical and urological parameters in age-matched Lewis and LPK rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>3 weeks</th>
<th>6 weeks</th>
<th>12 weeks</th>
<th>16 weeks</th>
<th>24 weeks</th>
<th>Adjusted R² value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea, mmol/l</td>
<td>5 ± 0.6</td>
<td>13 ± 2</td>
<td>5 ± 0.3</td>
<td>12 ± 4</td>
<td>7 ± 1</td>
<td>34 ± 23</td>
</tr>
<tr>
<td>Creatinine, µmol/l</td>
<td>1.04 ± 0.01</td>
<td>1.039 ± 0.0</td>
<td>1.015 ± 0.01</td>
<td>1.023 ± 0.01</td>
<td>1.012 ± 0.0</td>
<td>1.015 ± 0.0</td>
</tr>
<tr>
<td>USG</td>
<td>1.041 ± 0.01</td>
<td>1.039 ± 0.0</td>
<td>1.015 ± 0.01</td>
<td>1.023 ± 0.01</td>
<td>1.012 ± 0.0</td>
<td>1.015 ± 0.0</td>
</tr>
<tr>
<td>Urine Pr:Cr ratio</td>
<td>2.6 ± 1.4</td>
<td>5.3 ± 3.1</td>
<td>1.1 ± 0.5</td>
<td>5.3 ± 2.6</td>
<td>2.1 ± 1.0</td>
<td>19.2 ± 18.5</td>
</tr>
</tbody>
</table>

Data represent mean ± SD of combined male and female data. Urine specific gravity (USG; isosthenuria range 1.008–1.012), protein:creatinine (Pr:Cr, protein units g/l, creatinine units µmol/l; calculation (8,840) × (urinary protein/urinary creatinine). Minimum number of animals in each group indicated by superscript associated with age/strain column. Significance of strain effect: **p < 0.01; ***p < 0.001.

Fig. 2. Graphical representation of elevation in serum urea (a) and creatinine (b) in male and female LPK animals. Serum urea levels increased with age for both sexes, and while there was no significant difference between males and females at any time point, overall there were significantly higher levels in the male rats (adjusted R² = 0.754, sex effect p = 0.033). This effect was more pronounced for serum creatinine (b; adjusted R² = 0.838, sex effect p < 0.001). * Significant difference between males and females at that age, p < 0.05. Data are means ± SD, n = 37.
Table 4. Biochemical and haematological parameters in age-matched Lewis and LPK rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>6 weeks LEW</th>
<th>6 weeks LPK</th>
<th>12 weeks LEW</th>
<th>12 weeks LPK</th>
<th>24 weeks LEW</th>
<th>24 weeks LPK</th>
<th>Adjusted R² value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein, g/l</td>
<td>60 ± 2</td>
<td>55 ± 3</td>
<td>67 ± 4</td>
<td>57 ± 4</td>
<td>67 ± 9</td>
<td>47 ± 9</td>
<td>0.60***</td>
</tr>
<tr>
<td>Albumin, g/l</td>
<td>36 ± 1</td>
<td>34 ± 0.7</td>
<td>40 ± 3</td>
<td>32 ± 2</td>
<td>39 ± 5</td>
<td>28 ± 5</td>
<td>0.67***</td>
</tr>
<tr>
<td>Globulin, calc g/l</td>
<td>24 ± 1</td>
<td>22 ± 2</td>
<td>28 ± 2</td>
<td>25 ± 2</td>
<td>25 ± 4</td>
<td>19 ± 4</td>
<td>0.53***</td>
</tr>
<tr>
<td>Total bilirubin, μmol/l</td>
<td>2 ± 0.0</td>
<td>4 ± 4</td>
<td>3 ± 1</td>
<td>6 ± 4</td>
<td>2.4 ± 0.7</td>
<td>5 ± 0.8</td>
<td>0.71</td>
</tr>
<tr>
<td>ALT, U/l</td>
<td>121 ± 40</td>
<td>172 ± 168</td>
<td>58 ± 18</td>
<td>116 ± 97</td>
<td>180 ± 142</td>
<td>49 ± 23</td>
<td>0.23</td>
</tr>
<tr>
<td>AST, U/l</td>
<td>240 ± 110</td>
<td>488 ± 478</td>
<td>135 ± 67</td>
<td>273 ± 144</td>
<td>242 ± 103</td>
<td>116 ± 53</td>
<td>0.21</td>
</tr>
<tr>
<td>ALP, U/l</td>
<td>530 ± 54</td>
<td>343 ± 80</td>
<td>229 ± 53</td>
<td>239 ± 41</td>
<td>200 ± 54</td>
<td>139 ± 39</td>
<td>0.84*</td>
</tr>
<tr>
<td>PCV</td>
<td>0.5 ± 0.0</td>
<td>0.4 ± 0.0</td>
<td>0.5 ± 0.0</td>
<td>0.3 ± 0.1</td>
<td>0.5 ± 0.0</td>
<td>0.2 ± 0.1</td>
<td>0.88***</td>
</tr>
</tbody>
</table>

Data represents mean ± SD of combined male and female results. Globulin = Calculated (calc) from total protein and albumin levels. Minimum number of animals in each group indicated by superscript associated with age/strain column. Significance of strain effect: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

the kidney remained intact in LPK animals. The cut surface of the kidney had focal clusters of cysts that were present in the cortex and medulla in the distribution of medullary rays. At week 1, by light microscopy, focal areas of mild dilatation of proximal and distal tubules were present, but cysts were absent (fig. 3a). By week 3, epithelial cell-lined cysts appeared throughout the cortex and medulla (fig. 3b) and the size increased progressively from 12 weeks (fig. 3c-f). Cysts were lined by cuboidal and flattened cells and resembled epithelia from distal nephron segments. Immunostaining for nephron-specific markers indicated that the majority of cysts stained strongly and consistently for aquaporin-2 (fig. 4a, b). In addition, some cells in the cysts stained positive for Tamm-Horsfall protein (THP; fig. 4c, d) and occasionally medullary (but not cortical) cysts were positive for aquaporin-1 (fig. 4e, f), indicating that cysts arose predominantly from the collecting ducts and to a lesser extent from the distal convoluted tubule, thick ascending or thin descending limbs of the nephron.

Cyst Formation Is Associated with Tubule Cell Proliferation/Dedifferentiation and Progressive Tubulointerstitial Inflammation and Fibrosis

The number of PCNA-positive cortical tubule cells was significantly greater in the LPK rats (fig. 5). Similarly, the number of vimentin-positive cortical tubule cells was higher in affected LPK rats at all time points, significantly increasing to week 12 (table 5). The number of interstitial ED-1-positive cells was significantly higher in the LPK animals at 6 and 12 weeks (p ≤ 0.05; table 5). Diffuse collagen deposition within the renal parenchyma was significantly different to the Lewis from week 12 onwards, increasing further at 24 weeks (p ≤ 0.05, table 5). Collagen deposition accompanied areas of tubular atrophy, glomerulosclerosis and/or areas dense in dedifferentiated epithelial cells. Use of blood pressure as a covariate in the analysis indicated that collagen deposition in the cortex and medulla was significantly associated with blood pressure (p = 0.005, 0.018, respectively). Interstitial myofibroblast accumulation (α-SMA) was significantly higher in the LPK animals relative to age-matched controls from week 6 (p ≤ 0.05; table 5).

Hypertension Develops Early in LPK, Preceding Cardiac Hypertrophy, and Is Abrogated by Ganglionic Blockade

Tail cuff systolic blood pressures were elevated in LPK rats from week 6 onwards (fig. 6a). Proportional heart weight decreased in the Lewis and LPK between 3 and 6 weeks, but then increased in the LPK, becoming significantly greater than the Lewis from 12 weeks of age (fig. 6b). Proportional LPK heart weights were significantly associated with blood pressure when entered as a covariate in the model (p = 0.034, adjusted R² = 0.351). Hearts from the LPK rats showed no cysts (fig. 6c), but histological examination showed LVH, multifocal muscle degeneration, mild fibrosis, medial hypertrophy of cardiac vessels and increased perivascular mast cell infiltration. Measurements of the left ventricular free wall confirmed LVH in the LPK at 24 weeks of age when compared to Lewis (fig. 6d). The interventricular septum was also significantly thicker in the LPK animals than aged matched Lewis at 24 weeks of age (2,096 ± 178 vs. 1,370 ± 188 µm,
Fig. 3. Cyst development in the LPK animals. a–e: Light microscopy of PAS sections of LPK kidneys from animals aged 1 week (a), 3 weeks (b), 6 weeks (c), 12 weeks (d) and 24 weeks (e). Figures illustrate absence of cysts in the first postnatal week (a) although focal areas of dilated proximal and distal convoluted tubules were present. At week 3 there was a rapid appearance of cysts throughout the cortex and medulla (b) and these cysts continued to increase in size as the animals aged (b–e). a–e Scale bar = 1.0 mm. f Cyst diameter (mm) as measured using line morphometry. After their appearance in week 3, the size of the cysts increased progressively from 12 weeks onwards ($p \leq 0.05$, adjusted $R^2 = 0.916$). Data are means ± SD. n values are presented in table 5.
Fig. 4. Immunohistochemical staining of kidney sections for aquaporin-2 (a, b, medulla), Tamm-Horsfall protein (c, d, medulla) and aquaporin-1 (e, f, cortex) in Lewis control (a, c, e) and LPK (b, d, f) animals at week 3. Epithelial cells lining cysts (**) stained positive for aquaporin-2 (predominantly) and to a lesser extent Tamm-Horsfall protein (shown by arrows), but were rarely positive for aquaporin-1. Results therefore indicate that cysts arise predominantly from collecting ductules and the distal nephron. Original magnification ×200.
respectively, \(p \leq 0.05 \), adjusted \(R^2 = 0.720 \), strain effect \(p \leq 0.001 \). There was no difference between strains for right ventricular free wall thickness (data not shown).

In anaesthetised animals, ganglionic blockade had no significant effect on the Lewis blood pressures (table 6) but it significantly reduced both systolic and diastolic arterial pressures in the LPK, reducing systolic values to pressures comparable to the Lewis, and reducing diastolic values to pressures less than the Lewis (in either the presence or absence of hexamethonium; \(p \leq 0.05 \)), indicating a greater relative drop in diastolic pressures. These changes were reflected by the change in MAP (average fall of 4% in the Lewis and 53% in the LPK). There was no difference between pre- and post-hexamethonium heart rates in either strain.

![Graph showing cortical tubular epithelial cell (TEC) proliferation as evaluated by proliferating cell nuclear antigen (PCNA) staining.](image)

Table 5. Quantification of renal histopathological parameters in age-matched Lewis and LPK rats

Parameter	1 week	3 weeks	6 weeks	12 weeks	24 weeks	Adjusted \(R^2 \) value*
	(LEW)	(LPK)	(LEW)	(LPK)	(LEW)	(LPK)
Vimentin, cor\(^a\)	0.3 ± 0.2	1.4 ± 0.5	0.1 ± 0.1	3.0 ± 0.4	0.2 ± 0.2	3.3 ± 0.8
ED-1/mm\(^b\)	9.3 ± 0.9	14.0 ± 5.6	5.1 ± 1.1	14.0 ± 2.6	6.0 ± 1.4	34.1 ± 20.3
Collagen, cx\(^a\)	0.0 ± 0.1	0.2 ± 0.2	0.0 ± 0.0	0.03 ± 0.1	0.1 ± 0.1	0.23 ± 0.2
Collagen, med\(^a\)	0.1 ± 0.1	0.1 ± 0.1	0.02 ± 0.0	0.12 ± 0.2	0.1 ± 0.1	0.0 ± 0.0
\(\alpha\)-SMA\(^a\)	5.0 ± 1.2	3.6 ± 1.1	1.1 ± 0.3	3.6 ± 2.4	1.2 ± 0.6	9.7 ± 2.9

Data represent mean ± SD of combined male and female data.

\(^a\) Tubular vimentin staining and collagen deposition was scored with arbitrary units for the cortex (cx) or medulla (med).

\(^b\) Immunoreactivity for ED-1 was measured as number of immunoreactive cells in midcortical fields per mm\(^2\).

\(^c\) \(\alpha\)-Smooth muscle actin (\(\alpha\)-SMA) measured as % of cortical area occupied by positive staining for \(\alpha\)-SMA.

Minimum number of animals in each group indicated by superscript associated with age/strain column. Significance of strain effect: * \(p \leq 0.05 \); ** \(p \leq 0.01 \); *** \(p \leq 0.001 \).
Discussion

In this study we investigated the relationship between cyst formation and indicators of renal function and cardiovascular disease in a new rat model of autosomal-recessive PKD. Our data demonstrate that cyst formation preceded the development of hypertension, which in turn heralded significant increases in serum urea and creatinine, increased cardiac mass and LVH, and eventual end stage renal disease. A key finding was evidence for a suppressed renin angiotensin system and heightened sympathetic drive during the established phases of the disease. These finding therefore support the hypothesis that renal structural abnormalities are a key event in the genesis of hypertension and subsequent target organ disease in PKD. Given that the most important mechanism of limiting renal disease progression is adequate blood pressure control [21], an understanding of the temporal relation-
ship between cystogenesis and hypertension is key for providing effective therapeutic interventions.

The breeding analysis presented in this study confirms an autosomal recessive pattern of inheritance for PKD in the LPK model. Autosomal-recessive PKD has been shown to be due to mutations in the PKHD1 gene [22], and indeed initial identification of the PKHD1 gene arose from mapping of the pck rat model, allowing identification of the human ortholog [23]. The specific genetic mutation and likely role of genetic modifiers, which are significant factors in human ARPKD [24], are not yet known for the LPK model and form the basis for current investigation by our group. Given that the functions and mechanisms of the genes currently known to cause PKD remain unclear, future identification of the responsible gene in this model will provide valuable insight into the pathogenesis of ARPKD in humans [8, 23].

The renal histopathology phenotype described in this study further supports our finding of an autosomal-recessive mode of inheritance. Specifically, kidney enlargement was characterised by maintenance of the normal reniform shape, and cysts were due to fusiform dilatation predominantly of the collecting ducts and to a lesser extent other components of the distal nephron. Other autosomal-recessive forms of rodent PKD, such as the wpk, also exhibit predominantly collecting duct-derived cysts [10, 25] and in the spontaneously inherited cpk mouse model of ARPKD, embryonic cystic lesions are localised to the proximal tubule [26]. Likewise, in human ARPKD, renal disease is characterised in utero by fusiform dilation of the collecting ducts [22, 23]. This is in contrast to ADPKD, in both humans and murine models, where in general cysts are thought to arise from the tubular portion of the nephron as well as the renal collecting system [22].

Our use of markers to identify cyst origin is substantiated by studies in humans and other rodent models where aquaporins and THP have similarly been used to confirm nephron segment localization of cysts in PKD [10, 19]. Indeed AQP1 and AQP2 belong to a group of proteins which retain their segment-specific discriminatory differential expression even in end stage PKD [27]. With regard to the functional significance of staining for these proteins in cystic epithelia of the LPK model, it has been postulated that increased water permeability mediated by aquaporins could contribute to the pathogenesis of cyst formation by the facilitation of fluid secretion in to the cystic lumen [27, 28]. Any potential role for THP, or uromodulin, however, is difficult to delineate, as the biological role of this mucoprotein is still unclear [28].

Temporal analysis of the renal histopathology indicated three distinct structural-functional phases characterised by: (1) a precursor cystic phase (week 1); (2) a cystic phase (weeks 3–6) characterised by tubular epithelial cell proliferation and dedifferentiation, interstitial inflammation with compensatory preservation of renal function, and (3) a cystic phase characterised by tubulointerstitial fibrosis correlating with progressive renal failure (12 weeks). At week 1 precursor cystic lesions (namely focal dilations of proximal and distal tubules) were present. By week 3, however, the medulla and cortex of the kidney were grossly deranged with the presence of diffuse cystic distal tubular dilatation only of predominantly collecting ductules. Interestingly, in the presence of this gross distortion in renal structure, the serum creatinine was normal but blood pressure was significantly elevated by week 6. Cystic enlargement continued until week 24, but at a much slower rate and preceded the development of the other typical histological features of end-stage renal disease, including interstitial macrophage and myofibro-

| Table 6. Blood pressure and heart rate response to ganglionic blockade |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| | Lewis pre-Hex | Lewis post-Hex | LPK pre-Hex | LPK post-Hex | Adjusted R² value |
| Systolic AP, mm Hg | 111 ± 8 | 104 ± 7 | 178 ± 19 | 84 ± 13* | 0.88 |
| Diastolic AP, mm Hg | 64 ± 9 | 65 ± 7 | 88 ± 4 | 41 ± 2* | 0.90 |
| Mean AP, mm Hg | 80 ± 8 | 77 ± 6 | 118 ± 8 | 56 ± 5* | 0.92 |
| Heart rate, bpm | 270 ± 39 | 250 ± 29 | 326 ± 36 | 292 ± 28 | 0.37 |

Data represent mean ± SD of combined data from animals of mixed sex aged 16 weeks. Arterial pressures (AP) were measured from rats under urethane anaesthesia pre- and post-treatment with the ganglionic blocker hexamethonium (Hex, subcutaneous, 3.3 mg/kg). Significant difference between pre- and post-treatment values: * p ≤ 0.05; n = 9.
blast accumulation, interstitial fibrosis and tubular cell dedifferentiation.

Renal function deterioration in progressive chronic kidney disease eventually leads to end stage renal failure and death. Systemic hypertension and proteinuria, characteristics of the LPK model, are important progression factors underlying all forms of chronic kidney disease [21]. In addition to the described change in serum creatinine, laboratory abnormalities consistent with progression of renal dysfunction, including marked increases in serum urea, isosthenuria, decreased serum protein, increased urinary protein to creatinine ratio and reduced PCV were also evident after week 12. The rate of progression of renal insufficiency in the LPK model resembles the time frame of morbidity for the ARPKD Wistar-chi

increased urinary protein to creatinine ratio and reduced PCV were also evident after week 12. The rate of progression of renal insufficiency in the LPK model resembles the time frame of morbidity for the ARPKD Wistar-chi and pck (Grj:CD/SD) models [10, 25, 29, 30]. However, unlike the Wistar-chi, wpk or pck ARPKD models, and also the heterozygous Han:SPRD ADPKD model, the LPK animals do not exhibit extra-renal pathology [8, 31, 32]. This is also in contrast to human ARPKD, which is characterised by the combination of renal cystic disease, congenital hepatic fibrosis, and the occasional occurrence of pancreatic fibrosis [22].

Of interest was the finding that LPK animals demonstrate gender dependent effects, with male animals showing higher overall elevations in serum urea and creatinine. This is consistent with human PKD and other animal models, where males undergo more rapid disease progression and earlier onset of end stage renal disease [33–35]. Studies in the Han:SPRD rat model suggest that oestrogen has a protective effect that promotes the preservation of renal function through the regulation of mediators of growth and fibrosis [35].

Hypertension is a common finding in both ADPKD and ARPKD in humans [36, 37] and is an important factor that not only accelerates renal failure but also drives a spectrum of cardiovascular changes including LVH [6, 7, 38, 39]. In this study, blood pressure increased after early cystogenesis yet prior to marked increases in indicators of renal function. In this regard, the LPK animals show a strong similarity to human PKD. In ADPKD, 60% of patients develop hypertension before renal function is impaired [1] and in a recent retrospective study looking at ARPKD, hypertension was present in 55% of patients, with nearly all neonatal survivors requiring anti-hypertensive treatment [2]. As described, this is distinct to other rodent models of PKD which show no or only very mild to moderate elevations in blood pressure [9–11, 35].

Several mechanisms have been proposed regarding the pathogenesis of hypertension in PKD, including volume overload associated with an abnormal pressure-natriuresis response, activation of the RAAS associated with renal cyst formation and induction of local tissue ischaemia, and increased sympathetic activity [40, 41]. With regard to the RAAS, there is conflict in the literature and it has been variably described as increased, decreased or unchanged [3, 11, 40, 42, 43]. In ARPKD, it has been suggested that affected neonates are actually in a low renin state [2, 10]. In this study, both PRA and Ang II levels were low in LPK rats at 10–12 weeks of age. Markedly elevated systolic pressure and indicators of renal dysfunction at this age would suggest that extracellular fluid volume and total body sodium were likely to be increased [44]. Given that sodium loading and increased arterial pressure reduce renin secretion [45, 46], this may explain the suppressed PRA. The reduced Ang II levels are likely to be linked to the low PRA, as a number of studies have shown that PRA and plasma Ang II are strongly correlated [47, 48] and respond similarly to interventions [48, 49]. However, suppressed renin at this time point does not exclude a role for renin in the early pathogenesis of hypertension. In one-kidney, one-clip Goldblatt hypertension, renin is elevated in the early phase and contributes to the early rise in arterial pressure but once sodium retention occurs and arterial pressure rises the increase in renin subsides and renin is usually suppressed in the chronic phase [50, 51]. Similar observations have been made in heart failure where, in animal models, renin rises early and is suppressed in the chronic state, and humans where renin is raised in de-compensated heart failure and tends to fall in chronic stable disease [52, 53].

Aldosterone levels were variable in the LPK, and while on average not higher than control animals, did show a positive correlation with serum creatinine. The basis of this relationship is not known but a similar wide range of aldosterone levels in the presence of reduced PRA have been described previously in feline PKD [54]. Given renewed interest in the role of aldosterone in renal disease progression [55], further studies to clarify the pathogenesis and therapeutic implications of this finding are warranted.

In humans a number of studies have provided strong evidence for an important link between the observed sympathetic hyperactivity and increased risk of cardiovascular morbidity in PKD [3, 4, 56]. Further, it has been shown that muscle sympathetic nerve activity is increased in hypertensive PKD patients regardless of renal function [3]. In our study, sympathetic blockade was undertaken to gain further information about the role of the SNS in maintaining hypertension in PKD. The amount of hexa-
methonium used was lower than used in other studies (1/10th) [57, 58], and while it had no significant effect on the normotensive Lewis controls, it had a pronounced effect on the hypertensive LPK. With the caveat that established hypertension induces vascular medial hypertrophy and a vascular amplifier effect [59], these results nonetheless suggest that maintenance of hypertension in the LPK rat is at least partly dependent on an intact SNS.

A number of mechanisms may drive sympathetic activation in PKD. It has been argued that renal ischaemia due to structural changes stimulates inappropriate activation of the renin-angiotensin system [3, 56], with high circulating levels of Ang II in turn stimulating central sympathetic outflow via circumventricular organs that lack a functional blood brain barrier [60, 61]. There is, however, an increasing field of study to suggest that intrarenal ischaemia can modulate sympathetic efferent activity by direct stimulation of renal afferents [3, 5]. For example, in patients with end-stage renal failure, bilateral renal nephrectomy corrects increased muscle sympathetic nerve activity concurrent with a reduction in blood pressure [62], and in animal models of renal failure/injury, dorsal rhizotomy or renal denervation significantly attenuates the degree of hypertension [63–65]. Given our finding of low levels of PRA and circulating Ang II, the LPK model will therefore be a useful tool for future evaluation of these pathophysiological interactions between the renal, sympathetic and cardiovascular systems.

In conclusion, we have examined the temporal relationship between cardiac and renal disease progression in ARPKD, demonstrating that renal structural abnormalities precede the development of hypertension, in turn preceding marked changes in indices of renal dysfunction and cardiac hypertrophy. These data raise further hypotheses, including the role of the RAAS and SNS in disease establishment and progression. It also raises questions as to whether diminution of renal cyst formation with anti-proliferative agents such as mammalian target of rapamycin inhibitors [66] can reduce cardiovascular morbidity by both slowing the development of hypertension as well as direct inhibitory effects on cardiac structure. The key features of the LPK model including the course of disease progression indicate it is a suitable model in which to investigate the kidney-cardiovascular axis and genetic pathogenesis of PKD.

Acknowledgments

The authors acknowledge the expert technical assistance provided by Dr. Chandrika Abeywardana (Animal Resources Centre), Mr. Courtney Reddrop, Ms. Kellysan Powers-Martin, Mr. Jada Yengkopiong, Mr. Michael Slaven and Mr. Gerard Spoelstra (Murdoch University). We thank Dr. Amanda O’Hara and Assoc. Prof. Philip Clark (Murdoch University) for their expert opinions regarding the cardiac histology and clinical biochemistry, and Mr. David Casley (ProSearch) for assistance with the hormonal assays. Financial support was provided by Murdoch University, Animal Resources Centre and research funding from the Medical Research Fund (WA), Fremantle Hospital Research Foundation and the National Health and Medical Research Council (Australia, Grant No. 230500 to G.K.R. and 384708 to J.K.P.).

References

Cyst Development and CVS Disease in PKD

