Studies of inherently conducting polymers in ionic liquids

Jakub Mazurkiewicz
University of Wollongong

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
STUDIES OF INHERENTLY CONDUCTING POLYMERS IN IONIC LIQUIDS

A thesis submitted to satisfy the requirements for the award

DOCTOR OF PHILISOPHY

from

THE UNIVERSITY OF WOLLONGONG

by

JAKUB MAZURKIEWICZ, BSc. (Hons)

DEPARTMENT OF CHEMISTRY – INTELLIGENT POLYMER RESEARCH INSTITUTE

January 2007
“I am enthusiastic over humanity's extraordinary and sometimes very timely ingenuities. If you are in a shipwreck and all the boats are gone, a piano top buoyant enough to keep you afloat may come along and make a fortuitous life preserver. This is not to say, though, that the best way to design a life preserver is in the form of a piano top. I think we are clinging to a great many piano tops in accepting yesterday's fortuitous contrivings as constituting the only means for solving a given problem.”

- Buckminster Fuller
ABSTRACT

In this dissertation, the effect of ionic liquid (IL) or classical electrolyte (CE) employed on the redox behaviour of many inherently conducting polymers (ICPs) was investigated with the ultimate goal of producing flexible batteries.

ICPs can be used in a range of unique applications, and also to replace many metal conductors or inorganic semiconductors. Commercialisation of ICPs has, however, been limited. Ion and solvent transport in ICPs during redox cycling almost universally leads to breakdown of redox activity and desired properties of the material. ILs comprise of neat ions in the form of a room temperature melt. ILs show great promise as novel electrolytes to enhance the stability of ICPs beyond that observed in CEs and paves the way to commercialisation of ICP devices.

Chapter 3 describes fundamental investigations of ICP / IL systems on Pt disk electrodes. The redox cycling stability of polypyrrole was increased over those of CE systems in the IL 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF$_6$). The electroactivity in this system showed no degradation over 900 redox cycles. The use of 1-ethyl-3-methylimidazolium (bis) trifluoromethanesulfonimide (EMITFSI) also improved the redox stability of polypyrrole in comparison to the CE systems. The stable potential windows of polypyrrole were significantly improved in both IL systems compared to CEs.

The transitional behaviour between ILs and CEs was investigated by diluting ILs in a common neutral solvent electrolyte, propylenecarbonate (PC). In such IL / CE mixtures,
differences were noted in the electrolyte conductivity profile and ICP electroactivity with respect to concentration of IL. BMIPF₆ exhibited a significantly higher degree of ion pairing than EMITFSI, and the strong ion pairing property of BMIPF₆ is thought to be responsible for unique electrochemical observations absent from the ICP in EMITFSI systems.

N-doping is an attractive feature of some ICPs and has promise in charge storage applications, providing significant driving potential differences of two or more volts against p-doped electrodes. As ILs were found to enhance redox stability of common p-doping processes in ICPs, investigations were conducted in Chapter 4 to see if the same was true for inherently unstable n-doping processes.

Poly-3-p-flourophenylthiophene (P3PFTh) was chosen as a model n-doping system, due to its well published n-doping behaviour in classical electrolytes. Surprisingly, n-doping responses of P3PFTh in EMITFSI were very poor. The reasons behind this were explored by testing other n-dopable polymers in EMITFSI to isolate whether EMITFSI was inherently preventing n-doping, and P3PFTh was tested with different ILs to investigate P3PFTh / EMITFSI incompatibility.

EMITFSI used as an electrolyte was found to decrease electroactivity of the n-doping processes in most polythiophenes, with the exception of polybithiophene (PBiTh). The stability of n-doping PBiTh in EMITFSI did not, however, improve to an extent that would allow derivative devices to be practical.
Spectroelectrochemical Raman studies of the n-doping processes of polythiophenes in EMITFSI were conducted in-situ to reveal behaviour that may be responsible for poor electrochemical responses. Raman studies showed that both the p-doping and n-doping process in polythiophenes occurred with a ‘reverse’ mechanism of ion expulsion upon doping (whereas doping processes of ICPs in CEs usually occur by ion insertion). The Raman studies also indicated that the physical structure of polythiophene had a large effect on the resulting electrochemistry, to an extent that impeded doping processes.

The structure-activity relationships of P3PFTh were investigated by CV using a range of growth and cycling electrolytes. Observations were analysed chemometrically to identify the effects on electrochemical parameters of electrolyte component (anion or cation), whether the dominating effect was from growth or cycling electrolyte, and which particular doping / dedoping process was affected by these parameters.

Chapter 5 describes electrochemical charge storage devices based on IL electrolytes using various substrates, polymers and configurations. The highest capacity device was based on polyaniline doped with ferrocene sulphonic acid on carbon fibre textile for both anode and cathode, with a polyvinylidene fluoride (PVDF) separator and EMITFSI electrolyte. The flexible charge storage device produced in this way had a maximum charge capacity of 58 mAh/g, but degraded quickly on cycling. The most stable device was constructed similarly to the highest capacity device, but used polypyrrole and poly-3-methylthiophene electrodes, with maximum charge capacity of 17 mAh/g, remaining unchanged for 60 cycles.
DECLARATION

This is to certify that the work described in this thesis has not been submitted for a higher degree at any other university or institution.

Jakub Mazurkiewicz
PUBLICATIONS

Journal Papers

ACKNOWLEDGEMENTS

I would like to thank my supervisors Prof. Gordon Wallace and Assoc. Prof. Peter Innis for providing me with an excellent opportunity to undertake study with them.

I would like to particularly thank Assoc. Prof. Peter Innis for his enthusiasm and encouragement, and also his vast technical expertise and knowledge without which little would be possible for others and myself in the department.

I would like to express gratitude to the Australian Government for an Australian Postgraduate Award Scholarship, the US Naval International Cooperative Opportunities in Science and Technology Program (NICOP) for additional funding and Schefenacker Vision Systems with the Commonwealth Research Council (CRC) for my pre-submission employment.

I would further like to thank my colleagues, co-workers and visitors alike who helped provide a working environment that was stimulating, fruitful and immensely enjoyable. In particular, I would like to thank Jenny (Causley) Halldorsson, Magnus Gustavsson, Scott McGovern, Lou Fox, Adrian and Meghan Gestos and Richard (Yanzhe / Tricky) Wu, for providing endless support, creative input and friendship.

A very special thankyou goes out to Prof. Leon Kane-Maguire, who helped with the final corrections of this dissertation by going through it word-by-word with me. Leon, you are a Saint.

Last but not least, I thank my parents for all of the support they have provided.
TABLE OF CONTENTS

CHAPTER 1

GENERAL INTRODUCTION.. 1

1.1 Overview.. 1

1.2 Conducting Polymers... 1

1.3 Limitations of Conducting Polymers.. 3

1.4 Conductivity and Charge Transport in Conductive Polymers

1.4.1 Electronic Bands and Electrical Conductivity 4

1.4.2 Doping and Charge Conduction in ICPs .. 7

1.5 Ionic Liquids .. 8

1.5.1 What are Ionic Liquids? ... 8

1.5.2 Why are Ionic Liquids, liquid? .. 9

1.6 Contrasts of Ionic Liquids and Classic Electrolytes 10

1.6.1 Introduction... 10

1.6.2 Charge Conduction in a Classical Electrolyte (CE) 10

1.6.3 Charge Conduction in Ionic Liquids .. 11

1.7 Interaction of Conducting Polymers with Electrolytes 13

1.8 Outline of Objectives.. 17

1.9 References ... 17
CHAPTER 2

ELECTROCHEMICAL METHODS AND INTERPRETATION ... 23

2.1 Introduction .. 23
2.2 Measuring and Controlling Electrochemistry .. 23
2.3 Cyclic Voltammetry ... 27
2.4 Factors Influencing CV .. 29
2.5 Deconvoluting Cyclic Voltammetry of ICPs .. 30
2.6 Deconvolution of ICP CV’s with Statistical Distribution Functions 32
 2.6.1 The Statistical Gaussian Energy Dispersion Function for ICPs 33
2.7 Theoretical experiments with the Gaussian Model ... 36
2.8 Capacitive Effects of Oxidised ICPs ... 41
2.9 References .. 44

CHAPTER 3

EFFECTS OF IONIC LIQUID AS AN ELECTROLYTE IN CONDUCTING POLYMER SYSTEMS ... 46

3.1 Introduction .. 46
3.2 Experimental Procedure .. 48
3.2.1 General Electrochemistry .. 48
3.2.2 Materials .. 49
3.2.3 Conductivity Measurements .. 49

3.3 Results and Discussion .. 50

3.3.1 Cyclic Voltammetry of Various Electrolyte Systems 50
3.3.2 Cyclic Voltammetry of Polypyrrole / PF$_6$ Film in BMIPF$_6$ and EMITFSI ... 52
3.3.3 Potential Window of Polypyrrole / PF$_6$ Film in BMIPF$_6$ and EMITFSI .. 61
3.3.4 Redox Cycling Stability of Polypyrrole / PF$_6$ Film in BMIPF$_6$ and EMITFSI ... 65
3.3.5 Kinetic Studies of Polypyrrole / PF$_6$ Film in BMIPF$_6$ and EMITFSI .. 69
3.3.6 Electrochemistry of Conducting Polymers with Respect to BMIPF$_6$ and EMITFSI Quantity in PC .. 72
3.3.7 Ionic Conductivity as a Function of BMIPF$_6$ and EMITFSI Quantity in PC ... 73
3.3.8 Conducting Polymer CVs as a Function of BMIPF$_6$ and EMITFSI Quantity in PC ... 78
3.3.9 Polypyrrole / PF$_6$ CVs as a Function of BMIPF$_6$ and EMITFSI Quantity in PC ... 79
3.3.10 Poly-3-methylthiophene (P3MeTh) / PF$_6$ CVs as a Function of BMIPF$_6$ and EMITFSI Quantity in PC 82
3.3.11 Polybithiophene (PBiTh) / PF$_6$ CVs as a Function of BMIPF$_6$ and EMITFSI Quantity in PC ... 85
3.3.12 Polyaniline (PAn) / PF₆ CVs as a Function of BMIPF₆ and EMITFSI Quantity in PC ... 88

3.4 General Conclusions ... 91

3.5 References .. 92

CHAPTER 4

STUDIES OF N-DOPING POLYTHIOPHENES 95

4.1 General Introduction .. 95

4.2 Experimental.. 96

4.2.1 General Electrochemistry .. 96

4.2.2 In-Situ Raman ... 97

4.2.3 Theoretical Calculations of Raman Spectral Features 97

4.2.4 Structure-Electroactivity Relationships for Poly-3-
Paraflourophenylthiophene (P₃PFTh) .. 98

4.3 Results and Discussion .. 100

4.3.1 CV and In-Situ Raman Spectral Studies of Polythiophenes in
EMITFSI ... 100

4.3.1.1 Poly-3-paraflourophenylthiopene (P₃PFTh) in EMITFSI 100

4.3.1.2 CV and Raman Studies of P₃MeTh in EMITFSI 104

4.3.1.3 Polyterthiophene in EMITFSI ... 108

4.3.1.4 Polybithiophene (PBiTh) in EMITFSI 110

4.3.1.5 Summary of Results from Section 4.3.1 113

4.3.2 Studies of P₃PFTh in Various Ionic Liquids 113

4.3.3 Structure-Electroactivity Relationships of P₃PFTh 118
4.4 Electrochemometrics – Use of Multidimensional Scaling ... 120

4.4.1 MDS Analysis of Peak Potentials in P3PFTh Systems 122
4.4.2 MDS Analysis of Faradaic Charge in P3PFTh Systems 125
4.4.3 MDS Analysis of Surface Concentration in P3PFTh Systems 127
4.4.4 MDS Analysis of Peak Heights in P3PFTh Systems 128
4.4.5 MDS Analysis of Half-Peak Widths in P3PFTh Systems 130

4.5 General Conclusions .. 131

4.6 References .. 135

CHAPTER 5

CHARGE STORAGE IN CONDUCTING POLYMERS ... 137

5.1 Introduction .. 137

5.1.1 Environmental Considerations of Conducting Polymers 138
5.1.2 Material Considerations of Conducting Polymers 138
5.1.3 Ionic Liquids for Battery Use ... 139

5.2 Experimental ... 139

5.2.1 Substrates .. 140
5.2.2 Materials ... 141
5.2.3 Chemical Synthesis of ICP Dispersions ... 141
5.2.4 General Electrochemistry ... 142
5.2.5 Device Construction and Testing ... 142
5.2.6 Device Testing Procedure ...143
5.2.7 Polypyrrole Unsealed Membrane in Laminate Devices144
5.2.8 Polypyrrole / Poly-3-methylthiophene in Sealed Laminate Devices ..145
5.2.9 Polyaniline Doped with Ferrocene Sulphonic Acid in Sealed Laminate Devices ...146
5.2.10 Polypyrrole / PEDOT from Pre-formed Dispersion in Sealed Laminate Devices ...146

5.3 Results and Discussion ..147

5.3.1 General Construction and Form of Flexible Conducting Polymer Batteries ...147
5.3.2 Electrode Substrates for Flexible Battery Devices149
 5.3.2.1 Electrochemical Studies of Substrates ...149
5.3.3 Polypyrrole Unsealed Membrane Laminate Device154
5.3.4 Polypyrrole / Poly-3-methylthiophene in a Sealed Laminate Device ...157
5.3.5 Polyaniline Doped with Ferrocene Sulphonic Acid in Sealed Laminate Devices ...163
 5.3.5.1 Polyaniline Doped with Ferrocene Sulphonic Acid on (Pt)-Ni-Cu-Coated Polyester in a Sealed Laminate Device ...165
 5.3.5.2 Polyaniline Doped with Ferrocene Sulphonic Acid on Carbon Felt in a Sealed Laminate Device ...169
 5.3.5.3 Polyaniline Doped with Ferrocene Sulphonic Acid on Zorflex Carbon Fabric in a Sealed Laminate Device ..172
5.3.6 Polypyrrole / PEDOT from Pre-formed Dispersion in a Sealed Laminate Device ... 176

5.4 General Conclusions ... 179

5.5 References ... 181

CHAPTER 6 ..

CONCLUDING REMARKS .. 186

6.1 General Conclusions ... 186

6.2 Suggested Future Work .. 191

APPENDIX .. 192

LIST OF FIGURES

Figure 1.1- Structures and names of some common inherently conducting polymers (ICPs). .. 2

Figure 1.2- The electronic band structures of various classes of materials. 4

Figure 1.3- Ion migration in a classical electrolyte... 11

Figure 1.4- Charge conduction via hopping in ionic liquids.. 11

Figure 1.5- Possible phases of ionic liquid in a neutral solvent.. 12

Figure 1.6- Proposed mechanism of ion and solvent movement into an ICP..................... 14

Figure 1.7- Proposed ion movement of an ionic liquid in a conducting polymer............. 16

Figure 2.1- I / E / t surface for an arbitrary chemical reaction 67 25
Figure 2.2- A general schematic of a potentiostat ... 27
Figure 2.3- Example of cyclic voltammetry – PPy / PF6 film in BMIPF6 ionic liquid. ... 28
Figure 2.4- Structural diagrams of polythiophene in its polaronic and bipolaronic representations, for both p-doped and n-doped states................. 34
Figure 2.5- Current vs. potential plot of different EoxB values... 37
Figure 2.6- Current vs. potential plot of different σB values... 38
Figure 2.7- (a) current vs. potential plot of different Ns values, (b) the same plot as (a) showing how half peak width remains constant when kinetic parameters are not altered. ... 39
Figure 2.8- A CV of polypyrrole film (black) in propylenecarbonate solvent with tetrabutylammonium hexafluorophosphate as a dissolved electrolyte... 41
Figure 2.9- A CV of polypyrrole film (black) in propylene carbonate solvent with tetrabutylammonium hexafluorophosphate as a dissolved electrolyte... 43
Figure 3.1- Cyclic voltammetry of various electrolytes. Scan rate = 200 mV/s................. 51
Figure 3.2- CVs of PPy / PF6 film in a classical electrolyte, 0.25 M TBAPF6 in PC... 53
Figure 3.3- CVs of PPy / PF6 film in BMIPF6 under non-purged conditions............... 54
Figure 3.4- CVs of PPy / PF6 film in BMIPF6 under constant N2 purging, Eox = oxidation peak, Ered = reduction peak... 55
Figure 3.5- CVs of PPy / PF6 film in BMIPF6 with constant wet N2 purging............ 56
Figure 3.6- CVs of PPy / PF6 film in BMIPF6 with constant dry air purging.............. 57
Figure 3.7- CVs of PPy / PF6 film in EMITFSI under non-purged conditions.......... 58
Figure 3.8- CVs of PPy / PF_{6} film in EMITFSI under constant N_{2} purging 58
Figure 3.9- CVs of PPy / PF_{6} film in EMITFSI with constant wet N_{2} purging 58
Figure 3.10- CVs of PPy / PF_{6} film in EMITFSI with constant dry air purging 59
Figure 3.11- CVs obtained for potential window of PPy / PF_{6} film in 0.25 M TBAPF_{6}/PC ... 62
Figure 3.12- CVs obtained for potential window of PPy / PF_{6} film in non-purged BMIPF_{6} ... 62
Figure 3.13- CVs obtained for potential window of PPy / PF_{6} film in non-purged EMITFSI ... 63
Figure 3.14- CVs obtained for potential window of PPy / PF_{6} film in BMIPF_{6} with N_{2} purging ... 64
Figure 3.15- CVs obtained for potential window of PPy / PF_{6} film in EMITFSI with N_{2} purging ... 64
Figure 3.16- CVs of PPy / PF_{6} film in 0.25 M TBAPF_{6}/PC ... 65
Figure 3.17- CVs of PPy / PF_{6} film in non-purged BMIPF_{6} ... 66
Figure 3.18- CVs of PPy / PF_{6} film in EMITFSI, non-purged .. 67
Figure 3.19- CVs of PPy / PF_{6} film in N_{2} purged BMIPF_{6} ... 67
Figure 3.20- CVs of PPy / PF_{6} film in EMITFSI, N_{2} purged .. 68
Figure 3.21- Square root of scan rate vs. peak current for PPy / PF_{6} films in various electrolytes ... 71
Figure 3.22- Conductivity of BMIPF_{6} in PC and EMITFSI in PC at different concentrations of IL, % mol/mol ... 74
Figure 3.23- Conductivity of BMIPF_{6} in PC and EMITFSI in PC at different concentrations of IL, % w/w ... 74
Figure 3.24- Predicted viscosities of BMIPF$_6$ and EMITFSI at different concentrations in PC. ... 76

Figure 3.25- Relative conductivity changes predicted due to viscosity only............ 76

Figure 3.26- Diagram of the procedure used to develop CV contour plots obtained for ICP films in BMIPF$_6$ / PC and EMITFSI / PC of varying composition... 78

Figure 3.27- CV of PPy / PF$_6$ film in (a) BMIPF$_6$ / PC and (b) EMITFSI / PC electrolyte at 50 % w/w composition.. 79

Figure 3.28 - Three-dimensional (top) and contour plots (bottom) of PPy / PF$_6$ CVs at varying concentrations of BMIPF$_6$ in PC.......................... 80

Figure 3.29- Three-dimensional (top) and contour plots (bottom) of PPy / PF$_6$ CVs at varying concentrations of EMITFSI in PC. 81

Figure 3.30- CV of P3MeTh / PF$_6$ film in (a) BMIPF6 / PC and (b) EMITFSI / PC electrolyte at 50 % w/w composition... 82

Figure 3.31- Three-dimensional (top) and contour plots (bottom) of P3MeTh / PF$_6$ CVs at varying concentrations of BMIPF$_6$ in PC...................... 83

Figure 3.32- Three-dimensional (top) and contour plots (bottom) of P3MeTh / PF$_6$ CVs at varying concentrations of EMITFSI in PC....................... 84

Figure 3.33- CV of PBiTh / PF$_6$ film in (a) BMIPF$_6$ / PC and (b) EMITFSI / PC electrolyte at 50 % w/w composition.. 85

Figure 3.34- Three-dimensional (top) and contour plots (bottom) of PBiTh / PF$_6$ CVs at varying concentrations of BMIPF$_6$ in PC.............................. 86

Figure 3.35- Three-dimensional (top) and contour plots (bottom) of PBiTh / PF$_6$ CVs at varying concentrations of EMITFSI in PC. 87
Figure 3.36- CV of PAN / PF$_6$ film in (a) BMIPF$_6$ / PC and (b) EMITFSI / PC electrolyte at 50% w/w composition... 88

Figure 3.37- Three-dimensional (top) and contour plots (bottom) of PAN / PF$_6$
CVs at varying concentrations of BMIPF$_6$ in PC... 89

Figure 3.38- Three-dimensional (top) and contour plots (bottom) of PAN / PF$_6$
CVs at varying concentrations of EMITFSI in PC. ... 90

Figure 4.1- Spectroelectrochemical cell for the in-situ study of polythiophenes. 97

Figure 4.2- CV of a P3PFTh / TFSI film grown from and cycled in 0.1 M
EMITFSI / acetonitrile. .. 100

Figure 4.3- P3PFTh / TFSI grown from 0.1 M EMITFSI / acetonitrile, and
cycled in pure EMITFSI... 102

Figure 4.4- Raman spectra of P3PFTh / TFSI in EMITFSI at various potentials........ 103

Figure 4.5- CV of P3MeTh film grown from 0.1 M EMITFSI / acetonitrile, and
cycled in pure EMITFSI.. 105

Figure 4.6- Raman spectra of P3MeTh in EMITFSI at various potentials............... 106

Figure 4.7- Eigenvector diagram of decathiophene in a C-S-C deformation
found in Raman spectra at circa 730 cm$^{-1}$... 107

Figure 4.8- CV of PTerTh / TFSI film grown from 0.1 M EMITFSI /
acetonitrile, and cycled in pure EMITFSI... 108

Figure 4.9- Raman spectra of PTerTh / TFSI film in EMITFSI at various
potentials. .. 109

Figure 4.10- Eigenvector diagram of in plane C-H bends of decathiophene
found in Raman spectra circa 1040 cm$^{-1}$.. 110

Figure 4.11- PBiTh / TFSI film grown from 0.1 M EMITFSI / acetonitrile, and
cycled in pure EMITFSI.. 111
Figure 4.12- Raman spectra of PBiTh / TFSI in EMITFSI at various potentials.112

Figure 4.13- CV of P3PFTh / BF$_4$ film grown from 0.1 M BMIBF$_4$ / acetonitrile, and cycled in pure BMIBF$_4$. .. 114

Figure 4.14- CV of P3PFTh / PF$_6$ film grown from 0.1 M BMIPF$_6$ / acetonitrile, and cycled in pure BMIPF$_6$. ... 114

Figure 4.15- CV of P3PFTh / ClO$_4$ film grown from 0.1 M TMAClO$_4$ / acetonitrile, and cycled in pure BMIBF$_4$. .. 115

Figure 4.16- CV of P3PFTh / ClO$_4$ film grown from 0.1 M TMAClO$_4$ / acetonitrile, and cycled in pure BMIPF$_6$. ... 116

Figure 4.17- CV of P3PFTh / ClO$_4$ film grown from 0.1 M TMAClO$_4$ / acetonitrile, and cycled in pure EMITFSI. .. 116

Figure 4.18- Diagrammatic of protocols used for decomposition and analysis of P3PFTh in various electrolytes. ... 120

Figure 4.20- Multidimensional scaling analysis of peak potentials for each sector of P3PFTh in various growth and cycling electrolytes. 123

Figure 4.21- Plot of D2 (cycling cation size) from n_{ox} against VDW volume of respective cations. ... 124

Figure 4.22- Multidimensional scaling analysis of Faradaic charge for each sector of P3PFTh in various growth and cycling electrolyte conditions. .. 126

Figure 4.23- Multidimensional scaling analysis of Surface Concentration (N_s) for each sector of P3PFTh in various growth and electrolyte conditions. .. 128

Figure 4.24- Multidimensional scaling analysis of Peak Heights for each sector of P3PFTh in various growth and electrolyte conditions. 129
Figure 4.25- Multidimensional scaling analysis of Half-peak Width for each sector of P3PFTth in various growth and electrolyte conditions. 131

Figure 5.1- The interface built to automate the introduction of a load resistor into circuit during a battery discharge cycle. .. 143

Figure 5.2- The general form of an electrical battery. .. 147

Figure 5.3- The general layout of a flexible battery.. 148

Figure 5.4- CVs obtained using a carbon felt working electrode in EMITFSI.............. 150

Figure 5.5- CV obtained using Laird technologies Ni-Cu-coated polyester as a working electrode in EMITFSI... 151

Figure 5.6- Laird Technologies material as in Figure 5.4, but 200 cycles later.............. 152

Figure 5.7- CVs obtained using fine stainless steel mesh working electrode in EMITFSI. ... 152

Figure 5.8- CV obtained using a Zorflex® carbon fabric working electrode in EMITFSI. ... 153

Figure 5.9- The open-air membrane battery. .. 154

Figure 5.10- CVs of: (A) - PPy / ClO₄ and (B) - PPy / PSS in EMITFSI on Pt sputter coated PVDF electrodes... 155

Figure 5.11- Typical charge / discharge curve of PPy / PSS : PPy / LiClO₄ in EMITFSI in a Pt coated PVDF membrane battery. 156

Figure 5.12- Charge capacity as a function of cycle number of PPy / PSS : PPy / ClO₄ in EMITFSI in a Pt coated PVDF membrane battery. 157

Figure 5.13- The rig required to deposit conducting polymer onto fine stainless steel mesh, side view... 159

Figure 5.14- CVs of A – PPy / TFSI and C - P3MeTh / TFSI in EMITFSI on fine stainless steel mesh electrodes... 160
Figure 5.15- A picture of the PPy / TFSI : P3MeTh / TFSI assembled battery 160

Figure 5.16- Typical charge / discharge curve of a PPy / TFSI : P3MeTh / TFSI in EMITFSI in a fine stainless steel mesh battery 161

Figure 5.17- Charge capacity as a function of cycle number of PPy / TFSI : P3MeTh / TFSI in EMITFSI on fine stainless steel mesh battery 162

Figure 5.18- Example of CV growth of PAN / FcHSO₃ on Pt disk electrode 163

Figure 5.19- CV of PAN / FcHSO₃ on Pt disk electrode in EMITFSI 164

Figure 5.20- Galvanostatic deposition of polyaniline doped with ferrocene sulphonic acid onto Laird Industries Ni-Cu-coated polyester at 3 μA/cm² over 16 hours. ... 165

Figure 5.21- Galvanostatic deposition of polyaniline doped with ferrocene sulphonic acid onto Laird Industries Ni-Cu-coated polyester at 3 μA/cm² over 2 hours. ... 166

Figure 5.22- Potentiostatic deposition of polyaniline doped with ferrocene sulphonic acid onto Laird Industries Ni-Cu-coated polyester at 750 mV over 1 hour. ... 166

Figure 5.23- Potentiostatic deposition of polyaniline doped with ferrocene sulphonic acid onto Laird Industries Pt-Ni-Cu-coated polyester at 750 mV over 1 hour. ... 167

Figure 5.24- CV of PAN / FcHSO₃ on Liard Industries Pt-Ni-Cu-coated polyester in EMITFSI. ... 167

Figure 5.25- Typical charge / discharge curve of PAN / FcHSO₃ : PAN / FcHSO₃ on Pt-Ni-Cu-coated polyester in EMITFSI battery 168

Figure 5.26- Charge capacity as a function of cycle number of PAN / FcHSO₃ : PAN / FcHSO₃ on Pt-Ni-Cu-coated polyester in EMITFSI battery. 169
Figure 5.27- CV of PAN / FeHSO$_3$ on carbon felt in EMITFSI.............................. 170

Figure 5.28- Typical charge / discharge curve of a PAN / FeHSO$_3$: PAN / FeHSO$_3$ on carbon felt in EMITFSI battery. ... 171

Figure 5.29- Charge capacity as a function of cycle number of a PAN / FeHSO$_3$:
PAN / FeHSO$_3$ on carbon felt in EMITFSI battery. 172

Figure 5.30- CV of PAN / FeHSO$_3$ on Zorflex woven carbon fabric..................... 173

Figure 5.31- Typical charge / discharge curve of a PAN / FeHSO$_3$: PAN /
FeHSO$_3$ on Zorflex carbon fabric in EMITFSI battery. 174

Figure 5.32- Charge capacity as a function of cycle number of PAN / FeHSO$_3$:
PAN / FeHSO$_3$ on Zorflex carbon fabric in EMITFSI battery. 175

Figure 5.33- CV of A – PEDOT / PSS and B – PPy / PSS in EMITFSI on fine
stainless steel mesh. .. 177

Figure 5.34-Typical charge / discharge curve of a PPy / PSS : PEDOT / PSS on
fine stainless steel mesh in EMITFSI battery. .. 177

Figure 5.35- Charge capacity Vs cycle number of a PEDOT / PSS : PPy / PSS
battery, at different charge rates.. 178
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>3MeTh</td>
<td>3-Methylthiophene</td>
</tr>
<tr>
<td>3PFTh</td>
<td>3-Parafluorophenylthiophene</td>
</tr>
<tr>
<td>A</td>
<td>Electrode area (cm2)</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>A_{ox}</td>
<td>activity (concentration) of oxidised species</td>
</tr>
<tr>
<td>A_{red}</td>
<td>activity (concentration) of reduced species</td>
</tr>
<tr>
<td>AUX</td>
<td>auxillary electrode</td>
</tr>
<tr>
<td>B</td>
<td>Bipolaronic</td>
</tr>
<tr>
<td>BF$_4$</td>
<td>tetrafluoroborate</td>
</tr>
<tr>
<td>BiTh</td>
<td>2,2'-Bithiophene</td>
</tr>
<tr>
<td>BMI</td>
<td>1-Butyl-3-methylimidazolium</td>
</tr>
<tr>
<td>C</td>
<td>analyte’s concentration (mol/L)</td>
</tr>
<tr>
<td>cet</td>
<td>Cetrimide</td>
</tr>
<tr>
<td>ClO$_4$</td>
<td>Perchlorate</td>
</tr>
<tr>
<td>c^0</td>
<td>Initial concentration</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>D$_1$</td>
<td>Dimension 1</td>
</tr>
<tr>
<td>D$_2$</td>
<td>Dimension 2</td>
</tr>
<tr>
<td>D^0</td>
<td>Diffusion constant</td>
</tr>
<tr>
<td>E</td>
<td>Overpotential</td>
</tr>
<tr>
<td>E^0</td>
<td>Standard potential of reaction</td>
</tr>
<tr>
<td>EDOT</td>
<td>3,4-Ethylenedioxythiophene</td>
</tr>
<tr>
<td>EMI</td>
<td>1-Ethyl-3-methylimidazolium</td>
</tr>
<tr>
<td>F</td>
<td>Faraday’s constant</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element method</td>
</tr>
<tr>
<td>GC</td>
<td>Glassy carbon</td>
</tr>
<tr>
<td>I</td>
<td>Current</td>
</tr>
<tr>
<td>ICP</td>
<td>Inherently conducting polymer</td>
</tr>
<tr>
<td>IL</td>
<td>Ionic liquid</td>
</tr>
<tr>
<td>IR</td>
<td>Internal resistance</td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
</tr>
<tr>
<td>MDS</td>
<td>Multidimensional scaling</td>
</tr>
<tr>
<td>n</td>
<td>Number of electrons involved in process</td>
</tr>
<tr>
<td>Ns</td>
<td>Density of conjugated chain segments</td>
</tr>
<tr>
<td>P</td>
<td>Poly-</td>
</tr>
<tr>
<td>P</td>
<td>Polaronic</td>
</tr>
<tr>
<td>PC</td>
<td>Propylenecarbonate</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PF$_6$</td>
<td>Hexafluorophosphate</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Py</td>
<td>Pyrrole</td>
</tr>
<tr>
<td>R</td>
<td>Gas constant</td>
</tr>
<tr>
<td>R</td>
<td>Universal gas constant (8.314 J / mol K)</td>
</tr>
<tr>
<td>RE</td>
<td>Reference electrode</td>
</tr>
<tr>
<td>RSQ</td>
<td>Proportion of variance</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>t</td>
<td>time (seconds)</td>
</tr>
<tr>
<td>T</td>
<td>Temperature in Kelvin</td>
</tr>
<tr>
<td>TBA</td>
<td>Tetrabutylammonium</td>
</tr>
<tr>
<td>TEA</td>
<td>Tetraethylammonium</td>
</tr>
<tr>
<td>TerTh</td>
<td>2,2':5',2"-Terthiophene</td>
</tr>
<tr>
<td>TFSI</td>
<td>(bis)trifluoromethanesulfonimide</td>
</tr>
<tr>
<td>TMA</td>
<td>tetramethylammonium</td>
</tr>
<tr>
<td>V</td>
<td>Voltage / Volts</td>
</tr>
<tr>
<td>WE</td>
<td>Working Electrode</td>
</tr>
<tr>
<td>x</td>
<td>distance from electrode</td>
</tr>
<tr>
<td>E</td>
<td>applied potential.</td>
</tr>
<tr>
<td>E_{oxP}</td>
<td>mean potential of polaron formation.</td>
</tr>
<tr>
<td>σ</td>
<td>peak width at half height</td>
</tr>
</tbody>
</table>