2007

Some innovative numerical approaches for pricing American options

Jin Zhang
University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Some innovative numerical approaches
for pricing American options

A thesis submitted in (partial) fulfillment of the
requirements for the award of the degree of

Master of Science

from

UNIVERSITY OF WOLLONGONG

by

Jin Zhang

Master of Financial Mathematics
University of Wollongong

Bachelor of Engineering
Beijing University of Posts and Telecommunications

2007
I, Jin Zhang, declare that this Thesis, submitted in fulfilment of the requirements for
the award of Master of Science, in the School of Mathematics and Applied Statistics,
University of Wollongong. This Thesis is my own work unless otherwise referenced.
The document has not been submitted for a higher degree to any other University
or Institution.

Jin Zhang
March, 2007
ACKNOWLEDGEMENTS

I gratefully acknowledge the people who provided assistance in preparing this Thesis. First of all, I would like to express my deep gratitude to my supervisor, Dr. Song-ping Zhu, without his advice and assistance, this Thesis would have never been completed. I would also like to thank all staff in the School of Mathematics and Applied Statistics, especially Carolyn Silveri for her help in Latex, Dr. Xiao-ping Lu for her help in the Laplace Transform part, Dr. Joanna Goard for her constant encouragement, my dear neighbor Dr. Keith Tognetti and his faithful fellow Jack for the every night we shared in the university. Last but not least, I must thank my mom for her support and encouragement; without her, it is impossible for me to come and study in Australia, this Thesis is dedicated to her.
ABSTRACT

With the well-known model of lognormal asset price, the option valuation problems can be implemented by using the Black-Scholes partial differential equation approach. However, for American option pricing problems, it is hard to find an analytical formula due to the moving boundary feature [23]. This thesis presents two innovative numerical methods [38, 39] to value American put options in terms of solving the Black-Scholes partial differential equation with a set of appropriate boundary conditions.

The first method is the Laplace Transform Method, which extends the pseudo-steady-state approximation idea for the American option pricing problems in non-dividend yield case [35] to the one in constant dividend yield case. The approach transfers the original partial differential equations system to an ordinary differential equations system, to derive the solutions of the option prices and the optimal exercise boundary in the Laplace space respectively. After that, numerical inversions are performed to restore their corresponding values in the original time space.

The second method promotes a new predictor-corrector idea that uses a hybrid finite difference scheme to tackle the nonlinear nature of American option pricing problems, which is explicitly exposed after applying the front-fixing technique [21] to the original Black-Scholes partial differential equation. The new predictor-corrector scheme implements the computation of the option prices and the optimal exercise boundary through solving a set of linearized difference equations at each time step, to achieve high computational efficiency and numerical accuracy.

Through the comparison with Zhu’s analytical solution [34], we found that, the Laplace Transform Method is highly efficient since numerical calculations are only
performed for the inversion part, whereas the calculations of the Laplace transform are done analytically. Although the Laplace Transform Method slightly undervalues the optimal exercise boundary due to the pseudo-steady-state approximation introduced to allow the Laplace transform to be performed on the moving boundary. The loss of the accuracy in this regard is greatly compensated by its high computational speed. For the second method, we have shown that the numerical results obtained from the predictor-corrector scheme converge uniformly to Zhu’s exact optimal exercise boundary and option values [34], provided a convergence criterion is imposed. Furthermore, the agreement between the numerical solutions from the second method, and those from the Grid Stretching Method [24] that is a fourth-order scheme for both the asset price and time discretizations, not only validates the second method once again but also demonstrates its accuracy in that a lower-order scheme has virtually achieved the same level of accuracy as a higher-order scheme does.
CONTENTS

1. Introduction ... 1

2. Arbitrage-Free Pricing Model .. 5
 2.1 Stochastic Processes ... 6
 2.2 Itô’s Formula ... 7
 2.3 The Black-Scholes Equation ... 9
 2.4 The Partial Differential Equation System 11

3. The Laplace Transform Method ... 15
 3.1 Solutions of Optimal Exercise Price and Option Value 16
 3.2 Numerical Laplace Inversion ... 21
 3.2.1 Stehfest Method .. 22
 3.2.2 Papoulis Legendre Polynomial Method 23
 3.2.3 Kwok and Barthez’s Linear Combination Method 24
 3.3 Numerical Test of Standard Functions 25
 3.4 Numerical Examples for American Puts 31
 3.4.1 Numerical Accuracy ... 31
 3.4.2 Numerical Efficiency ... 33
 3.4.3 Accuracy of the Laplace Transform Method 35
 3.4.4 Calculation of the Delta ... 36

4. The Predictor-Corrector Scheme ... 41
 4.1 The Front-Fixing Transform ... 43
 4.2 The Predictor-Corrector FDM Scheme 45
4.3 Numerical Examples ... 50
 4.3.1 Discussion on Validity ... 51
 4.3.2 Discussion on Order of Convergence 53
 4.3.3 Discussion on Accuracy and Efficiency 55
 4.3.4 The Constant Dividend Yield Case 59

5. Conclusion ... 63

6. Appendix ... 65
LIST OF FIGURES

3.1 The Optimal Exercise Prices by Stehfest Method with $D_0 = 0$ 32
3.2 Comparison of Analytic Solution and Numerical Inversion 36
3.3 The Delta Values with $D_0 = 0$% . 39
3.4 The Delta Values with $D_0 = 5$% . 40

4.1 The Predictor-Corrector Procedure . 49
4.2 Comparison of Analytic Solution and Numerical Solution 52
4.3 The Numerical Optimal Exercise Boundary in Perpetual Case 54
4.4 The Relative RMS, N and M . 57
4.5 The Accuracy and Efficiency of the New Scheme 58
4.6 The Option Value with $D_0 = 5$%, $T = 1$ year 60
4.7 The Delta Value with $D_0 = 5$%, $T = 1$ year 61
4.8 The Optimal Exercise Price with $D_0 = 5$% 62
LIST OF TABLES

3.1 Results of the Stehfest Method ... 28
3.2 Results of the Papouls Method .. 29
3.3 Results of the Linear Combination Method 30
3.4 Numerical Inversion of the Stehfest Method for Option Pricing . . . 33
3.5 Numerical Inversion of the Linear Combination Method at $\tau = 0.045$ 33
3.6 Comparison of Efficiency ... 35

4.1 Order of Convergence in the τ Direction 55
4.2 Order of Convergence in the x Direction 55