Filamentary Hα structure in the milky way

Andrew J. Walker
University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Abstract

The first part of this thesis presents the first results of a search for new optical supernova remnant candidates and other filamentary objects on films produced by the Anglo-Australian Observatory/UK Schmidt Telescope Hα Survey. Sixty-one fields, or 26 percent of the Galactic plane survey fields, have been visually examined. This resulted in the detection of four new large diameter filamentary structures, and the discovery of extensive new optical emission in two previously known optical supernova remnant candidates.

The second part of this thesis presents results of a study we made using the FLAIR instrument on the UK Schmidt Telescope to obtain optical spectra of several filaments in RCW 114, a filamentary nebulae of about 250 arcmin diameter. These confirm that the emission is being produced by the interaction of the shock wave of a supernova remnant with the surrounding interstellar medium. We also obtained narrow-band Hα+[N II] and [S II] images to examine the spatial variation in ionisation structure.

The third part of this thesis gives the result of a search using films from the UKST Hα Survey where the locations of 86 Galactic supernova remnants were examined for optical emission. From these we had likely detections of 8 objects and possible detections of 4 others. We have discovered a new loop of emission nebulosity, 10° in diameter, which we have named the Coalsack Loop.
Acknowledgements

Firstly thanks must go to my supervisor Bill Zealey, who first encouraged my interest in Astronomy as a work experience student and then got me interested in supernova remnants for my Honours project. Throughout the years he has provided much valuable advice in all areas of astronomy and help keep me focussed along the long road to the completion of this thesis.

I’d also like to thanks the many staff I have been involved with at the University of Wollongong during my time as a student, who may have at some stage been my lecturer or provided other forms of help: Peter Anthony, Peter Fisher, Carey Freeth, Peter Ihnat, Michael Lerch, Roger Lewis, David Martin, Jagdish Mathur, Glen Moore, Paul Nulsen, Anatoly Rozenfeld, Phil Simmonds, George Takacs, Rodney Vickers and Chao Zhang.

Thanks must also go to the many other students at the University of Wollongong who have provided assistance over the years with observing, data reduction, general computer usage and many other areas. These include fellow astronomy students Stacy Mader, Vincent McIntyre and Erik Muller, along with Richard Baker, Duncan Fisher and other fellow lab demonstrators.

Special thanks also must go to the staff at the UK Schmidt Telescope, Quentin Parker, Fred Watson, Paul Cass, Malcolm Hartley and Ken Russell who provided great assistance during my observing runs and also my stay during 1998. I also thank the staff at the AAT and AAT lodge. In addition thanks goes to Mike Bessell, Anne Green, Brian Gaensler and Miller Goss who have all provided assistance and advice, and the anonymous referees who have provided feedback on my papers.

Finally I’d like to thank my family who have shown patience and given support through the years, and help me fulfill my ambitions of completing this work.
Publications

Certification

I certify that the work presented in this thesis is my own, except where stated and or referenced as otherwise.

Andrew Walker
July 2006
Contents

Abstract ... i
Acknowledgements .. ii
Publications ... iii
Certification ... iv
List of Figures .. vii
List of Tables ... 1

1 Supernovae, Their Remnants, and Wind-Blown Shells 2
 1.1 Supernovae ... 2
 1.1.1 Type I Supernovae .. 2
 1.2 Supernova Remnant Evolution 4
 1.2.1 Free Expansion ... 4
 1.2.2 Sedov-Taylor (Adiabatic) Expansion 5
 1.2.3 Radiative (Snowplough) Phase 5
 1.2.4 Dissipative Phase .. 5
 1.3 Supernova Remnant Types 5
 1.4 Optical Emission of Supernova Remnants 6

2 Filamentary Shell Structures from the AAO/UKST Hα Survey 8
 2.1 Introduction .. 8
 2.1.1 Wind-blown Shells and Planetary Nebulae 9
 2.2 The UKST Hα Survey ... 14
 2.3 Discoveries .. 15
 2.3.1 G245.9+0.9 ... 15
 2.3.2 G296.2-2.8 ... 16
 2.3.3 G304.7-3.1 ... 16
 2.3.4 G310.2-2.8 ... 17
 2.3.5 G340.5+0.7 ... 18
 2.3.6 Kes 45 ... 19
 2.4 Conclusions ... 20
 2.5 Acknowledgements ... 20
3 Multifibre Spectroscopy of the Supernova Remnant Candidate RCW 114

3.1 Introduction ... 33
3.2 Observations and Reductions 34
3.3 Results .. 35
3.4 Line Diagnostics .. 37
3.5 Optical Images .. 37
3.6 Spatial Variation 38
3.7 Discussion ... 38
3.8 Conclusions .. 39
3.9 Acknowledgements 40

4 A Survey of Optical Emission Associated With Galactic Supernova Remnants in the Southern Sky

4.1 Introduction ... 47
4.2 The Hα Survey ... 48
4.3 Film Search .. 49
 4.3.1 Supercosmos 49
4.4 New Optical Identifications 50
 4.4.1 Likely identifications 50
 4.4.2 Possible identifications 56
4.5 The Coalsack Loop 57
4.6 Discussion ... 58
4.7 Conclusion .. 59
4.8 Acknowledgements 59

5 Conclusions ... 75

5.1 Conclusions .. 75
List of Figures

2.1 G245.9+0.9 .. 21
2.2 G296.2-2.8 .. 22
2.3 G304.7-3.1 .. 23
2.4 G310.2-2.8 .. 24
2.5 MOST image of G310.2-2.8 25
2.6 G340.5+0.7 .. 26
2.7 Closeup of southeast quadrant of G340.5+0.7 27
2.8 Closeup of northeast quadrant of G340.5+0.7 28
2.9 Diagram showing major filamentary structures in the Kes 45 region. ... 29
2.10 Closeup of central western section of Kes 45. 30
2.11 Closeup of northeast quadrant of Kes 45. 31

3.1 Three separate spectra of a bright filament in RCW 114. 43
3.2 Enlarged red spectra of another filament in RCW 114. 44
3.3 Plot of 100 × [SII]/Hα for the observed positions in RCW 114. 45
3.4 Plot of 100 × [NII]/Hα for the observed positions in RCW 114. 46

4.1 Hα image of G4.2-3.5 ... 60
4.2 a) Hα image of G32.8-0.1. b) Hα image overlaid with VLA 1.7 GHZ image. Contours (mJy/beam) = 3,6,12,24,48. The beamsize is 56″ × 43″. .. 66
4.3 a) Hα image of G261.9+5.5. b) Hα image overlaid with PMN radio survey. Contours (mJy/beam) = 20,40,60,80,110,140,170 67
4.4 Hα image of the brightest filament in G279.0+1.1 68
4.5 a) Hα image of G296.8-0.3 b) Hα image overlaid with ATCA radio image. Contours (mJy/beam) = 5,10,15,20,25,30,35,40,45 69
4.6 Enlarged regions of Fig. 5 overlaid with ATCA radio image. Contours (mJy/beam) = 5,10,15,20,25,30,35,40,45 70
4.7 a) Hα image of G315.4-0.3 b) Hα image overlaid with MOST radio survey. Contours (mJy/beam) = 2,4,8,14,18,22,26,30,35,40,52, 65,95,120,140,250,450 71
4.8 a) Hα image of G340.4+0.4 b) Hα image overlaid with MOST radio survey. Contours (mJy/beam) = 10,25,50,90,140,170,210,250,290, 330,360 72
4.9 The Coalsack Loop. Composite of four Hα images centred on the ESO/SERC Sky Survey fields 95, 96, 131 and 132. Note the presence of the Southern Cross in the upper-right (north-west) portion of the image. 73

4.10 Hα image of the Coalsack Loop as seen by the Southern H-Alpha Sky Survey Atlas (SHASSA) survey (details of image and survey in text). 74
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Filamentary structures</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Details of FLAIR Observations</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Observed emission line strengths in RCW 114.</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Large angular diameter supernova remnants</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Optical Galactic SNR</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Optical Galactic SNR cont.</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Supernova remnants examined for optical emission</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Supernova remnants examined for optical emission cont.</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>Optical filaments in G279.0+1.1</td>
<td>65</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of new probable optical SNR associations</td>
<td>65</td>
</tr>
</tbody>
</table>