Low-velocity pneumatic transportation of bulk solids

Bo Mi
University of Wollongong

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
LOW-VELOCITY PNEUMATIC TRANSPORTATION
OF BULK SOLIDS

A thesis submitted in fulfilment of the requirements
for the award of the degree of

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

BO MI
B.Sc. (USTB ), M.Sc. (USTB)

Department of Mechanical Engineering
1994
DECLARATION

This is to certify that the work presented in this thesis was carried out by the author in the Department of Mechanical Engineering at the University of Wollongong and has not been submitted for a degree to any other university or institution.

Bo Mi
ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr P. W. Wypych, Senior Lecturer in the Department of Mechanical Engineering at the University of Wollongong, for his supervision, generous assistance and encouragement during the period of this study. I am indebted to Professor P. C. Arnold, Dr A. Mclean, Mr O. Kennedy, Dr Z. Gu and Dr R. Pan, the staff of the Bulk Materials Handling group, for their constructive suggestions in the development of the theory.

I gratefully acknowledge the financial support of the University of Wollongong under the Postgraduate Research Award scheme and the financial contribution by the Bulk Materials Handling and Physical Processing research program.

Acknowledgment also is made of the assistance given by other staff of the department, especially that of Mrs R. Hamlet and Mrs B. Butler, who completed many of the administrative tasks associated with this project. My thanks are extended to the technical staff in the Workshop and Bulk Solids Handling Laboratory with whose help and expertise the experimental apparatus was constructed. In particular, I would like to express my gratitude to Mr D. Cook, Mr I. Frew, Mrs W. Halford, Mr I. McColm and Mr S. Dunster.

Finally, special acknowledgment is made to my dear wife Yao Feng and my parents for their unfailing help and encouragement.
Low-velocity pneumatic conveying is being used increasingly in industry to transport a wide range of bulk solids due to reasons of low power consumption and low product damage, etc. However, investigations into this type of conveying still are at an elementary stage. For example, the existing procedures to estimate pipeline pressure drop during low-velocity pneumatic conveying still are inaccurate and inefficient. For this reason, this thesis aims at developing a pressure prediction model that is a function of the physical properties of the material, pipeline configuration and conveying condition.

During low-velocity pneumatic conveying, particles are conveyed usually in the form of slugs. This thesis studies initially the pressure drop across a single particle slug and the stress state and distribution in the slug through theoretical analysis.

To obtain detailed information on low-velocity pneumatic conveying, a test rig is set up and four types of coarse granular material are conveyed in the rig. Major parameters such as mass flow-rate of air and solids, pipeline pressure, slug velocity and wall pressure, etc. are measured over a wide range of low-velocity conveying conditions.

Based on the experimental results and a dimensional analysis, the relationship between the slug velocity and superficial air velocity is established in terms of the physical properties of the material and pipe size. Also by using particulate mechanics, a semi-empirical correlation is developed to determine the stress transmission coefficient for the slugs flowing in the pipe with rigid and parallel walls. A model then is developed to predict the overall horizontal pipeline pressure drop of low-velocity pneumatic conveying.
This model is used to predict the pneumatic conveying characteristics and static air pressure distribution for different test rig pipelines and materials. Good agreement is obtained between the predicted and experimental results. Based on the developed model, a method for determining the economical operating point in low-velocity pneumatic conveying is presented.

Additional experimental results from the conveying of semolina show that the performance of fine powders is quite different in low velocity. Based on these experimental results, an appropriate modification to the model is made so that it can be applied to the prediction of pressure drop in low-velocity pneumatic conveying of fine powders.
# TABLE OF CONTENTS

ACKNOWLEDGMENTS i

SUMMARY ii

TABLE OF CONTENTS iv

LIST OF FIGURES ix

LIST OF TABLES xvii

NOMENCLATURE xix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE SURVEY 7

2.1 Introduction 8

2.2 Suitability of Bulk Material 8

2.3 Performance of Low-Velocity Pneumatic Conveying 15

2.3.1 Flow Pattern 15

2.3.2 Pipeline Pressure Drop 17

2.3.2.1 Pressure Drop in Horizontal Flow 17

2.3.2.2 Pressure Drop in Vertical Flow 24

2.3.2.3 Pressure Drop Around Bends 26

2.4 Design of Low-Velocity Conveying System 27

3 THEORY ON LOW-VELOCITY PNEUMATIC CONVEYING 32

3.1 Introduction 33

3.2 Flow Pattern and Formation of Particle Slugs 33

3.3 State of Particle Slug 35

3.4 Pressure Gradient of Horizontal Slug 39

3.4.1 Stresses Acting on Moving Slug 40

3.4.2 Force Balance and Pressure Gradient of Horizontal Slug 44
3.5 Axial Stress and Transmission Radial Stress 46
  3.5.1 Distribution of Axial Stress 46
  3.5.2 Average Axial Stress 48
3.6 Stress on Front and Back Surface of Slug 49

4 TEST FACILITY AND PROCEDURES 51
4.1 Introduction 52
4.2 General Arrangement of Main Test Rig 52
  4.2.1 Material Feeders 52
    4.2.1.1 High Pressure Rotary Valve 55
    4.2.1.2 Blow Tank 58
  4.2.2 Feed Hopper and Receiving Silo 59
  4.2.3 Conveying Pipeline 59
4.3 Air Supply and Control 62
  4.3.1 Air Supply 62
  4.3.2 Air Flow Control 62
4.4 Experimental Instrumentation and Technique 64
  4.4.1 Mass Flow-Rate of Solids 65
  4.4.2 Mass Flow-Rate of Air 65
  4.4.3 Static Air Pressure 66
  4.4.4 Wall Pressure 66
  4.4.5 Stationary Bed Thickness 68
  4.4.6 Slug Velocity 68
4.5 Data Acquisition and Processing Systems 69
  4.5.1 Hewlett Packard 3044A System 69
  4.5.2 PC Based Quick Data Acquisition System 70
  4.5.3 Data Processing 71
4.6 Test Procedures 74
  4.6.1 System Check 74
6.5 Empirical Correlation for Slug Velocity 127
6.5.1 Linear Model of Slug Velocity 127
6.5.2 Regression Slope for Linear Model 128
6.5.3 Dimensional Analysis 130
6.5.4 Minimum Air Velocity 131

7 WALL PRESSURE AND STRESS TRANSMISSION COEFFICIENT 136
7.1 Introduction 137
7.2 Wall Pressure Measurement 139
7.2.1 Method of Wall Pressure Measurement 139
7.2.2 Installation of Transducers 140
7.2.3 Test Procedures and Special Requirements 142
7.2.3.1 Re-calibration of Transducers 142
7.2.3.2 Check Test 142
7.2.3.3 Improvement of Phase Difference of Signals 145
7.2.4 Data Processing 147
7.3 Experimental Results 147
7.4 Strength of Particulate Medium 155
7.5 Stress Transmission Coefficient 159
7.5.1 Stress Transmission Coefficient in Pipe 159
7.5.2 Discussion on Stress Transmission Coefficient 162
7.6 Correlation of Static Internal Friction Angle 166

8 TOTAL HORIZONTAL PIPELINE PRESSURE DROP 171
8.1 Introduction 172
8.2 Geometrical Parameters of Low-Velocity Pneumatic Conveying 173
8.2.1 Air Gap Length 174
8.2.2 Slug Length 186
8.2.3 Stationary Bed Thickness 189
8.2.3.1 Measurement of Stationary Bed Thickness 190
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Phase diagram of pneumatic conveying</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Flow patterns of pneumatic conveying in horizontal pipe</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Dixon's slugging diagram for a 100 mm diameter pipe [28]</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Pressure gradient vs permeability factor [78]</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Pressure gradient vs term accounting for de-aeration factor and</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>particle density [78]</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic graph of measuring pipe from Legel and Schwedes [71]</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Dissipated energy versus air flow-rate from Daoud et al. [23]</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow pattern of horizontal low-velocity pneumatic conveying</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Particle in air stream</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Formation process of slug</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Fluidisation rig and schematic illustration of aggregative fluidisation</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Pressure gradient of bed versus superficial air velocity</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Forces and stresses acting on a horizontal particle slug</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>Total wall pressure and its components</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>Cross section of a slug</td>
<td>43</td>
</tr>
<tr>
<td>3.9</td>
<td>Pressure to maintain movement of a particle slug in a pipe [17]</td>
<td>45</td>
</tr>
<tr>
<td>3.10</td>
<td>Distribution curve of axial stress of a moving slug</td>
<td>47</td>
</tr>
<tr>
<td>3.11</td>
<td>Stresses acting on the frontal surface of a slug</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic layout of low-velocity pneumatic conveying test rig</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Feed devices and receiving silo</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>ZGR-250 high pressure rotary valve</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Air leakage curves of ZGR-250 rotary valve</td>
<td>57</td>
</tr>
</tbody>
</table>
4.5 Configuration of 0.9 m³ low-velocity blow tank feeder
4.6 Details of 96 m x 105 mm ID test rig pipeline
4.7 General arrangement of compressed air supply
4.8 Sonic nozzles
4.9 Orifice plate device
4.10 Exploded view of typical air pressure tapping location
4.11 Wall pressure measuring assembly
4.12 Data acquisition systems
4.13 Typical graphic outputs from "HPPLT"
4.14 Linear relationship between physical phenomena and electrical signal
4.15 Calibration of load cells
4.16 Calibration line of a pressure transducer
4.17 Range of low-velocity pneumatic conveying for a given m_s
5.1 Regular and irregular shaped particles
5.2 Particle size distribution
5.3 Schematic of stereo pycnometer
5.4 Different arrangement of particles [120]
5.5 Jenike shearing test [121]
5.6 Mohr circle and yield locus of cohesive material
5.7 Jenike direct shear tester
5.8 Typical measured yield locus
5.9 Arrangement for wall yield locus test
5.10 Wall yield locus
5.11 Wall yield locus for polystyrene chips
6.1 Slug flowing in a horizontal pipe
6.2 Time history records
6.3 Typical cross-correlation plot
6.4 Correlated signals taken by two neighbouring sensors
6.5 Discrete sequences sampled from continuous time signals
6.6 Discrete cross correlation function
6.7 Discrete cross correlation function with the peak value not at sampling point
6.8 Graph of an actual cross correlation function, obtained from the experiment where $m_f = 0.0498 \text{ kgs}^{-1}$ and $m_s = 0.840 \text{ kgs}^{-1}$
6.9 Slug velocity vs mass flow-rate of air for white plastic pellets
6.10 Slug velocity vs mass flow-rate of air for black plastic pellets
6.11 Slug velocity vs mass flow-rate of air for wheat
6.12 Slug velocity vs mass flow-rate of air for barley
6.13 Slug velocity vs mass flow-rate of solids for white plastic pellets, carried out in the 105 mm ID mild steel pipeline
6.14 Slug velocity vs mass flow-rate of solids for black plastic pellets, carried out in the 105 mm ID mild steel pipeline
6.15 Slug velocity vs mass flow-rate of solids for wheat, carried out in the 105 mm ID mild steel pipeline
6.16 Slug velocity vs mass flow-rate of solids for barley, carried out in the 105 mm ID mild steel pipeline
6.17 Slug velocity vs superficial air velocity for white plastic pellets, carried out in the 105 mm ID mild steel pipeline
6.18 Slug velocity vs superficial air velocity for black plastic pellets, carried out in the 105 mm ID mild steel pipeline
6.19 Slug velocity vs superficial air velocity for wheat, carried out in the 105 mm ID mild steel pipeline
6.20 Slug velocity vs superficial air velocity for barley, carried out in the 105 mm ID mild steel pipeline
6.21 Goodness of fit of K correlation
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.22</td>
<td>Idealised slug with acting forces at initial motion</td>
<td>132</td>
</tr>
<tr>
<td>7.1</td>
<td>Pressures acting on the sensitive surfaces of transducers</td>
<td>139</td>
</tr>
<tr>
<td>7.2</td>
<td>Location requirement of pressure transducers</td>
<td>141</td>
</tr>
<tr>
<td>7.3</td>
<td>Type-B transducer installed flush with pipe wall</td>
<td>141</td>
</tr>
<tr>
<td>7.4</td>
<td>Typical graphs of the pressures and processed results from check tests</td>
<td>144</td>
</tr>
<tr>
<td>7.5</td>
<td>Phase difference of signals</td>
<td>145</td>
</tr>
<tr>
<td>7.6</td>
<td>Plots of wall pressure and air pressure for black plastic pellets, ( m_r = 0.0643 \text{ kgs}^{-1}, m_s = 0.849 \text{ kgs}^{-1} )</td>
<td>148</td>
</tr>
<tr>
<td>7.7</td>
<td>Plots of wall pressure and air pressure for black plastic pellets, ( m_r = 0.0498 \text{ kgs}^{-1}, m_s = 0.840 \text{ kgs}^{-1} )</td>
<td>149</td>
</tr>
<tr>
<td>7.8</td>
<td>Wall pressure versus mass flow-rate of air for white plastic pellets</td>
<td>150</td>
</tr>
<tr>
<td>7.9</td>
<td>Wall pressure versus mass flow-rate of air for black plastic pellets</td>
<td>151</td>
</tr>
<tr>
<td>7.10</td>
<td>Wall pressure versus mass flow-rate of air for wheat</td>
<td>151</td>
</tr>
<tr>
<td>7.11</td>
<td>Wall pressure versus mass flow-rate of air for barley</td>
<td>152</td>
</tr>
<tr>
<td>7.12</td>
<td>Stresses acting on a particle slug</td>
<td>152</td>
</tr>
<tr>
<td>7.13</td>
<td>Stresses on element P in particulate medium and Mohr circle representation</td>
<td>156</td>
</tr>
<tr>
<td>7.14</td>
<td>Possible state of stress at element P represented by a series of Mohr circles</td>
<td>157</td>
</tr>
<tr>
<td>7.15</td>
<td>Possible states of stress at element P in passive stress state</td>
<td>158</td>
</tr>
<tr>
<td>7.16</td>
<td>Particles flowing in a vertical pipe</td>
<td>159</td>
</tr>
<tr>
<td>7.17</td>
<td>Diagram of strength</td>
<td>160</td>
</tr>
<tr>
<td>7.18</td>
<td>Particles moving in a silo</td>
<td>164</td>
</tr>
<tr>
<td>7.19</td>
<td>Variation trend of stress transmission coefficient in active case</td>
<td>165</td>
</tr>
<tr>
<td>7.20</td>
<td>Possible Mohr circles representing the stress state of a particle slug</td>
<td>167</td>
</tr>
<tr>
<td>7.21</td>
<td>Goodness of fit</td>
<td>170</td>
</tr>
</tbody>
</table>
8.1 Geometrical parameters of slug-flow 174
8.2 Various positions of slugs during low-velocity pneumatic conveying 176
8.3 Time history records of static air and wall pressures 177
8.4 Plot of air gap length versus mass flow-rate of air for white plastic pellets 182
8.5 Plot of air gap length versus mass flow-rate of solids for white plastic pellets 182
8.6 Plot of air gap length versus mass flow-rate of air for black plastic pellets 183
8.7 Plot of air gap length versus mass flow-rate of solids for black plastic pellets 183
8.8 Plot of air gap length versus mass flow-rate of air for wheat 184
8.9 Plot of air gap length versus mass flow-rate of solids for wheat 184
8.10 Plot of air gap length versus mass flow-rate of air for barley 185
8.11 Plot of air gap length versus mass flow-rate of solids for barley 185
8.12 Cross section of stationary bed 190
8.13 Measurement of stationary bed thickness with a camera 191
8.14 A typical photograph of the stationary bed of barley for the experiment of $m_s = 1.32 \text{ kgs}^{-1}$, $m_f = 0.088 \text{ kgs}^{-1}$, conducted in the 96 m long pipeline 192
8.15 Cross-sectional area ratio of stationary bed to pipe versus slug velocity for white plastic pellets 193
8.16 Cross-sectional area ratio of stationary bed to pipe versus slug velocity for black plastic pellets 193
8.17 Cross-sectional area ratio of stationary bed to pipe versus slug velocity for wheat 194
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.18</td>
<td>Cross-sectional area ratio of stationary bed to pipe versus slug velocity for barley</td>
</tr>
<tr>
<td>8.19</td>
<td>General form of steady state pneumatic conveying characteristics for a given material and pipeline</td>
</tr>
<tr>
<td>8.20</td>
<td>Experimental conveying characteristics of black plastic pellets conveyed in the 52 m long pipeline</td>
</tr>
<tr>
<td>8.21</td>
<td>Experimental conveying characteristics of wheat conveyed in the 52 m long pipeline</td>
</tr>
<tr>
<td>8.22</td>
<td>Pressure distribution along a horizontal pipe for white plastic pellets</td>
</tr>
<tr>
<td>8.23</td>
<td>Pressure distribution along a horizontal pipe for black plastic pellets</td>
</tr>
<tr>
<td>8.24</td>
<td>Pressure distribution along a horizontal pipe for wheat</td>
</tr>
<tr>
<td>8.25</td>
<td>Pressure distribution along a horizontal pipe for barley</td>
</tr>
<tr>
<td>8.26</td>
<td>Arrangement of transducers for the investigation into bend effect</td>
</tr>
<tr>
<td>8.27</td>
<td>Comparison of pressure gradient for black plastic pellets</td>
</tr>
<tr>
<td>8.28</td>
<td>Comparison of pressure gradient for white plastic pellets</td>
</tr>
<tr>
<td>8.29</td>
<td>Slug flowing through pipeline with a bend and the corresponding idealised pressure wave form</td>
</tr>
<tr>
<td>8.30</td>
<td>Predicted conveying characteristics of white plastic pellets in the horizontal pipe $L_{th} = 36 \text{ m}$ and $D = 0.105 \text{ m}$, showing the curves of constant $m_s$</td>
</tr>
<tr>
<td>8.31</td>
<td>Predicted conveying characteristics of white plastic pellets in the horizontal pipe $L_{th} = 78 \text{ m}$ and $D = 0.105 \text{ m}$, showing the curves of constant $m_s$</td>
</tr>
<tr>
<td>8.32</td>
<td>Predicted conveying characteristics of black plastic pellets in the horizontal pipe $L_{th} = 36 \text{ m}$ and $D = 0.105 \text{ m}$, showing the curves of constant $m_s$</td>
</tr>
</tbody>
</table>
8.33 Predicted conveying characteristics of black plastic pellets in the horizontal pipe $L_{th} = 78$ m and $D = 0.105$ m, showing the curves of constant $m_s$  

8.34 Predicted conveying characteristics of wheat in the horizontal pipe $L_{th} = 36$ m and $D = 0.105$ m, showing the curves of constant $m_s$  

8.35 Predicted conveying characteristics of wheat in the horizontal pipe $L_{th} = 78$ m and $D = 0.105$ m, showing the curves of constant $m_s$  

8.36 Predicted conveying characteristics of barley in the horizontal pipe $L_{th} = 36$ m and $D = 0.105$ m, showing the curves of constant $m_s$  

8.37 Predicted conveying characteristics of barley in the horizontal pipe $L_{th} = 78$ m and $D = 0.105$ m, showing the curves of constant $m_s$  

9.1 Pneumatic conveying test rig with 80.5 mm ID pipeline  

9.2 Procedure for determining pneumatic conveying characteristics  

9.3 Relationship between slug velocity and superficial air velocity  

9.4 Predicted PCC of the horizontal pipeline of Rig 1 for conveying polystyrene chips, $L_{th} = 78$ m, $D = 105$ mm  

9.5 Predicted PCC of the horizontal pipeline of Rigs 2 and 3 for conveying polystyrene chips, $L_{th} = 40$ m, $D = 156$ mm  

9.6 Predicted PCC of the horizontal pipeline of Rig 4 for conveying black plastic pellets, $L_{th} = 116$ m, $D = 80.5$ mm  

9.7 Predicted pressure drop compared with experimental pressure drop obtained on Rig 1 for polystyrene chips  

9.8 Predicted pressure drop compared with experimental pressure drop obtained on Rigs 2 and 3 for polystyrene chips
9.9 Predicted pressure drop compared with experimental pressure drop obtained on Rig 4 for black plastic pellets 226
9.10 Pipeline pressure distribution for white plastic pellets and $D = 105\ mm$ 228
9.11 Pipeline pressure distribution for black plastic pellets and $D = 105\ mm$ 228
9.12 Pipeline pressure distribution for wheat and $D = 105\ mm$ 229
9.13 Pipeline pressure distribution for barley and $D = 105\ mm$ 229
9.14 Variation of pressure gradient 230
9.15 Economical operating curve of white plastic pellets shown on PCC graph for 36 m horizontal pipeline 233
9.16 Economical operating curve of black plastic pellets shown on PCC graph for 36 m horizontal pipeline 233
9.17 Economical operating curve of wheat shown on PCC graph for 78 m horizontal pipeline 234
9.18 Economical operating curve of barley shown on PCC graph for 36 m horizontal pipeline 234
9.19 Particle size distribution of semolina 236
9.20 Semolina shown in Dixon's slugging diagram 237
9.21 Low-velocity pneumatic conveying characteristics of 105 mm ID, 52 m mild steel pipeline for semolina 238
9.22 Plot of slug velocity versus superficial air velocity for semolina 239
9.23 Predicted pneumatic conveying characteristics of semolina and 36 m horizontal pipeline by using modified model 240
B.1 Schematic layout of 96 m long pipeline and transducer locations 276
D.1 A particle slug in a vertical pipe 279
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Physical properties of test material</td>
<td>100</td>
</tr>
<tr>
<td>6.1</td>
<td>K, U_{amin} and ( \gamma^2 ) for lines of various test materials</td>
<td>127</td>
</tr>
<tr>
<td>6.2</td>
<td>Optimal coefficient</td>
<td>129</td>
</tr>
<tr>
<td>7.1</td>
<td>Experimental wall pressure and stress transmission coefficient for wheat</td>
<td>154</td>
</tr>
<tr>
<td>7.2</td>
<td>Stress transmission coefficient ( \lambda ) for different test materials</td>
<td>155</td>
</tr>
<tr>
<td>7.3</td>
<td>Static internal friction angles for test materials</td>
<td>168</td>
</tr>
<tr>
<td>7.4</td>
<td>Coefficient of best fit</td>
<td>169</td>
</tr>
<tr>
<td>9.1</td>
<td>Conveying pipelines</td>
<td>217</td>
</tr>
<tr>
<td>9.2</td>
<td>Steady-state dense-phase results for black plastic pellets</td>
<td>219</td>
</tr>
<tr>
<td>9.3</td>
<td>Steady-state dense-phase results for polystyrene chips</td>
<td>220</td>
</tr>
<tr>
<td>9.4</td>
<td>Economical superficial air velocity</td>
<td>232</td>
</tr>
<tr>
<td>A.1</td>
<td>Experimental values of major parameters for conveying white plastic pellets in 52 m long pipeline</td>
<td>264</td>
</tr>
<tr>
<td>A.2</td>
<td>Experimental values of major parameters for conveying white plastic pellets in 96 m long pipeline</td>
<td>265</td>
</tr>
<tr>
<td>A.3</td>
<td>Experimental values of major parameters for conveying black plastic pellets in 96 m long pipeline</td>
<td>266</td>
</tr>
<tr>
<td>A.4</td>
<td>Experimental values of major parameters for conveying black plastic pellets in 52 m long pipeline</td>
<td>267</td>
</tr>
<tr>
<td>A.5</td>
<td>Experimental values of major parameters for conveying wheat in 52 m long pipeline</td>
<td>268</td>
</tr>
<tr>
<td>A.6</td>
<td>Experimental values of major parameters for conveying wheat in 96 m long pipeline</td>
<td>269</td>
</tr>
</tbody>
</table>
A.7  Experimental values of major parameters for conveying barley in 96 m long pipeline 270
A.8  Experimental values of major parameters for conveying barley in 52 m long pipeline 271
A.9  Experimental values of pressure along 96 m long pipeline for white plastic pellets 272
A.10 Experimental values of pressure along 96 m long pipeline for black plastic pellets 273
A.11 Experimental values of pressure along 96 m long pipeline for wheat 274
A.12 Experimental values of pressure along 96 m long pipeline for barley 275
B.1  Pressure transducer locations (distance from end of pipeline) 276
NOMENCLATURE

A  Cross sectional area of pipe (m²)
A_c  Cross sectional area of the shear ring of a Jenike shearing tester
A_f  De-aeration factor (mbar. sm⁻¹)
A_st  Cross sectional area of stationary bed, m²
a, b  Ergun constant
C  Integration constant in Equation (3.10)
c  Interparticle cohesion
c_d  Coefficient in Equation (6.29)
c_w  Particle-wall cohesion
D  Diameter of pipe (m)
d  Particle diameter (mm)
F_d  Drag force of fluid (N)
F_h  Buoyant force (N)
F_r, F_s  Friction forces for particles (N)
Fr  Froude number of material, Fr = U_s²/gD
FrcF  Variable in Equation (2.10)
F_w  Gravity force (N)
f  Sampling frequency (Hz)
f_K  Constant in Equation (6.23)
g  Acceleration due to gravity (ms⁻²)
H_b  Height of fixed bed (m)
h_c  Critical depth of the shearing flow at transition (m)
h_s  Stationary bed thickness (mm)
ID  Internal diameter of pipe (m)
K  Slope in Equation (6.25)
k  Constant in Equation (6.35) and (6.36)
k_1  Constant in Equation (6.1)
L  Distance of two neighbouring pressure transducers (m)
L_h  Length of horizontal pipe (m)
L_t  Total pipeline length (m)
L_{th}  Total horizontal pipeline length (m)
L_v  Vertical pipeline length (m)
L_A  Distance between a test point and pipe end (m)
L_d  Distance between two neighbouring slugs (m)
L_g  Air gap length (m)
L_s  Single slug length (m)
M  Total mass of the moving solids in a pipe (kg)
m  Mass of particles (kg)
m_f  Mass flow-rate of air (kgs⁻¹)
m_{fl}  Rotary valve air leakage (kgs⁻¹)
m_{ft}  Total supplied mass flow-rate of air (kgs⁻¹)
m_s  Mass flow-rate of solids (kgs⁻¹)
m_{st}  Mass of particles collected by a slug per unit time (kgs⁻¹)
m^*  Mass flow ratio
NB  Number of bends
N_s  Number of the pressure peaks in a certain period of time
n  Number of test materials
n_b  Number of the particles contained in the back area of a slug
n_f  Number of the particles contained in the front area of a slug
n_i  Number of the particles having velocity u_{pi}, i = 1, \ldots, n
n_m  Number of the particles contained in the middle area of a slug
n_p  Numbers of the particles of a given mass
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_i$</td>
<td>Air pressure at different points along a pipe (Pag), $i = 1, \ldots, n$</td>
</tr>
<tr>
<td>$P_B$</td>
<td>Air pressure during a slug flowing through a bend (Pag)</td>
</tr>
<tr>
<td>$P_S$</td>
<td>Air pressure during a slug flowing in a straight pipe (Pag)</td>
</tr>
<tr>
<td>$P_{f1}$, $P_{f2}$</td>
<td>Pressure force (N)</td>
</tr>
<tr>
<td>$P_n$</td>
<td>Nominal power</td>
</tr>
<tr>
<td>$P_u$</td>
<td>Dissipated energy (J/kgm)</td>
</tr>
<tr>
<td>$p$</td>
<td>Interstitial air pressure (Pag)</td>
</tr>
<tr>
<td>$p_2$, $p_3$</td>
<td>Pressure in Equation (5.2) (Psig)</td>
</tr>
<tr>
<td>$p_f$</td>
<td>Permeability factor (m$^3$kg$^{-1}$)</td>
</tr>
<tr>
<td>$Q_g$</td>
<td>Air flow rate (m$^3$s$^{-1}$)</td>
</tr>
<tr>
<td>$Q_w$</td>
<td>Shearing force acting on a slug (N)</td>
</tr>
<tr>
<td>$R$</td>
<td>Radius of pipe (m)</td>
</tr>
<tr>
<td>$R_b$</td>
<td>Radius of Bend (m)</td>
</tr>
<tr>
<td>$Re$</td>
<td>Reynold's number</td>
</tr>
<tr>
<td>$R_f$</td>
<td>Friction force between the sliding slug and pipe wall (N)</td>
</tr>
<tr>
<td>$R_{s1}$, $R_{s2}$</td>
<td>Resistant forces (N)</td>
</tr>
<tr>
<td>$R_{xy}$</td>
<td>Cross correlation function</td>
</tr>
<tr>
<td>$\hat{R}_{xy}$</td>
<td>Estimation of $R_{xy}$</td>
</tr>
<tr>
<td>$r$</td>
<td>Radius of Mohr circle</td>
</tr>
<tr>
<td>$S$, $S'$, $S''$, $S'''$</td>
<td>Shearing forces in Jenike shearing test</td>
</tr>
<tr>
<td>$S_v$</td>
<td>Specific surface (i.e. particle surface per unit particle volume) (m$^{-1}$)</td>
</tr>
<tr>
<td>$S_{xy}$</td>
<td>Cross spectral density</td>
</tr>
<tr>
<td>$\hat{S}_{xy}$</td>
<td>Estimation of $S_{xy}$</td>
</tr>
<tr>
<td>$T$</td>
<td>Time range of a signal record (s)</td>
</tr>
<tr>
<td>$T_s$</td>
<td>Sampling time interval (s)</td>
</tr>
<tr>
<td>$t_i$</td>
<td>Different times (s), $i = 0, 1, \ldots, n$</td>
</tr>
<tr>
<td>$t_{f1}$, $t_{l1}$</td>
<td>Time of the first and last slug occurring in a pressure record (s)</td>
</tr>
<tr>
<td>$t_p$</td>
<td>Closing time of a solenoid valve (s)</td>
</tr>
</tbody>
</table>
\( t_s \) Time taken by the slug to travel across a pipeline (s)

\( t_T \) Opening and closing time of a solenoid valve (s)

\( U_a \) Superficial air velocity (ms\(^{-1}\))

\( U_{amin} \) Minimum superficial air velocity (ms\(^{-1}\))

\( U_{mf} \) Incipient fluidisation air velocity (ms\(^{-1}\))

\( U_{ra} \) Mean air velocity (ms\(^{-1}\))

\( U_p \) Superficial particle velocity (ms\(^{-1}\))

\( U_{pb} \) Particle velocity in the back area of a slug (ms\(^{-1}\))

\( U_{pf} \) Particle velocity in the front area of a slug (ms\(^{-1}\))

\( U_{pm} \) Particle velocity in the middle area of a slug (ms\(^{-1}\))

\( U_{pst} \) Particle velocity in stationary bed (ms\(^{-1}\))

\( U_s \) Slug velocity (ms\(^{-1}\))

\( U_{sb} \) Velocity of the back surface of a slug (ms\(^{-1}\))

\( U_{sf} \) Velocity of the front surface of a slug (ms\(^{-1}\))

\( U_{sp} \) Slip velocity (ms\(^{-1}\))

\( U_t \) Single particle terminal velocity (ms\(^{-1}\))

\( u_{pi} \) Velocity of each particle contained in a slug (ms\(^{-1}\)), \( i = 0, 1, \ldots, n \)

\( V, V', V'', V''' \) Normal forces in Jenike shearing test

\( V_1, V_2 \) Principle forces

\( V_a \) Added cell volume of a stereo pycnometer (cm\(^3\))

\( V_c \) Sealed sample cell volume of a stereo pycnometer (cm\(^3\))

\( V_p \) Powder sample volume (cm\(^3\))

\( V_s \) Total volume of the moving solids in a pipe

\( X \) Variable in Figure 2.3

\( x, y, z \) Co-ordinates

\( x_1, \ldots, x_5 \) Coefficients in Equations (6.26) and (7.19)

\( x(t), y(t), z(t) \) Time history records

\( \alpha \) Cross sectional area ratio of stationary bed to pipe
\( \alpha_b \)  
Incline angle of bend with respect to the horizontal (°)

\( \beta \)  
Coefficient in Equation (6.36)

\( \beta_b \)  
Incline angle of the back surface of a slug (°)

\( \beta_f \)  
Incline angle of the front surface of a slug (°)

\( \delta \)  
Effective internal friction angle (°)

\( \Delta \theta = \theta_1 - \theta_2 \)  
Radian of bend in Equation (2.15) (°)

\( \Delta p \)  
Pressure drop across a single slug (Pa)

\( \Delta p_i \)  
Pipeline pressure drops at different locations (Pa), \( i = 1, ..., n \)

\( \Delta p_t \)  
Total pipeline pressure drop (Pa)

\( \Delta p_{th} \)  
Total horizontal pipeline pressure drop (Pa)

\( \Delta t \)  
Interval time (s)

\( \varepsilon \)  
Bulk voidage

\( \phi \)  
Internal friction angle (°)

\( \phi_s \)  
Static internal friction angle (°)

\( \phi_w \)  
Wall friction angle (°)

\( \gamma \)  
Coefficient of correlation

\( \gamma_b \)  
Bulk specific weight with respect to water at 4 °C

\( \gamma_s \)  
Particle specific weight with respect to water at 4 °C

\( \eta \)  
Dynamic viscosity of fluid, Nsm⁻²

\( \lambda \)  
Stress transmission coefficient

\( \lambda_A \)  
Stress transmission coefficient at active failure

\( \lambda_{\min}, \lambda_{\max} \)  
Minimum and maximum stress transmission coefficient

\( \lambda_o \)  
Static stress transmission coefficient

\( \lambda_{omin}, \lambda_{omax} \)  
Minimum and maximum static stress transmission coefficient

\( \lambda_P \)  
Stress transmission coefficient at passive failure

\( \mu \)  
Coefficient of internal friction

\( \mu_w \)  
Coefficient of wall friction

\( \theta \)  
Angle in Figure (3.8) (°)
\( \theta_s \) \hspace{1cm} \text{Angle in Figure (8.12) }(^\circ) \\
\( \rho_a \) \hspace{1cm} \text{Air density } (\text{kgm}^{-3}) \\
\( \rho_b \) \hspace{1cm} \text{Bulk density } (\text{kgm}^{-3}) \\
\( \rho_{bst} \) \hspace{1cm} \text{Bulk density of stationary bed } (\text{kgm}^{-3}) \\
\( \rho_s \) \hspace{1cm} \text{Particle density } (\text{kgm}^{-3}) \\
\( \sigma \) \hspace{1cm} \text{Normal stress } (\text{Pa}) \\
\( \sigma_1, \sigma_2 \) \hspace{1cm} \text{Principle stresses } (\text{Pa}) \\
\( \sigma_b \) \hspace{1cm} \text{Stress on the back face of a slug } (\text{Pa}) \\
\( \sigma_f \) \hspace{1cm} \text{Stress on the front face of a slug } (\text{Pa}) \\
\( \sigma_r \) \hspace{1cm} \text{Radial stress } (\text{Pa}) \\
\( \sigma_g \) \hspace{1cm} \text{Gravity pressure } (\text{Pa}) \\
\( \sigma_n \) \hspace{1cm} \text{Normal stress coordinate} \\
\( \sigma_{tw} \) \hspace{1cm} \text{Total wall pressure } (\text{Pa}) \\
\( \sigma_w \) \hspace{1cm} \text{Wall pressure } (\text{Pa}) \\
\( \sigma_{wm} \) \hspace{1cm} \text{Average wall pressure } (\text{Pa}) \\
\( \sigma_{x, y, z} \) \hspace{1cm} \text{Normal stresses in } x, y, z \text{ direction } (\text{Pa}) \\
\( \sigma_{xm} \) \hspace{1cm} \text{Average stress in } x \text{ direction} \\
\( \tau \) \hspace{1cm} \text{Shearing stress } (\text{Pa}) \\
\( \tau_d \) \hspace{1cm} \text{Time delay between two signals } (\text{s}) \\
\( \tau_p \) \hspace{1cm} \text{Specific time delay for the peak value of cross-correlation function } (\text{s}) \\
\( \tau_n \) \hspace{1cm} \text{Shearing stress coordinate} \\
\( \tau_{tw} \) \hspace{1cm} \text{Total shear stress at a wall } (\text{Pa}) \\
\( \tau_{xy}, \tau_{xz}, \tau_{yz} \) \hspace{1cm} \text{Shear stresses at the planes perpendicular to } x, y, z \text{ coordinates} \\
\( \omega \) \hspace{1cm} \text{Angle defined in Figure 7.17 }(^\circ)