2013

Spontaneous postural instability predicts susceptibility to smooth vection

Stephen Palmisano
University of Wollongong, stephenp@uow.edu.au

Deborah Aplthorp
University of Wollongong, dapthorp@uow.edu.au

Takeharu Seno
Kyushu University, senosann@gmail.com

Paul J. Stapley
University of Wollongong, pstapley@uow.edu.au

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Spontaneous postural instability predicts susceptibility to smooth vection

Abstract
Abstract presented at the Vision Sciences Society Meeting, 10-15 May 2013, Naples, United States

Keywords
smooth, vection, susceptibility, spontaneous, postural, predicts, instability

Disciplines
Education | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/sspapers/750
Spontaneous postural instability predicts susceptibility to smooth vection

Stephen Palmisano¹, Deborah Apthorp², Takeharu Seno³ and Paul Stapley⁴

Abstract

Do individual differences with regard to the weighting of vision in the control of postural stability help identify persons who are more or less susceptible to vection (visual illusions of self-motion)? In this experiment, we measured the postural sway of standing subjects by quantifying the excursions of their center of foot pressure (CoP). Prior to exposing them to any optic flow, we measured their spontaneous postural sway with eyes open and eyes closed (CoP changes over 60-s periods were converted into sway path estimates). Subjects were then shown two types of optic flow: radially expanding optic flow (simulating constant velocity forwards self-motion) and vertically oscillating radially expanding optic flow (simulating constant velocity forwards self-motion combined with vertical head oscillation). These computer–generated displays, which subtended a visual angle of 66 deg x 62 deg, were rear projected onto a flat screen 0.65 m in front of subjects. As expected, adding simulated vertical viewpoint oscillation significantly increased the vection induced by radially expanding flow. We found that greater differences between spontaneous sway with eyes open and eyes closed significantly predicted higher vection strength ratings for purely radial flow, but not for vertically oscillating flow. Thus, it appears that the importance of vision for postural stability predicts vection strength for displays which represent smooth self-motion, but for oscillating displays, other factors, such as visual–vestibular interactions, may be more important.

Meeting abstract presented at VSS 2013

Received June 26, 2013.

© 2013 ARVO