Policies and politics of changing the food label

Heather Yeatman
University of Wollongong, hyeatman@uow.edu.au

Michael Moore
Public Health Association of Australia, mmoore@phaa.net.au

Publication Details

Policies and politics of changing the food label

Abstract
This is a poster abstract from the 5th Asia-Pacific Conference on Public Health hosted by the Korean Public Health Association on April 10-11, 2014.

Keywords
politics, policies, label, food, changing

Disciplines
Education | Social and Behavioral Sciences

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/sspapers/809
P-025 Food Safety and Health

Microbiological Evaluation of Indoor Air in the Kitchens of Food Courts and Cafeterias
Jong-Gyu Kim1, Jong-Yeong Park1, Jong-Soon Kim2
1Department of Public Health, Kyungpook National University, Republic of Korea
2Department of Industrial and Management Engineering, Kyungpook National University, Republic of Korea

Background: There has been a growing interest in indoor microbial studies in recent years. Most adults eat foods more than once a week at restaurants, food courts, and cafeterias, where they are exposed to some indoor environmental factors (asthma, allergy) that influence their health and physical condition. The purpose of this study was to determine the airborne bacteria and fungal levels in the kitchens of food courts/cafeterias in a city of Korea.

Methods: Air samples were taken from nine kitchens of food courts/cafeterias. Merck Air Sampler Mass 100 was used for sampling and analyzing. Petri dishes filled with a microbiological culture medium (TBA, tryptophan soy agar for bacteria and SDM, Selenocortionate dextrose monosulfate medium for fungal agar) were used as the sampling surface. Dishes with TBA medium were incubated for 2 days at 37°C while dishes with SDM medium were incubated for 7 days at 25°C.

Results: The levels of total aerobic bacteria measured were 103-10^6 CFU/m3. The levels of fungi were 10^2-10^5 CFU/m3. Staphylococcus aureus was found in half of the kitchens. MRSA was not detected in all the kitchens. The levels of fungi were found to be significantly lower across was found in eight kitchens. MRSA was not detected in all the kitchens. The levels of fungi were found to be significantly lower across the kitchens. MRSA was not detected in all the kitchens. The levels of fungi were found to be significantly lower.

Conclusions: These results indicate that the kitchens could be exposed to high microbial contamination, for providing a better indoor air quality in the kitchens, more frequent ventilation is necessary.

Keywords: indoor air of kitchens, bacteria, fungi

P-026 Food Safety and Health

Parabens, Its Fates and Effects in the Body
Paeungi Kim1, Youngmin Oh1, Kyunghee Je1, Youngmin Kim2, SungKyun Kim3, Baekwan Kim3, Seonghee HWANG3
1Occupational & Environmental Health, Yonsei University, Republic of Korea
2Environmental Health and Safety, EUI University, Republic of Korea
3Environmental Health, Social National University, Republic of Korea

Background: Parabens are esters of para hydroxybenzoic acid, used as a preservatives since 1930s, have been widely used in the food, pharmaceuticals and cosmetics. Four esters are commonly used: methyl-, ethyl-, propyl- and butyl parabens. They are present in many consumer products, such as fruits and vegetables, medicines, baby powder, etc. They are natural products and are used as preservatives.

Methods: Parabens, methyl-, ethyl- and propyl- were used in this experiment. 20 mg/kg was injected into the body of rats. After 6 weeks, Sprague-Dawley rats were used and parabens were administered via oral or venous route. Blood and urine samples were collected 0, 0.5, 1, 2, 4, 8, 12 hours after administration. Samples were analyzed using HPCL-MS/MS. Parent compounds and metabolites such as hydroxybenzoic acid and 4-hydroxypropiocic acid were analyzed.

Results: The test accuracy was 92.0-103.9%, precision was 1.4-7.1%, and LOD were 1.0-5.0 ng/ml. Oat exposed parabens were detected in the blood within 30 minutes and stayed for 2 hours in test animals. Injected parabens were detected in the serum within 30 minutes and stayed for 2 hours in test animals. Oat exposed parabens were detected in the urine within 30 minutes and stayed for 2 hours in test animals.

Conclusions: Oat exposed parabens were absorbed within 30 minutes and eliminated 0.5-2 hours. Injected parabens were excited within 0.5-2 hours. Parabens, parabens and metabolites, rat

P-027 O Food Safety and Health

Policies and Politics of Changing the Food Label
Heather YEATMAN1, Michael MOORE2
1School of Health and Society, University of Wollongong, Australia, 2National Office, Public Health Association of Australia, Australia

Background: In 2010 a national comprehensive review of all food labelling law and policy was undertaken in Australia. The Australian governments accepted 21 of the 61 recommendations. This paper will outline the main recommendations from the review and will present the processes put into place to develop an intervention test of pack labelling scheme. A cooperative approach involving government, public health and consumer groups and food industry representatives was undertaken.

Methods: Test and media analysis were undertaken. The Public Health Association of Australia was a participant observer in the committee processes that developed the Health Star Rating System. The timeline for committee work, key outcomes and recommendations and ministerial decisions were recorded. Subsequent media from both food industry groups (who backed away from the recommendations) and public health and government groups (who continued to support it) were tracked.

Results: The food industry was an active player in the development of the health star rating system as the preferred front of pack labelling (FPL) system recommended to Food Ministers. The system was approved to go forward for implementation within a two year period. Prior to and following the Ministers' decision there was a consistent attack by the food industry on this FPL system aiming to have the decision reversed and undermining the co-regulatory policy approach.

Conclusions: The food industry never intended to agree with and support the implementation of a policy option that supported easier and healthier food choices for consumers. These findings support the WHO's recent view that industry groups should not be at the policy-making table.

Keywords: food labelling, policy development, food industry

P-028 O Food Safety and Health

Rapid and High-Flux Identification of Clade or Sub-Clade 2.3.2 and 2.3.4 of Avian Influenza Virus Subtype H5N1
Fukie Zhang1, Weidong Zhang1, Tingsong Hu2, Quanshu Fan3, Guan CHEN4
1Molecular Virology, Centre for Disease Control and Prevention, Chengdu Military Region 800111, China, 2Tianjin Medical University, Tianjin Medical University, Tianjin, China, 3Tianjin University, Tianjin, China, 4Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

Background: The highly pathogenic avian influenza (H5N1) virus, subtype H5N1, was first detected in 1996 in Southern China. Since then, the virus has spread to poultry and wild birds in more than 66 countries across Asia, the Middle East, Europe, and Africa and resulted in more than 584 human fatalities in 15 countries. Phylogenetic analysis of the HA gene of viruses indicated extensive genetic diversity. Multiple clades are present and clades 2.3.2, 2.3.3 and 2.3.4 are predominant in many Asian and some European countries. Fast and high-flux identification of viral clade or sub-clade from clinical and field samples is very important for selecting correct candidate vaccine for effective control and prevention of influenza.

Methods: The rapid and high-flux method for identification of clade or sub-clade 2.3.2 and 2.3.4 was designed based on multichannel nucleic acid sites and more than 16 samples can be analyzed at the same time by hyperspectral imaging. This allows the prediction of clade 2.3.2, 2.3.3 and 2.3.4 and additional clades, antigenic and receptor binding properties, low- and high-pathogenicity clade 2.3.2 and phylogenetic status.

Conclusions: The method for rapid and high-flux identification of clade or sub-clade 2.3.2 and 2.3.4 of avian influenza virus subtype H5N1 has been established and implemented.

Keywords: Avian influenza virus, H5N1 subtype, Clade