2009

Contribution to securing wireless mesh networks

Shams Ud Din Qazi
University of Wollongong, shams@uow.edu.au

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Contribution to Securing Wireless Mesh Networks

A thesis submitted in fulfillment of the requirements for the award of the degree

Masters by Research

from

UNIVERSITY OF WOLLONGONG

by

Shams Ud Din Qazi

School of Computer Science and Software Engineering
June 2009
© Copyright 2009
by
Shams Ud Din Qazi
All Rights Reserved
Dedicated to

My Parents
Declaration

This is to certify that the work reported in this thesis was done by the author, unless specified otherwise, and that no part of it has been submitted in a thesis to any other university or similar institution.

Shams Ud Din Qazi
June 3, 2009
Abstract

A wireless mesh network (WMN) comprises of mesh access points (MAPs)/mesh routers and mesh clients (MCs), where MAPs are normally static and they form the backbone of WMNs. MCs are wireless devices and dynamic in nature, communicating among themselves over possibly multi-hop paths, with or without the help of MAPs. Security has been a primary concern in order to provide protected communication in WMNs due to the open peer-to-peer network topology, shared wireless medium, stringent resource constraints and highly dynamic environment. These challenges clearly make a case for building multi-layer security solution that achieves both wide-range protection and desirable network performance.

In this thesis, we attempt to provide necessary security features to WMNs routing operations in an efficient manner. To achieve this goal, first we will review the literature about the WMNs in detail, like WMN’s architecture, applications, routing protocols, security requirements. Then, we will propose two different secure routing protocols for WMNs which provide security in terms of routing, data and users as well.

The first protocol is a cross-layer secure protocol for routing, data exchange and Address Resolution Protocol (ARP) problems (in case of LAN based upon WMNs). Our protocol is a ticket-based ad hoc on demand distance vector (TAODV) protocol, a secure routing protocol that is based on the design of the Ad Hoc on demand distance vector (AODV) protocol. Due to the availability of a backbone, we incorporate the Authentication Server (AS) for the issuance of tickets which are further used for secure routing, transfer of public keys and MAC addresses in one single step. By incorporating the public keys, source and destination can easily generate their shared secret key based upon Fixed Diffie-Hellman key exchange protocol for data encryption and decryption. Our protocol is secure against both active as well as passive attacks.

The second proposed protocol is to “achieve user anonymity in WMNs”. This
protocol is also ticket-based protocol. The ticket is issued by Network Operator (NO) which provides user anonymity, user authentication and data confidentiality/privacy throughout the WMN. Our protocol is inspired by the blind Nyberg-Rueppel digital signature scheme. In this protocol NO issues tickets to valid users only and these users can then use these tickets to access Internet or to access services provided by Internet Gateway (IGW). IGW can only verify these tickets whether tickets are valid or not but can not check “Identity of ticket holder”. This way, user anonymity has been achieved along with user authentication and data privacy throughout WMN.
Acknowledgements

First of all, I would like to thanks A/Prof Dr Yi Mu and A/Prof Dr Willy Susilo, my supervisors, for their guidance and constant support during my study. I must evidence their wealth of knowledge in the field of security and cryptography. I also appreciate their efforts in guiding me in the field of network security, especially in the area of cryptography.

I am grateful to University of Sciences and Technology, Pakistan for providing me this opportunity to pursue my higher studies in University of Wollongong by giving financial support.

I would like to thanks all of my research group members especially Xinyi Huang, Wei Wu and Siamak Fayyaz Shahandashti, for their help in learning cryptography. I would also like to thank all staff of Centre for Computer and Information Security Research and the School of Computer Science and Software Engineering.

Finally, I would like to thanks my parents, for their relentless support throughout my entire life with their love and guidance. Without them, I would never be able to have all my achievements.
Publications

Contents

Abstract v
Acknowledgements vii
Publications viii

1 Introduction 1
 1.1 Background ... 1
 1.2 Problem Description ... 2
 1.3 Our Contribution .. 3
 1.4 Thesis Structure ... 4

2 Wireless Mesh Networks Basics 5
 2.1 Introduction .. 5
 2.2 Network Architecture ... 7
 2.2.1 Infrastructure WMNs 9
 2.2.2 Client WMNs ... 10
 2.2.3 Hybrid WMNs .. 11
 2.3 Characteristics of WMNs 12
 2.3.1 Multi-Hop Wireless Network 12
 2.3.2 Support for Ad Hoc Networking 12
 2.3.3 Mobility Factor .. 12
 2.3.4 Access of Multiple Networks 13
 2.3.5 Dependence of Power Consumption 13
 2.3.6 Compatibility with Existing Wireless Networks 13
 2.4 Applications of WMNs .. 13
 2.4.1 Broadband Home Networking 14
2.4.2 Community and Neighborhood Networking 14
2.4.3 Enterprise Networking .. 15
2.4.4 Metropolitan Area Networks .. 16
2.4.5 Transportation Systems ... 17
2.4.6 Building Automation ... 17
2.4.7 Health and Medical Systems ... 17
2.4.8 Security Surveillance Systems ... 18
2.5 Routing Protocols ... 18
 2.5.1 Ad-Hoc on Demand Distance Vector (AODV) Protocol 20
 2.5.2 Dynamic Source Routing (DSR) Protocol 22
2.6 Security Requirements ... 24
 2.6.1 General Security Requirements ... 24
 2.6.2 Security Requirements for WMNs 27
2.7 Existing Secure Routing Protocols ... 29
 2.7.1 ARAN ... 29
 2.7.2 SAODV ... 30
 2.7.3 SAR ... 30
2.8 Evaluation of Existing Secure Routing Protocols 32
 2.8.1 ARAN ... 32
 2.8.2 SAODV ... 33
 2.8.3 SAR ... 33
2.9 Summary .. 33

3 Cryptography Basics .. 35
 3.1 Introduction ... 35
 3.2 Cryptography .. 36
 3.2.1 Secret or Symmetric Key Cryptography 36
 3.2.2 Public or Asymmetric Key Cryptography 37
 3.3 Diffie-Hellman Key Exchange Protocol 38
 3.3.1 Algorithm .. 39
 3.4 Digital Signatures .. 40
 3.4.1 General Scheme .. 40
 3.4.2 Security Requirements for Digital Signature Schemes 42
 3.5 Nyberg-Rueppel Signature Scheme .. 43
 3.6 Blind Signatures ... 43
4 Ticket Based Ad-Hoc On Demand Distance Vector Protocol 48
4.1 Introduction ... 48
4.2 Protocol Design .. 49
 4.2.1 Notations .. 51
 4.2.2 Setup .. 51
 4.2.3 Proposed Run .. 52
 4.2.4 In Case of New MAP .. 53
 4.2.5 In Case of New MC .. 54
 4.2.6 Communication Between Different MCs 55
 4.2.7 Address Resolution Protocol Security 58
4.3 Security Analysis ... 58
4.4 Summary ... 60

5 Achieving User Anonymity in WMNs 62
5.1 Introduction ... 62
 5.1.1 Anonymity and Its Importance 62
 5.1.2 Application Scenario 63
5.2 Protocol Design .. 65
 5.2.1 Notations .. 66
 5.2.2 Registration of New Mesh Client 66
 5.2.3 Ticket Generation Process 67
 5.2.4 Proposed Run .. 69
 5.2.5 Ticket Verification Process 72
 5.2.6 Ticket Uniqueness Checking 73
5.3 Security Analysis ... 73
5.4 Summary ... 75

6 Conclusions 76

A Glossary 79
List of Tables

1.1 Security issues related to each layer 3
3.1 Diffie-Hellman Key Exchange Algorithm 39
4.1 Certificate .. 52
4.2 Ticket .. 53
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Wireless Mesh Network Architecture</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Examples of mesh routers: (a) Conventional wireless router [1] and (b) Advanced Risc Machines (ARM)[2]</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Infrastructure Wireless Mesh Network Architecture</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Client Wireless Mesh Network Architecture</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Hybrid Wireless Mesh Network Architecture</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>WMNs for broadband home networking</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>WMNs for community networking</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Route Discovery in AODV Protocol</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Route Discovery in DSR Protocol</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Man-in-the-middle attack</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Security Aware Routing Protocol</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Secret or Symmetric Key Cryptography</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Public or Asymmetric Key Cryptography</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>General Digital Signature Scheme</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Verification of Digital Signature</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Wireless Mesh Network with Authentication Server</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Communication Process in Wireless Mesh Network</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>ISP using WMN for extension of Internet to users in remote area</td>
<td>63</td>
</tr>
<tr>
<td>5.2</td>
<td>Military Operation using WMN for communication</td>
<td>64</td>
</tr>
<tr>
<td>5.3</td>
<td>Internet extension using WMN</td>
<td>70</td>
</tr>
</tbody>
</table>