Interactions of metal complexes with DNA

Jihan H. Talib

University of Wollongong, jihan@uow.edu.au

Recommended Citation
http://ro.uow.edu.au/theses/780

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Interactions of Metal Complexes With DNA

A thesis submitted in (partial) fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

University of Wollongong

by

Jihan Talib

Bachelor of Medicinal Chemistry Advanced (Honours)

School of Chemistry

November 2008
DECLARATION

I, Jihan Talib, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The work has not been submitted for qualification at any other academic institution.

Jihan Talib

4th November 2008
ACKNOWLEDGEMENTS

This thesis would not have been possible without the support, encouragement and guidance from the people listed below, of whom I would like to send them my deepest gratitude and appreciation.

- My supervisors Dr Stephen Ralph and Dr Jennifer Beck, thank you for giving me the opportunity to accomplish this work under your supervision here at the University of Wollongong. Your support and guidance during the course of this project has been a constant source of motivation and inspiration. Your advice has not only helped carry me through my postgraduate research but will always be remembered as I continue my scientific career. Steve your positive energy and enthusiasm encouraged me to continue to persevere especially during the more challenging times. Jenny, thank you for your knowledge and patience. I deeply appreciated your guidance, advice and direction.

- The past and present members of the Mass Spectrometry group. Thank you for your friendships and for contributing to an enjoyable and pleasant working environment. Thankyou to Thitima Urathamakul, Stephen Watt and Raj Gupta for teaching me how to use the instruments and essential lab skills.

- Larry Hick, thank you for knowledge and assistance with the mass spectrometers. I am immensely grateful for your willingness and dedication to help me with the instruments. I will never forget your warm presence and infectious chuckle.

- Dr Janice Aldrich-Wright (School of Science, Food and Horticulture, University of Western Sydney) for the ruthenium and platinum drugs used in this work.

- Dr Joel McKay (School of Molecular and Microbial Biosciences, The University of Sydney, Australia) for providing the transcription factor used in this study.

- David Harman, thank you for your guidance during the synthesis of the organic ligands.

- Jemise, Kate, Louise, Emma, Cameron, and Jess, thank you for your friendships and encouragement.

- David, thank you so much for your patience and understanding. Your inspiration, encouragement, advice and willingness to listen, has helped me enormously through the last stages of this work. I cherish you and all your qualities.

Finally, I would especially like to thank my parents, without your support and love, I would have never been able to achieve this. Every day I remind myself how lucky I am to have you as my parents. I am truly gracious for the life you have given me.
PUBLICATIONS

Talib, J., Green, C. Davis, K. J., Urathamakul, T., Beck, J. L., Aldrich-Wright, J. R and Ralph, S. F. (2008) A Comparison of the Binding of Metal Complexes to Duplex and Quadruplex DNA. *Dalton Trans.* 8, 1018-1026

ABSTRACT

Electrospray ionisation mass spectrometry (ESI-MS), absorption spectrophotometry and circular dichroism spectroscopy were used to investigate the non-covalent binding interactions of the nickel complexes [Ni(phen)$_2$(L)]Cl$_2$, (L = phen, dpq, dpqc and dppz) with the 16mer oligonucleotide D2, which has the following base sequence: (GCTGCCAAATACCTCC/GGAGGTATTTGGCAGC). In addition, the extent of unwinding of the negatively supercoiled plasmid pUC9 caused by the nickel complexes, and the extent to which they inhibit in vitro synthesis of mRNA, were investigated using gel electrophoresis. The results of these studies showed that DNA binding strengthened as the size of the unique ligand was increased. Comparison of each of the above sets of results with those obtained from identical experiments performed using the analogous ruthenium complexes [Ru(phen)$_2$(L)]$^{2+}$ (L = phen, dpq, dpqc, dppz) showed that varying the metal ion had a measurable effect on DNA binding affinity, with the nickel complexes generally interacting more weakly with D2 than the corresponding ruthenium complexes.

ESI-MS/MS and in-source collision-induced dissociation experiments were performed using the tetrameric quadruplex DNA molecule Q5 (TTGGGGGT)$_4$ and antiparallel dimeric quadruplex Q2 (GGGGTTTTGGGG)$_2$ in order to determine their gas-phase dissociation profiles. It was found that the gas phase stability of the quadruplex DNA was dependent on its charge state, the number of oligonucleotide strands that make up the quadruplex, and the number of consecutive G-tetrads that it contains. ESI-MS and circular dichroism spectroscopy were also used to examine the non-covalent binding interactions of the octahedral nickel and ruthenium complexes stated above, as well as several square planar platinum complexes with Q5. The platinum complexes studied were
$[\text{Pt}(\text{en})(\text{phen})]^2+, \ [\text{Pt}(\text{en})(3,4,7,8-\text{Me}_4\text{phen})]^2+, \ [\text{Pt}(\text{en})(4,7-\text{Me}_2\text{phen})]^2+$ and $[\text{Pt}(5,6-\text{Me}_2\text{phen})(5,5-\text{dach})]^2+$. The results obtained from these experiments showed that each of the three groups of metal complexes were able to bind to Q5. In contrast to what was found in experiments involving the duplex DNA molecule D2, the presence of the intercalating dppz ligand in the coordination sphere of both the nickel and ruthenium complexes did not greatly increase their binding affinity towards quadruplex DNA. This observation suggests that intercalative binding interactions may not play as important a role in the binding of metal complexes to quadruplex DNA. ESI-MS was used to analyse mixtures containing the organic drug daunomycin, Q5, and either $[\text{Ru}(\text{phen})_2(\text{dppz})]^2+$ or $[\text{Pt}(\text{en})(4,7-\text{Me}_2\text{phen})]^2+$, in order to obtain information about the qDNA binding modes of these metal complexes. The affinity of the above two metal complexes towards parallel tetrameric quadruplexes with different lengths was also compared using ESI-MS in an attempt to shed light on whether they bind to the ends of the quadruplexes or in grooves along their lengths.

The optimal conditions required to obtain ESI mass spectra of the non-covalent adduct formed between the DNA binding domain of mouse transcription factor PU.1, and a short 10mer DNA molecule containing its 5'-GGAA-3' consensus sequence, were determined. ESI-MS was then used to probe the extent of inhibition of formation of this non-covalent complex caused by addition of $[\text{Ru}(\text{phen})_2(\text{dppz})]^2+$ or $[\text{Pt}(5,6-\text{Me}_2\text{phen})(5,5-\text{dach})]^2+$. Both metal complexes were shown to inhibit binding of the transcription factor to its DNA recognition site, demonstrating the potential of these complexes for transcription therapy.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adenine</td>
</tr>
<tr>
<td>AML</td>
<td>acute myeloid leukemia</td>
</tr>
<tr>
<td>bip</td>
<td>biphenyl</td>
</tr>
<tr>
<td>Bqdi</td>
<td>1,2-benzoquinone diimine</td>
</tr>
<tr>
<td>Bpy</td>
<td>bipyridine</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CI</td>
<td>chemical ionisation</td>
</tr>
<tr>
<td>CID</td>
<td>collision induced dissociation</td>
</tr>
<tr>
<td>CT-DNA</td>
<td>calf thymus DNA</td>
</tr>
<tr>
<td>Dach</td>
<td>1,2-diaminocyclohexane</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DMB</td>
<td>4,4’-dimethyl-2,2’-bipyridine</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dppm</td>
<td>1,2-bis(diphenylphosphino)methane</td>
</tr>
<tr>
<td>dppz</td>
<td>dipyrido[3,2-a:2',3'-c]phenazine</td>
</tr>
<tr>
<td>dpq</td>
<td>dipyrido[3,2-d-2',3'-f]quinoxaline</td>
</tr>
<tr>
<td>dpqc</td>
<td>dipyrido3,2-a:2',3'-c</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double-stranded DNA</td>
</tr>
<tr>
<td>DTC</td>
<td>diethylthiocarbocyanide</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGRI</td>
<td>early growth response factor 1</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>EI</td>
<td>electron ionisation</td>
</tr>
<tr>
<td>en</td>
<td>(1,2-diaminoethane)</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>FAB</td>
<td>fast atom bombardment</td>
</tr>
<tr>
<td>FD</td>
<td>field desorption</td>
</tr>
<tr>
<td>FDA</td>
<td>food and drug administration</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-S-transferase</td>
</tr>
<tr>
<td>HAT</td>
<td>1,4,5,8,9,12-hexaazatriphenylene</td>
</tr>
<tr>
<td>HIF-1</td>
<td>hypoxia inducible factor 1α</td>
</tr>
<tr>
<td>IkB</td>
<td>inhibitor of κB</td>
</tr>
<tr>
<td>ICD</td>
<td>induced circular dichroism</td>
</tr>
<tr>
<td>MALDI</td>
<td>matrix assisted laser desorption ionisation</td>
</tr>
<tr>
<td>MGP</td>
<td>4-(guanidylmethyl)-1-10-phenanthroline</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-morpholino)propanesulfonic acid</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-κB</td>
</tr>
<tr>
<td>NH₄OAc</td>
<td>ammonium acetate</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>PD</td>
<td>plasma desorption</td>
</tr>
<tr>
<td>phi</td>
<td>9,10-phenanthrenequinone diimine</td>
</tr>
<tr>
<td>phen</td>
<td>1,10-phenanthroline</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Name</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Q-TOF</td>
<td>quadrupole time-of-flight</td>
</tr>
<tr>
<td>qDNA</td>
<td>quadruplex DNA</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>R,R-Me<sub>2</sub>trien</td>
<td>2R,9R-diamino-4,7-diazadecane</td>
</tr>
<tr>
<td>Sp1</td>
<td>Specificity Protein 1</td>
</tr>
<tr>
<td>Stat3</td>
<td>Signal transducer and activator of transcription</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>TBACl</td>
<td>tetrabutylammonium chloride</td>
</tr>
<tr>
<td>terpy</td>
<td>2,2:6′2″-terpyridine</td>
</tr>
<tr>
<td>TFOs</td>
<td>triplex forming oligonucleotides</td>
</tr>
<tr>
<td>TMPyP4</td>
<td>[tetra(N-methyl-4-pyridyl-porphine)]</td>
</tr>
<tr>
<td>tpphz</td>
<td>tetrapyridophenazine</td>
</tr>
<tr>
<td>yAP-1</td>
<td>yeast Activator Protein 1</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DECLARATION ... i

ACKNOWLEDGEMENTS ... ii

PUBLICATIONS .. iii

ABSTRACT ... iv

ABBREVIATIONS ... vi

TABLE OF CONTENTS .. ix

LIST OF FIGURES ... xiv

LIST OF TABLES ... xx

Chapter 1 General Introduction .. 1

1.1 DNA as a Drug Target for Metal Complexes 1

1.2 Double-Stranded DNA ... 4

1.3 Quadruplex DNA .. 9

1.4 Non-covalent Binding of Small Molecules to B-DNA 15

1.4.1 Electrostatic Interactions ... 15

1.4.2 Groove Binding .. 16

1.4.3 Intercalation ... 21

1.5 Non-covalent Binding of Transition Metal Complexes to B-DNA 23
1.6 Non-covalent Binding to G-quadruplex DNA 31
1.7 Interactions of Transition Metal Complexes with G-Quadruplex DNA 33
1.8 Techniques used to Investigate Binding of Metal Complexes to DNA 35
1.8.1 Circular Dichroism Spectroscopy 36
1.8.2 Absorption Spectral Studies 38
1.8.3 Gel Electrophoresis 39
1.9 Electrospray Ionisation Mass Spectrometry of Small Molecule Binding Interactions with B-DNA 41
1.10 Electrospray Ionisation Mass Spectrometry of Small Molecule Binding Interactions with G-quadruplex DNA 47
1.11 Transcription of DNA 49
1.11.1 Transcription Factors 50
1.11.2 Transcription Therapy 52
1.12 Thesis Synopsis 55

Chapter 2 Materials and Methods 57

2.1 Materials 57
2.2 Synthesis of Nickel Complexes 59
2.2.1 Synthesis of Phendione 59
2.2.2 Synthesis of Quinoxaline and Phenazine Ligands 60
2.2.3 Synthesis of [Ni(phen)₃(H₂O)Cl][Cl·H₂O·CH₃CN 61
2.2.4 Synthesis of [Ni(phen)₃]Cl₂ 61
2.2.5 Synthesis of [Ni(phen)₃(L)]Cl₂, L = dppz, dpqc and dpq 62
2.2.6 Synthesis of $[\text{M(phen)}_3](\text{ClO}_4)_2$ $\text{M} = \text{Fe}^{2+}$ or Zn^{2+} 63

2.3 Oligonucleotides 63

2.3.1 Purification of Single Stranded Oligonucleotides 63

2.3.2 Preparation of 16mer dsDNA and qDNA 64

2.4 Reactions of Oligonucleotides with Metal Complexes 65

2.4.1 ESI-MS Experiments 65

2.4.2 CD Experiments: Titration of DNA with Metal Complexes 67

2.4.3 Absorption Spectrophotometry 67

2.4.4 Gel electrophoresis: Gel Mobility Shift Assays 68

2.5 Inhibition of Transcription Factor Binding to DNA 69

2.6 Transcription inhibition assays 70

Chapter 3 Analysing the Effect of the Metal Ion on Non-covalent Binding of Metal Complexes to DNA 72

3.1 Scope of this Chapter 72

3.2 Synthesis of Nickel Complexes 75

3.3 ESI-MS Studies of the Binding Interactions of Nickel Complexes with dsDNA 78

3.4 Circular Dichroism Studies of the Binding Interactions of Nickel Complexes With D2 87

3.5 Absorption Spectrophotometric Studies Of the Binding Interactions of Nickel Complexes with D2 91
3.6 Gel Electrophoresis Studies of the Binding Interactions of Nickel and Ruthenium Complexes with Plasmid DNA .. 96

3.7 Transcription Inhibition Assays .. 101

3.8 Conclusions .. 106

Chapter 4 Investigation of the Binding of Metal Complexes to Quadruplex DNA ... 109

4.1 Scope of this Chapter .. 109

4.2 Conditions for Obtaining ESI-Mass Spectra of Quadruplex DNA 112

4.3 Tandem Mass Spectrometry Studies Using Q5 and Q2 115

4.3.1 Studies performed using Q5 ... 115

4.3.2 Studies performed using Q2 ... 121

4.3.3 Effect of increasing cone voltage (in-source CID) 125

4.4 ESI-MS Studies of the Binding Interactions of Metal Complexes with qDNA .. 127

4.4.1 Ruthenium Complexes and Q5 .. 127

4.4.2 Nickel Complexes and Q5 .. 132

4.4.3 Platinum Complexes with dsDNA and qDNA 136

4.4.4 Competition Between Daunomycin and Metal Complexes for Q5 143

4.4.5 Binding of Metal Complexes to Tetrameric Quadruplexes of Different Lengths .. 149

4.5 CD Studies of the Binding Interactions of Metal Complexes with qDNA 154

4.5.1 CD Studies of the Binding of Ruthenium Complexes to Q5 154

4.5.2 CD Studies of the Binding of Nickel Complexes to Q5 157
4.5.3 CD studies of the Binding of Platinum Complexes to Q5 .. 159
4.5.4 CD Studies of the Binding of Platinum Complexes to D2 .. 162

4.6 Conclusions .. 165

Chapter 5 Inhibition of DNA Transcription Using Metal Complexes 169

5.1 Scope of this Chapter ... 169

5.2 NanoESI-MS Mass Spectra of Transcription factor PU.1 .. 171

5.3 NanoESI-MS of PU.1-DBD/dsDNA Complex .. 173

5.4 NanoESI Mass Spectra of Metal Complexes with P3 ... 178

5.5 Effect of Metal Complexes on the Binding of a Transcription Factor to DNA 182

5.2 Conclusions .. 188

REFERENCES ... 190
LIST OF FIGURES

Figure 1.1: Structures of some platinum complexes known to bind to DNA. __________ 3

Figure 1.2: A single polymer chain of DNA. ________________________________ 4

Figure 1.3: The double helical structure of DNA. _______________ 6

Figure 1.4: A-DNA, B-DNA, and Z-DNA. _______________ 7

Figure 1.5: Structure of a G-tetrad. ________________________________ 10

Figure 1.6: Different conformers for G-quadruplex DNA. _______________ 11

Figure 1.7: Proposed model for the anti-parallel G-quadruplex DNA structure formed from the human telomere DNA sequence d(TTAGGGTTAGGG). _______________ 12

Figure 1.8: Examples of DNA minor groove binders. _______________________________ 17

Figure 1.9: Crystal structure of netropsin binding to the minor groove of d(CGCAAATTTGCG). ________________________________ 18

Figure 1.10: Derivatives of the minor groove binder distamycin which have shown greater therapeutic potential. ________________________________ 20

Figure 1.11: Structures of some analogues of Hoechst 33258. _______________ 21

Figure 1.12: Examples of classical intercalators. ________________________________ 23

Figure 1.13: Structures of some transition metal complexes used in early studies of non-covalent binding to DNA. ________________________________ 25

Figure 1.14: Examples of octahedral metallointercalators. ________________________________ 26

Figure 1.15: Crystal structure of Δ-α-[Rh[(R,R)-Me₂trien](phi)]³⁺ to the DNA sequence 5’-TGCA-3’__________________________ 28

Figure 1.16: Structure of a synthetic restriction enzyme based on the complex [Rh(phi)₂(bpy)]³⁺. ________________________________ 30
Figure 1.17: Examples of G-quadruplex DNA binding molecules.________________ 32

Figure 1.18: Structure of the nickel(II) complexes studied by Reed and co-workers. ___34

Figure 1.19: Structures of dinuclear ruthenium(II) complexes shown to bind selectivity to G-quadruplex DNA. _________________________________36

Figure 1.20: Gel electropherogram of plasmid DNA in the presence of different amounts of \([\eta^6\text{-bip}]\text{RuCl(Et-en)}\)\(^2+\). ________________________________40

Figure 1.21: A schematic representation of ion formation in ESI. ______________ 43

Figure 1.22: Schematic illustration of the general flow of genetic information within a prokaryotic cell and a eukaryotic cell. ____________________________49

Figure 3.1: Structures of metal complexes used in this study.____________________ 74

Figure 3.2: Positive ion ESI mass spectra of [Ni(phen)\(_2\)Cl\(_2\)]. ______________________ 76

Figure 3.3: Positive ion ESI mass spectra of [Ni(phen)(dppz)\(_2\)]\(^2+\). _________________ 77

Figure 3.4: Negative ion ESI mass spectra of solutions containing different [Ni(phen)\(_2\)(dppz)]\(^2+:\)D2 ratios. _________________________________80

Figure 3.5: Negative ion ESI mass spectra of solutions containing a 6:1 ratio of nickel complex and duplex D2. _____________________________83

Figure 3.6: Relative abundances of non-covalent complexes present in solutions containing a 6:1 ratio of different nickel complexes and D2. ___________84

Figure 3.7: Circular dichroism spectra recorded over the wavelength range 220 – 320 nm for solutions containing different ratios of nickel complexes and D2. ____88

Figure 3.8: Circular dichroism spectra recorded over the wavelength range 200 – 600 nm for solutions containing either D2 alone, or a 10:1 ratio of [Ni(phen)\(_2\)(dpq)c)]\(^2+\) and D2. ________________________________91
Figure 3.9: Visible absorption spectra of nickel complexes in the presence of increasing volumes of D2.

Figure 3.10: Saturation curve for the binding of $[\text{Ni(phen)}_2(\text{dppz})]^2^+$ to D2 and binding isotherm derived using absorption spectrophotometric titration data for $[\text{Ni(phen)}_2(\text{dppz})]^2^+$.

Figure 3.11: Gel electropherograms of the products obtained from reaction of pUC9 negatively supercoiled plasmid DNA with varying amounts of nickel complexes.

Figure 3.12: Gel electropherograms of the products obtained from reaction of pUC9 negatively supercoiled plasmid DNA with varying amounts of ruthenium complexes.

Figure 3.13: Ethidium bromide stained agarose gel (1%) of transcribed mRNA in the presence of nickel complexes and ruthenium complexes.

Figure 3.14: Ethidium bromide stained agarose gel (1%) of transcribed mRNA in the presence of increasing concentrations of different nickel complexes.

Figure 3.15: Ethidium bromide stained agarose gel (1%) of transcribed mRNA in the presence of increasing concentrations of different ruthenium complexes.

Figure 4.1: Structures of metal complexes used in studies with qDNA.

Figure 4.2: Negative ion ESI mass spectra of Q5 and Q2.

Figure 4.3: Negative ion MS/MS of $[\text{Q5} + 4\text{NH}_4^+ - 9\text{H}]^{5-}$ at different collision energies.

Figure 4.4: Negative ion MS/MS spectra of $[\text{Q5} + 4\text{NH}_4^+ - 8\text{H}]^{4-}$.

Figure 4.5: Effect of increasing collision energy on the relative abundance of the Q5 ions in MS/MS experiments.

Figure 4.6: Negative ion ESI-MS/MS spectra of Q2 ions.
Figure 4.7: Effect of increasing cone voltage on negative ion ESI mass spectra of Q5 and Q2. 126

Figure 4.8: Negative ion ESI mass spectra of free Q5 and solutions containing different ratios of \([\text{Ru(phen)}_2(\text{dppz})]^2^+\) and Q5. 128

Figure 4.9: Negative ion ESI mass spectra of free Q5 and solutions containing a 40:1 ratio of different ruthenium complexes and Q5. 130

Figure 4.10: Negative ion ESI mass spectra of solutions containing a 10:1 ratio of \([\text{Ni(phen)}_2(\text{dpq})]^2^+\) and Q5; and a 10:1 ratio of \([\text{Ni(phen)}_2(\text{dpqc})]^2^+\) and Q5. 133

Figure 4.11: Negative ion MS/MS spectra of \([\text{Q5} + 4\text{NH}_4^+ + [\text{Ru(phen)}_3]^2^+ - 11\text{H}^5^-\) and \([\text{Q5} + 4\text{NH}_4^+ + 2[\text{Ni(phen)}_2]^2^+ - 8\text{H}^5^-\) at different collision energies. 135

Figure 4.12: Negative ion ESI mass spectrum of a solution containing a 40:1 ratio of \([\text{Fe(phen)}_3]^2^+\) and D2. 136

Figure 4.13: Negative ion ESI mass spectra of free D2 and solutions containing a 6:1 ratio of different platinum complexes and D2. 139

Figure 4.14: Negative ion ESI mass spectra of free Q5 and solutions containing 40:1 ratios of different platinum complexes and Q5. 141

Figure 4.15: Relative abundances of non-covalent complexes present in solutions containing a 10:1 ratio of either \([\text{Pt(en)}(4,7-\text{Me}_2\text{phen})]^2^+\) or \([\text{Pt(5,6-}\text{Me}_2\text{phen})(\$\$,\$-\text{dach})]^2^+\), and either Q5 or D2. 142

Figure 4.16: Crystal structure showing two d(TGGGGT)_4 quadruplexes are stacked at their 5'-ends. 144
Figure 4.17: Negative ion ESI mass spectra of solutions containing Q5 and: (a) 30 equivalents of daunomycin; (b) 30 equivalents of daunomycin and 6 equivalents of $[\text{Ru(phen)}_2(\text{dppz})]^2^+$. 146

Figure 4.18: Negative ion ESI mass spectra of solutions containing Q5 and: (a) 30 equivalents of daunomycin; (b) 30 equivalents of daunomycin and 10 equivalents of $[\text{Pt(en)}(4,7-\text{Me}_2\text{phen})]^2^+$. 149

Figure 4.19: Negative ion ESI mass spectra of Q4 and Q7. 151

Figure 4.20: Relative abundances (as judged from ESI mass spectra) of different non-covalent complexes present in solutions containing Q4, Q5 or Q7 and 10-equivalents of daunomycin, $[\text{Pt(en)}(4,7-\text{Me}_2\text{phen})]^2^+$ or $[\text{Ru(phen)}_2(\text{dppz})]^2^+$. 153

Figure 4.21: Circular dichroism spectra of solutions containing different ratios of ruthenium complexes and Q5. 155

Figure 4.22: Circular dichroism spectra of solutions containing different ratios of nickel(II) complexes and Q5. 158

Figure 4.23: Circular dichroism spectra of solutions containing different ratios of platinum complexes and Q5. 160

Figure 4.24: Circular dichroism spectrum of a 150 mM NH$_4$OAc, pH 7 solution containing $[\text{Pt}(5,6-\text{Me}_2\text{phen})(\text{S,S-dach})]^2^+$. 161

Figure 4.25: Circular dichroism spectra of solutions containing different ratios of platinum complexes and D2. 163

Figure 5.1: Positive ion nanoESI mass spectrum of PU.1-DBD in 400 mM NH$_4$OAc, pH 7.2. 172
Figure 5.2: Positive ion nanoESI mass spectra of reaction mixtures containing equimolar amounts of PU.1-DBD and P2. 176

Figure 5.3: Positive ion nanoESI mass spectra of solutions containing a 1:1 ratio of PU.1-DBD and P1, P2 and P3. 177

Figure 5.4: Negative ion nanoESI mass spectra of solutions containing P3 with either [Ru(phen)$_2$(dppz)]$^{2+}$ or [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$. 180

Figure 5.5: Positive ion nanoESI mass spectra of solutions containing P3 with either [Ru(phen)$_2$(dppz)]$^{2+}$ or [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$. 181

Figure 5.6: Positive ion nanoESI mass spectra (transformed to a mass scale using MassLynx softwareTM) of solutions containing PU.1-DBD and either [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$ or [Ru(phen)$_2$(dppz)]$^{2+}$. 184

Figure 5.7: Relative abundances of various components present in solutions containing different ratios of the transcription factor PU.1-DBD, the dsDNA molecules P3, and either [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$ or [Ru(phen)$_2$(dppz)]$^{2+}$. 186
List of Tables

Table 1.1 Examples of clinically used drugs whose mechanisms of action involve interference with DNA chemistry. .. 2

Table 1.2 Transcription factors associated with cancer development. 52

Table 2.1 Metal complexes that were used in this study. 57

Table 2.2 Base sequences of the dsDNA and qDNA molecules used in this study. ___ 64

Table 2.3 ESI-MS conditions used for the analysis of duplex and quadruplex DNA. _ 66

Table 2.4 ESI-MS conditions used for the analysis of reaction mixtures containing PU.1-DBD, P3 and metal complexes. .. 70

Table 2.5 Reagents used in transcription inhibition assays. 71

Table 3.1 Assignments for ions observed in ESI mass spectra of solutions containing nickel complexes and D2. .. 81

Table 3.2 Comparison of the effects of related nickel(II) and ruthenium(II) complexes on the CD spectrum of D2. ... 90

Table 3.3 Comparison of binding constants determined spectrophotometrically for binding of related ruthenium(II) and nickel(II) complexes to D2. 96

Table 3.4 Comparison of M_{50\% inh} values, the concentration of metal complex required for 50\% inhibition of DNA transcription, for related ruthenium(II) and nickel(II) complexes. ... 106

Table 4.1 Summary of E_{1/2} values for precursor ions formed from Q5 and Q2. _____ 123

Table 4.2 Differences between the maximum ellipticity observed for the positive CD band at 265 nm in the spectrum of free Q5, and the ellipticity observed at the same
wavelength in the spectrum of solutions containing a 40:1 ratio of various metal complexes and Q5.

Table 4.3 Comparison of $\Delta \varepsilon$ values for platinum complexes with qDNA and dsDNA

Table 5.1 DNA/Protein complexes detected by ESI-MS.