2010

Effects of simvastatin and 6-hydroxydopamine lesion on histaminergic H1 receptor binding in rat brains

C H. Hu
School Health Sciences, Uni of Wollongong

C Deng
University of Wollongong, chao@uow.edu.au

Xu-Feng Huang
University of Wollongong, xhuang@uow.edu.au

J Chen
University of Wollongong, jiezhong@uow.edu.au

Q Wang
Dept Neurology, Sun Yat-Sen Uni, Guangzhou, China

Publication Details
Effects of simvastatin and 6-hydroxydopamine lesion on histaminergic H1 receptor binding in rat brains

Keywords
histaminergic, rat, h1, binding, receptor, brains, effects, simvastatin, 6, hydroxydopamine, lesion

Disciplines
Arts and Humanities | Life Sciences | Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/hbspapers/688
POS-MON-205
N-ARACHIDONYL-GLYCINE INHIBITS GLYCINE TRANSPORT IN RAT SUPERFICIAL DORSAL HORN

Jeong H.-J., Vandenberg R.J. and Vaughan C.W.
1Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School University of Sydney at Royal North Shore Hospital, New South Wales, Australia. 2Department of Pharmacology, Bosch Institute, University of Sydney, New South Wales, Australia.

The arachidonyl amino acid N-arachidonyl glycine (NAGly) is expressed at high levels within the spinal cord and plays a role in following spinal discharge, via mechanisms which differ to the related endocannabinoid arachidonyl ethanolamide (anandamide). It has recently been demonstrated that NAGly inhibits the cloned glycine transporter GLYT2. Here, we examined the actions of NAGly on neurons in lamina II of the superficial dorsal horn, a key site for the actions of many anaglycine agents. NAGly prolonged the duration of GlyR-mediated currents induced by exogenous application of glycine, but not by 3-glutamate. NAGly and the GLYT2 inhibitor ALX-1393, but not the GLYT1 inhibitor ALX-5407 produced an inward current and an increase in noise which was abolished by strychnine. ALX-5407 and ALX-1393, but not NAGly prolonged the decay phase of GlyR-mediated spontaneous miniature IPSCs. By contrast, NAGly, ALX-5407 and ALX-1393 all prolonged the decay phase of GlyR-mediated evoked IPSCs. The effect of NAGly on evoked IPSCs was increased during rapid train stimulation. NAGly had no effect on IPSC rise-time, or amplitude. These findings suggest that NAGly enhances inhibitory glycinergic synaptic transmission within the superficial dorsal horn by blocking glycine uptake via a transporter, possibly GLYT2, which is located outside the glycine synaptic cleft.

POS-MON-207
INHIBITION IN THE LATERAL VESTIBULAR NUCLEUS

Stitt I.M., Drury H., Ford D., Callister R.J., Brichita A.M. and Lim R.
School of Biomedical Sciences and Pharmacy, The University of Newcastle.

The lateral vestibular nucleus (LVN) projects to all regions of spinal cord for innervation of axial and limb muscles to maintain posture and balance. The LVN consists predominantly of large Deiters' neurons. Inhibition of Deiters' neurons arises predominantly from cerebellar Purkinje cells and is GABAergic in origin. A recent study has shown a glycinergic projection from fastigial nucleus. This study investigates inhibition onto large Deiters' neurons and interneurons of the LVN. Immunofluorescence: Mice (approx. 3 weeks old) were anaesthetized with Ketamine (100mg/kg) and transcardially perfused with saline, followed by 4% paraformaldehyde. Brains were removed and postfixed for 1 hour. Immunolabelling of GABA, glycinergic receptors, and anchoring protein, gephyrin, showed immunofluorescence in LVN. Electrophysiology: Mice were anaesthetized as above and decapitated. Brains were removed and the region containing the LVN was sectioned (300 µm). Approximately 73% of Deiters' neurons are tonically active, and have comparable discharge rate (mean 9.9 Hz, n = 6) to nearby medial vestibular nucleus neurons (mean 9.1 Hz, n = 27). GABAergic and glycinergic mIPSCs were recorded in the presence of TTX (1 µm) and CNQX (10 µm) and their respective antagonists, strychnine (1 µm) and bicuculline (10 µm). Recordings from 45 neurons showed a differential inhibitory input to Deiters' and interneurons. Deiters' neurons received predominantly GABAergic inhibitory input, of very high frequency (mean frequency = 13.25 Hz, n = 7), while interneurones received both GABAergic and glycinergic inputs. Preliminary results also show a rostrocaudal difference in the degree of GABAergic and glycinergic input onto Deiters' neurons.

POS-MON-208
EFFECTS OF SIMVASTATIN AND 6-HYDROXYDOPAMINE LESION ON HISTAMINERGIC H1 RECEPTOR BINDING IN RAT BRAINS

Hu C.H.1-3, Deng C., Huang X.-F., Chen J. and Wang Q.1-3
1Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, 2522, NSW, Australia. 2School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China. 3Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.

Statinst have been widely used for the treatment of a variety of medical conditions including neurological disorders beyond their original role in lowering cholesterol. The histamine receptors play an important role in neural regulation. However, it is yet unknown whether statins act on histamine receptors, particularly for their neuroprotective effects. METHODS: After pre-treatment with simvastatin (saline, or 1 or 10mg/kg/day, n=14-18) for 5 days, a half of each group were treated with 6-hydroxydopamine (6-OHDA) and the other half with sham-treatment, followed by 3-week treatments of simvastatin as mentioned above. Histamine H1 receptors (H1R) were detected by [3H]pyrilamine binding autoradiography. RESULTS: Compared to the saline group, simvastatin (1mg/kg/day) significantly decreased H1R bindings in the primary motor cortex (MI), ventromedial hypothalamic nucleus (VMH), caudate putamen (CPU), accumbens core (AcbC), prefornical cortex (PF) (all p<0.05); however 10mg/kg/day simvastatin increased H1R density in the medial amygdaloid nucleus (p=0.05), but no significant effect in other regions detected. 6-OHDA lesion did not alter H1R binding density in major brain areas, except a decrease in the claude cortex (p=0.05). No interacted effect between simvastatin and 6-OHDA was observed. CONCLUSION: Simvastatin has different effects on the H1R in various brain regions of rats, which was not interacted with 6-OHDA lesion. These results suggest that simvastatin can modulate histaminergic neurotransmission in the brain, and support the role of H1 receptors in neurodegenerative disorders.