2012

Adapting general purpose interfaces to synthesis engines using unsupervised dimensionality reduction techniques and inverse mapping from features to parameters

Stefano Fasciani
University of Wollongong, fasciani@uow.edu.au

Lonce Wyse
National University of Singapore

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
benefits are there for larger groups, perhaps playing, ensembles. Although it is not known whether the expression is proportional to the amount of iterations, modifications and establish new generations stance is one that favours contribution cumulative over time. They are manifest software mapping and music. These affordances can be and latent within the DMI’s controller interface, affordances play. into the process of DMI design, its correlation to interaction between a musician and DMI system. An investment of play constitutes a music-centered investment of play has potential to enrich human practicing and performing in a duo may have the potential to double expressive capability.

5. CONCLUSION

The investment of play constitutes a music-centered interaction between a musician and DMI system. An investment of play yields:

• Conceptual transfer
• Performatory i.e. adroit, fluent action
• Refined musical expression
• Elements of personal style
• Reproducible interaction

The Bent Leather Band studies suggest that expression is proportional to the amount of invested play. In turn this interaction is an artistic process governed by the DMI system's affordances. These affordances are cyclic and processional, their contribution cumulative over time. They are manifest and latent within the DMI’s controller interface, software mapping and music. These affordances can be identified and harnessed for future DMI system iterations, modifications and establish new generations of instruments.

This paper’s findings suggest that existing DMI frameworks may need to address the investment of play into the process of DMI design, its correlation to musical expression and software mapping. The investment of play has potential to enrich human computer musical interaction through development of performance skill and musical expression.

6. REFERENCES

ADAPTING GENERAL PURPOSE INTERFACES TO SYNTHESIS ENGINES USING UNSUPERVISED DIMENSIONALITY REDUCTION TECHNIQUES AND INVERSE MAPPING FROM FEATURES TO PARAMETERS

Stefano Fassianci1,2
Lonce Wyse1,2
1Graduate School for Integrative Sciences & Engineering
2Arts and Creativity Laboratory, Interactive and Digital Media Institute
Department of Communications and New Media National University of Singapore
{stefano17, lonce.wyse}@nus.edu.sg

ABSTRACT

In this paper we develop adaptive techniques for mapping generic user interfaces to synthesis engines. Upon selecting a subset of synthesis parameters, the system automatically finds the parameters-to-sound deterministic relationship in a multidimensional space. We analyze this sonic space using two different unsupervised dimensionality reduction techniques and we build the mapping using statistical information on a lower, but maximally representative, number of dimensions. The result is an adaptation of any general-purpose interface to a specific synthesis engine, providing control directly over the perceptual features with greatest variance. This approach guarantees a linear relationship between control signals and perceptual features, and at the same time, reduces the control space dimensionality maintaining the maximum explorability of the sonic space.

1. INTRODUCTION

Synthesis engines often expose a large set of parameters to the users. Runtime variation of the parameters produces modification in the sound generated as well as in its perception. The physical separation of control from synthesis has promoted the proliferation of a variety of generic control interfaces, enabling reusability of the same controller with different synthesizers and vice versa. Since controllers and synthesizers are not “co-designed” [1], some kind of manual intervention is generally required to establish the “mapping” between them.

In modern music genres the flexibility of the synthesis engine is widely exploited in such a way that notes and chords are looped or generated algorithmically rather than played with individual input gestures. The parameters that the musician modulates, usually represented by a real-valued numbers, result in timbral variation. This trend can be seen in a recurrent interface design pattern where sensors capable of capturing real-valued and time-continuous gesture are augmenting or replacing discrete ones. In addition, the evolution of the MIDI communication protocol and the introduction of OSC (Open Sound Control) are providing a more suitable communications infrastructure for this kind of control.
The optimal mapping is defined as the one allowing the user to navigate in the sonic space when projecting the control space C into the perceptual features in the sonic spaces D, directly related to the synthesizer parameter space P. The number of concurrent signals contributed through human gestural cues is constrained by human cognitive and physical limitations. The consequence is that of dimensionality of C is generally much smaller than P. Figure 1 in D generic control interface driving a synthesis engine through the perceptual sonic space. In our approach this space is retrieved automatically and analysed with unsupervised dimensionality reduction techniques in order to compute the adapted mapping between control interface and synthesized sound.

2. SYNTHESIS ENGINE PARAMETERS-TO-SOUND ANALYSIS

Within this context we define a synthesis engine as any chain of algorithmic processes that produce audio. We consider this chain of processes as a black box that converts vectors p of synthesis parameters into sound. Moreover we assume a deterministic behaviour, excluding the presence of any stochastic component within the chain. Hence it is possible to state that given a vector p, there is one and only one associated sound generated by the synthesis engine. The opposite of this statement may not be always true since, depending on the synthesis engine, different control p may lead to identical or very similar sounds. This will be taken into consideration in the adaptation mapping strategy in Section 3 to avoid potential noisy or discontinuous output.

The set of unique combinations of synthesis parameters p_{se} is defined upon selecting the variable parameters, their respective maximum value, minimum value and sampling resolution. Here we assume that each parameter is in the range [0,1] (if not a simple scaling operation is applied). Choosing j parameters p_j, the cardinality of p_{se} is given by the equations below:

$$\left| p_{se} \right| = \prod_{j=1}^{p} \left(\max(p_j) - \min(p_j) \right) \text{resolution}(p_j)$$

Equation (1) shows the cardinality of p_{se} computed through the product of the cardinality of each p_j, which in turn depends on the individual maximum, minimum, and sampling resolution (2). The set p_{se} can be represented with a matrix P, where each column is a vector p (unique combination of synthesis parameters).

The cardinality of p_{se} and the size of P grow exponentially with the number of parameters j, and linearly with the sampling resolution values.

The selection of these values determines a trade-off between the level of detail in the synthesis engine analysis and the size of P. The size of this matrix affects not only memory but computational load as well, as discussed in Section 3.

The sound is generated for each p, and analyzed to produce a corresponding vector d, using a fixed note on the chromatic scale. For each unique combination of synthesis parameters we compute not one but a sequence of vectors containing perceptually related features. For timbre that is static over time, the d vector corresponding to the fixed p is set to the mean of the sequence of computed feature vectors. This helps to minimize the number of features and reduce the potential confusion of the analysis window in relation to the generated sound. For dynamic timbres, such as those due, for example, to the presence of low frequency oscillations (LFOs) in the synthesizer algorithm, the sequence of feature vectors is used also to capture extra information about the dynamic aspect of the sound. The vector d corresponding to the fixed p is set to the mean of the sequence of vectors, adding an extra scalar, which represents the timbre periodicity. Autocorrelation is used to compute the periodicity of each computed feature. If different periods are detected, their mean is used instead. The size and number of the analysis windows define the minimum detectable periodicity, while window overlap affects the maximum. For a better characterization of the dynamic aspect, the vector d can be further extended adding a periodicity vector and oscillation range for each perceptually related feature, tripling its size.

Vectors d, are stored in a matrix D and together with P fully characterize the parameters-to-sound relationship of the synthesis engine in the perceptual sonic space. Through column indexing it is possible to associate the p_j unique combinations of synthesis parameters with the relative perceptual features vector and vice versa. The adaptive mapping is based on the information embedded in these two matrices.

3. ADAPTIVE MAPPING

Here we assume that the general-purpose control interface generates signals independent of the control space D, and with uniform distribution. The synthesis engine maps these signals into the perceptual sonic space O. The mapping function is based on the hypothesis that the entire domain of the perceptual sonic space can be represented by a vector value p_{se} with p parameters. To provide a response that as linear as possible, it is necessary to analyze the data across the PCs. For each dimension the density is estimated through a histogram in one bin per 10² of the product of the inverse of the sampling resolutions. Since PC ranges with low density should be explored with a finer step compared to those with high density, the histogram value is scaled to the complement of the histogram, represented in (5) hist\(\text{COMP}\). For each PC the mapping function is based on its normalized integral, implemented through the cumulative sum in the discrete domain. Two examples of c (vertical axis) mapping over the PC (horizontal axis) are shown in Figure 2, where the black continuous line represents the mapping function. Equation (4) shows how the control signal c is transformed into a PC value through the inverse of the mapping function m\(^{(c)}\).

$$m(c) = \int \text{hist\(\text{COMP}\)}(pc) \times dp_c$$

Figure 2: An example of histograms (scaled 10x) and mapping functions m\(^{(c)}\) (solid line) for the first two PC.

3.1. Principal Component Approach

PCA is an unsupervised technique that uses an orthogonal transformation to convert a set of multivariate observations of potentially correlated variables into a set of uncorrelated variables called Principal Components (PCs). Since the matrix D can have high dimensionality, we apply a stage of PCA to project the data into a lower dimensional space. The multivariate data in D is subjected to a prior whitening which scales each dimension to zero mean and unitary variance. The orthogonal and uncorrelated set of PCs is ranked by variance, representing the quantity of information carried by each. Mapping the hypercube C on to the PCs of D\(^{p}\), guarantees control within the subspace where the perceptual features change the most. Compared to other works, the number of perceptually related features can be relatively high here. It is not necessary to have prior knowledge about variations of features with synthesis engine parameter alteration. Perceptually meaningful features that are constant are automatically discarded. However, the user can compose and weight individual features in order to optimize the adaptive result if desired. In this way it is possible to obtain a control focused on specific perceptual features that are not necessarily the dominant in terms of absolute variability.

To provide a response that as linear as possible, it is necessary to analyze the data across the PCs. For each dimension the density is estimated through a histogram in one bin per 10² of the product of the inverse of the sampling resolutions. Since PC ranges with low density should be explored with a finer step compared to those with high density, the histogram value is scaled to the complement of the histogram, represented in (5) hist\(\text{COMP}\). For each PC the mapping function is based on its normalized integral, implemented through the cumulative sum in the discrete domain. Two examples of c (vertical axis) mapping over the PC (horizontal axis) are shown in Figure 2, where the black continuous line represents the mapping function. Equation (4) shows how the control signal c is transformed into a PC value through the inverse of the mapping function m\(^{(c)}\).

$$m(c) = \int \text{hist\(\text{COMP}\)}(pc) \times dp_c$$

Figure 2: An example of histograms (scaled 10x) and mapping functions m\(^{(c)}\) (solid line) for the first two PC.
The mapping is derived. Compared to other works, the number of perceptually related features can be relatively high here. It is not necessary to have prior knowledge about variations of features with synthesis engine parameter alteration. Perceptually meaningful features that are constant are automatically discarded. However, the user can compose and weight individual features in order to re-activate the desired sound. In this way it is possible to obtain a control focused on specific perceptual features that are not necessarily the dominant in terms of absolute variability. To provide a response that is as linear as possible, it is necessary to analyze the data across the PCs. For each dimension the density is estimated through a histogram with some parameters to the product of the number of bins and the inverse of the sampling resolutions. Since PC ranges with low density should be explored with a finer step compared to those with high density, we used the complement of the histogram, represented in (5) $h_{\text{cum}}(x)$. For each PC the mapping function is based on its normalized integral, implemented through the cumulative sum in the discrete domain. Two examples of c_i (vertical axis) mapping over the P_{i} (horizontal axis) are showed in Figure 2, where the black continuous line represents the mapping function. Equation (4) shows how the control signal c_i is transformed into a P_{i} value through the inverse of the mapping function m_i.

$$p_{i} = \frac{1}{|P|} \sum_{j=1}^{|P|} |p_{i,j}|$$ \hspace{1cm} (1)

$$c_i = \min(p_{i}) - \max(p_{i}) / \text{resolution}(P)$$ \hspace{1cm} (2)

$$p_{i} < p_{i-1}, p_{i-2}, \ldots, p_{i}, p_{i+1}, \ldots, p_{|P|}$$ \hspace{1cm} (3)

Equation (1) shows the cardinality of p_{i}, computed through the product of the cardinality of each $p_{i,j}$, which in turn depends on the individual maximum, minimum, and sampling resolution (2). The set $p_{i,j}$ can be represented with a matrix P, where each column is a vector $p_{i,j}$ (unique combination of synthesis parameters). The cardinality of p_{i} and the size of P grow exponentially with the number of parameters j, and linearly with the sampling resolution values. The selection of these values determines a trade-off between the level of detail in the synthesis engine analysis and the size of P. The size of this matrix affects not only memory but computational load as well, as discussed in Section 3.

The sound is generated for each p_{i} and analyzed to produce a corresponding vector d_{i}, using a fixed note on the chromatic scale. For each unique combination of synthesis parameters we compute not one but a sequence of vectors containing perceptually related features. For timbre that is static over time, the d_{i} corresponding to the fixed p_{i} is set to the mean of the sequence of computed feature vectors. This helps to minimize the number of parameters. Wessel [4] showed that it is possible to use extra information about the dynamic aspect of the sound. The vector d_{i} corresponding to the fixed p_{i} is set to the mean of the sequence of vectors, adding an extra scalar, which represents the timbre periodicity. Autocorrelation is used to compute the periodicity of each computed feature. If different periods are detected, their mean is used instead. The size and number of the analysis windows define the minimum detectable periodicity, while window overlap affects the maximum. For a better characterization of the dynamic aspect, the vector d_{i} can be further extended adding a periodicity value and oscillation range for each perceptually related feature, tripling its size. Vectors d_{i} are stored in a matrix D and together with P fully characterize the parameters-to-sound relationships of the synthesis engine in the perceptual sonic space. Through column indexing it is possible to associate the p_{i} unique combinations of synthesis parameters with the relative perceptual features vector and vice versa. The adaptive mapping is based on the information embedded in these two matrices.

$$m_i = \frac{1}{|P|} \int_{-\infty}^{\infty} h_{\text{cum}}(x) \cdot p_{i} \cdot dx$$ \hspace{1cm} (5)

Figure 2: An example of histograms (scaled 10x) and mapping functions m_i (solid line) for the first two P_{i}.
The interface signals c_i are used to generate a value of the first c PC of D_{cc} with linear interpolation, obtaining a d, in the principal components space. The number of components considered in the system is limited to the number carrying 90% of the total energy. If c_i is smaller than the number of PC, the control signal mapped on the lower rank component is optionally mapped onto the signal corresponding to all the remaining ones.

3.2. ISOMAP Approach

ISOMAP is a low-dimensional embedding method [8], where geodesic distances on a weighted graph are incorporated with classical scaling. It is exploited to compute a quasi-isometric, low-dimensional embedding of a set of high dimensional data points. At the same time this algorithm provides a simple method for estimating the intrinsic geometry of a data manifold. The main difference with other multi dimensional scaling methods is in the choice of the geodesic distance metric, rather than the Euclidean one. In ISOMAP, the geodesic distance is the sum of edge weights along the shortest path between two nodes, computed using Dijkstra’s algorithm. The top n eigenvectors of the geodesic distance matrix represent the coordinates in the new n-dimensional Euclidean space. ISOMAP implements a transformation of the space, while PCA projects the data into a new coordinates system in the same space.

Dimensionality reduction with ISOMAP is applied to D with the same method described in the previous subsection for PCA. The mapping of the c control signals on the new coordinates system, named ISO, is based on an estimation of densities and distributions as before. ISOMAP has a higher computational cost compared to PCA, but it detects and exploits the embedded manifold, achieving a more effective dimensionality reduction. ISOMAP is preferred when the control space C has a very low dimensionality. This difference is evident when comparing the energy in each dimension of the residual variance. Figure 3 shows an example of an energy distribution, measured in terms of variance, across the PC and ISO for the same data set. The number of vectors D_{cc} can be lower than D_{cc} because the ISOMAP algorithm includes an outlier removal stage. To guarantee coherence, the number of elements in D_{cc} and D_{cc} must be the same. Hence the vectors p relative to the outliers are removed from P.

3.3. Synthesis engine parameters retrieval

For both approaches, after the generation of the vector D_{cc} (or D_{cc}), we search the nearest neighbour vector in the matrix D_{cc} (or D_{cc}). Through column indexing we retrieve from P the vector p used to drive the synthesis engine instantaneously. This simple approach leads to potential discontinuity in the synthesis parameters generation, because different combinations of synthesis parameters that might be far apart in the control space may lead to identical or near points in the perceptually related feature space. To guarantee continuity we propose two solutions. In the first one we retrieve K NN (nearest neighbours) in D_{cc} rather than one and drive the synthesis engine with the mean of the K corresponding vectors p. In the second one, before searching for the nearest neighbour, we append p to the D_{cc} (or D_{cc}) and we append the matrix P to D_{cc} (or D_{cc}). The first solution shows a limitation when the K p are very far apart, while the second can be debatable because perceptual features and synthesis parameters are merged in the same multidimensional space, hence the search is performed in a heterogeneous space. However, these methods improve a shortcoming in [5] where occasionally the system gets trapped in local minima.

As mentioned before, the sampling resolutions affect the size of P and D. The computational load required for the K NN search is thus proportional to the size of the matrix and it affects the system minimum response time.

4. PROTOTYPE AND APPLICATION

A prototype has been developed and is implemented in Max/MSP and MATLAB. The prototype uses the FTM [9] and MaxM [10] toolbox for vector and matrix processing in Max/MSP. The perceptually related feature set is based on Tristan Jehan’s “analyzers” – (includes “fiddle~” by Miller Puckette) max external. The feature vector hence includes: loudness, pitch, brightness, noisiness, and the energies in the 25 Bark bands. Each feature can be enabled/disabled by the user and a weight vector can be defined as well to provide better customization. The adaptive approach is independent of the dimensionality and content of the feature vector, therefore a different selection is possible. The prototype is integrated with Ableton Live using the Max For Live framework for the interfacing capabilities with state-of-the-art synthesis engines. Two Max For Live patches cooperate to analyze the synthesis engine. The front-end generates the p set and drive the synthesizer with up to 8 parameters, and the back-end analyses the audio signal, stores p, and the relative multiple d, in the matrices P and D. The post processing of D described in Section 2, and the adaptive mapping described in Section 3, are computed within MATLAB using the author’s ISOMAP implementation.

1 Images of the Max For Live prototype patches are available at http://unlab.org/downloads/extracts/iscme12.zip

2 http://isomap.stanford.edu/

Figure 4: 3D scatters of the lower dimensional perceptually related features after PCA (left) and ISOMAP (right).

Figure 5: The synthesis engine parameter (left) and the adapted control (right) versus the primary feature.

Figure 6: Two synthesis engine parameters versus: PC1 (top left), PC2 (top right), ISO1 (bottom left), ISO2 (bottom right).

Figure 7: First adapted control versus the primary feature (left) and second adapted control versus the secondary feature (right) for PCA and ISOMAP adaptations.
The interface signals \(c \) are used to generate a value of the first \(c \) PC of \(D_{25} \) with linear interpolation, obtaining a \(d \) in the principal components space. The number of components considered in the system is limited to the number carrying 90% of the total energy. If \(c \) is smaller than the number of \(c \) PC, the control signal mapped on the lower rank component is optionally mapped at the same level, or all on the remaining ones.

3.2. ISOMAP Approach

ISOMAP is a low-dimensional embedding method [8], where geodesic distances on a weighted graph are incorporated with classical scaling. It is exploited to compute a quasi-isometric, low-dimensional embedding of a set of high dimensional data points. At the same time this algorithm provides a simple method for estimating the intrinsic geometry of a data manifold. The main difference with other multi dimensional scaling methods is in the choice of the geodesic distance metric, rather than the Euclidean one. In ISOMAP, the geodesic distance is the sum of edge weights along the shortest path between two nodes, computed using Dijkstra’s algorithm. The top \(n \) eigenvectors of the geodesic distance matrix represent the coordinates in the new \(n \) dimensional Euclidean space. ISOMAP implements a transformation of the space, while PCA projects the data into new coordinates system in the same space. Dimensionality reduction with ISOMAP is applied to \(D \) with the same method described in the previous subsection for PCA. The mapping of the \(c \) control signals on the new coordinates system, named ISO, is based on an estimation of densities and distributions as before. ISOMAP has a higher computational cost compared to PCA, but it detects and exploits the embedded manifold, achieving a more effective dimensionality reduction. ISOMAP is preferred when the control space \(C \) has a very low dimensionality. This difference is evident when comparing the energy in each dimension of the residual variance. Figure 3 shows an example of an energy distribution, measured in terms of variance, across the \(C \) and ISO for the same data set. The number of vectors \(D \) in \(D_{25} \) can be lower than \(D_{25} \) because the ISOMAP algorithm includes an outlier removal stage. To guarantee coherence, the number of elements in \(D_{25} \) and \(P \) must be the same. Hence the vectors \(p \) relative to the outliers are removed from \(P \).

3.3. Synthesis engine parameters retrieval

For both approaches, after the generation of the vector \(d_{25} \) (or \(d_{25} \)) we search the nearest neighbour vector in the matrix \(D_{25} \) (or \(D_{25} \)). Through column indexing we retrieve from \(P \) the vector \(p \) used to drive the synthesis engine instantaneously. This simple approach leads to potential discontinuity in the synthesis parameters generation, because different combinations of synthesis parameters that might be far apart in the control space may lead to identical or near points in the perceptually related feature space. To guarantee continuity we propose two solutions. In the first one we retrieve \(K \) NN (nearest neighbours) in \(D_{25} \) rather than one and drive the synthesis engine with the mean of the \(K \) corresponding vectors \(p \). In the second one, after searching for the nearest neighbour, we append \(p \) to the \(d_{25} \) (or \(d_{25} \)) and we append the matrix \(P \) to \(D_{25} \) (or \(D_{25} \)). The first solution shows a limitation when the \(K \) \(p \) are very far apart, while the second can be debatable because perceptual features and synthesis parameters are merged in the same space, hence the search is performed in a homogeneous space. However, these methods improve a shortcoming in [5] where occasionally the system gets trapped in local minima. As mentioned before, the sampling resolutions affect the size of \(P \) and \(D \). The computational load required for the \(K \) NN search is thus proportional to the size of the matrix and it affects the system minimum response time.

![Figure 3: PCA (left) and ISOMAP (right) energy distribution across the reduced dimensions accounting for 98% of the total energy for the same dataset (note the different y scale).](image)

4. PROTOTYPING AND APPLICATION

A prototype has been developed and is implemented in Max/MSP and MATLAB. The prototype uses the FTM [9] and Maat [10] toolbox for vector and matrix processing in Max/MSP. The perceptually related feature set is based on Tristan Jehan’s “analyzer~” (includes “fiddle~” by Miller Puckette) max external. The feature vector hence includes: loudness, pitch, brightness, noisiness, and the energies in the 25 Bark bands. Each feature can be enabled/disabled by the user and a weight vector can be defined as well to provide better customization. The adaptive approach is independent of the dimensionality and content of the feature vector, therefore a different selection is possible. The prototype is implemented with Ableton Live using the Max For Live framework for the interfacing capabilities with state-of-the-art synthesis engines. Two Max For Live patches cooperate to analyze the synthesis engine. The front-end generates the \(p \) set and drive the synthesizer with up to \(K \) parameters, and the back-end analyses the audio signal, stores \(p \) and the relative multiple \(d \) in the matrices \(P \) and \(D \). The post processing of \(D \) described in Section 3, and the adaptive mapping described in Section 3, are computed within MATLAB using the author’s ISOMAP implementation.

![Figure 4: 3D scatters of the lower dimensional perceptually related features after PCA (left) and ISOMAP (right).](image)

Two Max For Live patches implement the runtime adaptive control for PCA and ISOMAP respectively, exposing up to 4 PC/ISO mapped control parameters. Through the prototype’s Max For Live patches it is possible to set and modify system settings allowing exploration of different configurations. In the analysis patches it is possible to set the sampling resolutions, the parameters range, the note and the timing (in terms of delays) of the automatic analysis. Moreover, the number of analysis windows and the hop size are flexible, while the window size is fixed at 4096 samples. The control patches allow further reduction of the dimensionality of the PCA projection and ISOMAP transformation, modification of the \(K \) NN number, and the dimensionality of the control space \(C \). The prototype allows also for inverting the polarity of every \(p \) or ISO in order to flip the synthesis engine response.

4.1. Single Parameter Application

In this first application we chose a simple scenario to demonstrate the adaptation capability. The synthesis engine is the Ableton Live Operator synth, implementing a simple FM synthesis using just two oscillators. The only variable parameter is the cut-off frequency of the low pass filter. We run the analysis over the full range of the parameter and a reduced set of features, using the energy of Bark bands only. Four analysis windows per state \(p \) are computed with a hop size of 2048 samples, using C2 as fixed note. For the mapping we use only the principal dimension from the PCA and ISOMAP methods in order to have a 1D comparison metric. Both provide an identical result in terms of adapted control: most of the energy is concentrated on the first component since there is high correlation in \(D \). Figure 4 shows three-dimensional scatter plot of the first three PC or ISO (note the different axis ranges), where is possible to appreciate the capability of ISOMAP to detect the manifold and organize the parameter space. Figure 3 shows a line showing how the adapted control provides a linear response over the feature with the greatest variance, while the control signal applied directly to the cut-off frequency presents a non-linear response and a range with almost no effect over the generated sound.

![Figure 5: The synthesis engine parameter (left) and the adapted control (right) versus the principal feature.](image)

4.2. Two Parameters Application

In a second example, we run the analysis computing the complete features set on a preset of the Ableton Live Analog synth, modifying the two “oscillator detune” parameters with a coarse sampling resolution. Ten analysis windows per state \(p \) are computed with a hop size of 1024 samples, using C3 as fixed note. Figure 6 shows how the two principal PCA and ISOMAP projected perceptual features are very noisy over the control parameter space, but in Figure 7 it is evident that these are linear and stable due to the adaptive control. The wider range obtained with the ISOMAP is due to its capacity to embed energy in a lower number of dimensions.

![Figure 6: Two synthesis engine parameters versus: PC1 (top left), PC2 (top right), ISO1 (bottom left), ISO2 (bottom right).](image)

![Figure 7: First adapted control versus the primary feature (left) and second adapted control versus the secondary feature (right) for PCA and ISOMAP adaptations.](image)

1. Images of the Max For Live prototype patches are available at http://anclab.org/downloads/fasciani_icmc12.zip
4.3. Partikkel Hadron Application

In the last example we use the Partikkel Hadron\footnote{http://www.partikkelaudio.com/} granular synthesizer with one of the provided pre-sets. Through granular synthesis it is possible to obtain large timbre variation due to the nature of the synthesis, but often the control parameter set is large and challenging to design an interface for. This device exposes just 6 parameters for timbre manipulation thanks to the exploitation of the Modulation Matrix\cite{PartikkelModulationMatrix}. We analy.

Figure 8: PCA (left) and ISOMAP (right) energy distribution across the reduced dimensions for the same Hadron granular synthesizer dataset.

5. CONCLUSION AND FUTURE WORK

We presented a generic method to adapt general-purpose interfaces to synthesis engines through unsupervised dimensionality reduction techniques and statistical analysis of the perceptually related features computed over the synthetic sound. The application of the prototype demonstrates the benefits introduced by this adaptive technique, including the linearization of the relationship controller-to-sound and the dimensionality reduction of the control space. However some aspects can be further explored for improvements.

The exploitation of dynamic features in synthetic timbres must be explored more extensively. The computation of the dynamic aspect of the timbre has been tested, but embedding static and dynamic features in the same vector d may not be appropriate for all cases. Storing this information in two separate matrices and running dimensionality reduction separately on each may result in an adaptive mapping that is easier to use.

The current MATLAB implementation of the ISOMAP algorithm is computationally expensive in terms of time and memory, thus we had to limit the dimensionality of D and P to 4000, which is too small to handle large parameters sampled with a high resolution. This limitation of the resolution is reflected in the usability experience. An optimization of the algorithm implementation is thus desirable.

In Section 3 we make some assumptions about the control interface output signals. These are generally true for most of the commercial general-purpose interfaces (e.g. sets of sliders, knobs, touch surfaces, touch screen devices). For other interfaces built with large numbers of sensors, or devices capturing human gesture through image or sound, the assumptions may not hold. Through a statistical study of the interface signals it should be possible to apply a pre-processing stage that produces independent components within the desired range.

6. REFERENCES

Figure 8: PCA (left) and ISOMAP (right) energy distribution across the reduced dimensions for the same Hadron granular synthesizer dataset.

A MICROPHONE ARRAY INTERFACE FOR REAL-TIME INTERACTIVE MUSIC PERFORMANCE

Daniele Salvati\footnote{http://www.partikkelaudio.com/}
AvIRES lab\footnote{http://www.partikkelaudio.com/}
Dep. of Mathematics and Computer Science,\footnote{http://www.partikkelaudio.com/}
University of Udine, Italy

daniele.salvati@uniud.it

Sergio Canazza\footnote{http://www.partikkelaudio.com/}
Sound and Music Computing Group\footnote{http://www.partikkelaudio.com/}
Dep. of Information Engineering,\footnote{http://www.partikkelaudio.com/}
University of Padova, Italy

canazza@dei.unipd.it

Gian Luca Foresti\footnote{http://www.partikkelaudio.com/}
AvIRES lab\footnote{http://www.partikkelaudio.com/}
Dep. of Mathematics and Computer Science,\footnote{http://www.partikkelaudio.com/}
University of Udine, Italy
gianluca.foresti@uniud.it

ABSTRACT

This paper presents a novel digital musical interface for real-time interactive music performance, which uses a microphone array to estimate the sound source position in the plane and to allow a performer to use the two x-y coordinates of position to control an audio processing module in real-time through the spatial movement of a sound source. Musical interfaces are often used to allow new ways to enhance the expressive control on the sounds generated by their acoustic instruments in a live electronics context. E.g., in the works by Adriano Guarnieri – Medico (2002) and Fili bianco-velati (2005) – produced at the “Centro di Sonologia Computazionale” of Padova, the movement of a musician is followed by a motion capture system based on infrared cameras to control a live electronics patch\cite{14}, and using the robust PhaseSpace optical motion capture system. It is composed by led systems, video cameras, and calibration procedure. In general, those kind of systems have considerable complexity and in some situations there could be problems with the low and/or not always controllable lighting of the concert hall, even when using infrared camera. It has been shown in\cite{14} that there is some potentiality in using the sound source localization to directly control the position of a sound played back through a spatialization system by moving the sound produced by its own musical instrument. This work has been improved in\cite{13} introducing an adaptive parameterized Generalized Cross-Correlation (GCC) PHAT filter to localize musical sounds that are mainly harmonics. Both interfaces\cite{14,13} are been tested in a controlled real environment with the purpose of verifying how the system works with interfering sources from a sound reinforcement system and other instruments. Thus, in this paper a validation in multi-source scenario is presented, introducing the adaptive parameterized SRP-PHAT with a ZCR threshold (Section 3) that has a better performance than the parameterized GCC-PHAT proposed in\cite{13} as shown in Section 4.

1. INTRODUCTION

Recently, microphone array signal processing is increasingly being used in human computer interaction systems, for example the new popular interface Microsoft Kinect incorporates a microphone array to improve the voice recognition using the acoustic source localization and the beam-forming for noise suppression. In the past years, a large number of musical interfaces has been implemented with the goal of providing tools for gestural interaction with digital sounds, using systems played by touching or holding the instrument, interfaces with haptic feedback, systems worn on the body, and interfaces that may be played without any physical contact (electric field sensors\cite{12}, optical sensors\cite{7}, ultrasound systems\cite{10}, and video camera that allows the performer to use their full-body for controlling in real-time the generation of an expressive audio-visual feedback\cite{1}).