Effects of compositions and mechanical milling modes on hydrogen storage properties

Zhenguo Huang
University of Wollongong

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Effects of compositions and mechanical milling modes on hydrogen storage properties

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

University of Wollongong

by

Zhenguo Huang B. Eng., M. Eng.

Institute for Superconducting and Electronic Materials

August 2007
I, Zhenguo Huang, hereby certify that the work presented in this thesis is original and was carried out at the Institute for Superconducting and Electronic Materials, the University of Wollongong, New South Wales, Australia. To the best of my knowledge and belief this thesis contains no material previously published or written by another person, except where otherwise acknowledgement and references have been made in the thesis. This work has not been submitted previously, in part or in whole, to qualify for any other degree.

Zhenguo Huang
Acknowledgements

First and foremost, I would like to thank my principal supervisor, Professor Huakun Liu, for providing timely and insightful advice, financial and spiritual support, and encouragement above and beyond the call of duty during this work. I would also like to thank my co-supervisors, Dr. Zaiping Guo and Dr. Andrzej Calka, for their invaluable assistance and guidance. Without their help I would never have finished this work. All my supervisors’ implicit trust in my research abilities not only allowed me to freely pursue my goals, but also gave me an opportunity to learn how to manage time and allocate resources. Special thanks go to Professor Shixue Dou, for his inspiration, generosity, and insightful instruction.

I would also like to express my appreciation to all other staff members, particularly Dr. Xiaoling Wang, Dr. Konstan Konstantinov, Dr. Jiazhao Wang, Dr. Guoxiu Wang, and Mr. Ron Kinnel, for their genuine help in many regards. Special thanks go to Dr. Tania Silver, who patiently provided thorough error checking of my papers with detailed explanations. Thank you also to my fellow work colleagues, Germanas Peleckis, Scott Needham, Ng See How, Xu Xun, and Olga Shcherbakova, whose knowledge and experience proved very helpful in this research. I would like to thank Brad Winton, in particular. Thank you very much for the informative, impassioned, and enjoyable discussions that we had together.
I would also like to thank my colleagues on the University Council, Vice-Chancellor Professor Gerard Sutton, Mr. Chris Grange, Professor Rob Castle, Professor John Patterson, Professor Margaret Sheil, and Professor Lee Astheimer. Their impressive managerial skills, marvelous strategic thinking abilities, brilliant leadership, accessible to only one postgraduate, me, in this university over the past two years, really broadened my horizons and enriched my experience.

To my great parents, I am forever indebted to their non-stop financial and spiritual support---I could never have asked for better parents. My dear Mum and Dad, I love you forever.

Most importantly, I wish to express my gratitude to my wife, Limei Yang. Her unfailing love, patience, perseverance, and encouragement enabled me to really concentrate on my study. Limei, I am extremely grateful for your love. Thank you.
List of Tables

Table 2.1 US DOE (2007) hydrogen storage system performance targets.......................14
Table 2.2 The most important families of hydride-forming intermetallic compounds (Züttel 2004). ..21
Table 2.3 Physical properties of selected complex hydrides (Züttel et al. 2003).41
Table 3.1 Description of metals, chemicals, and gases...59
Table 7.1 Average particle sizes of carbon allotropes and the as-prepared composites. ...116
Table 7.2 I_D/I_G values of carbon allotropes before and after ball milling.117
Table 7.3 Average particle sizes of the rehydrogenated composites.124
Table 8.1 A list of sample names and synthesis methods...137
Table 8.2 Hydrogen content in SGH, IGH, and corresponding DSC treated samples. 147
Table 8.3 Possible hydrogenated carbon clusters observed in IGH and SGH.147
Table 9.1 A list of sample names and synthesis methods...151
Table 9.2 Hydrogen content in IBH, SGH, and the corresponding DSC treated samples. ...156
List of Figures

Fig. 2.1. Atmospheric concentrations of carbon dioxide, methane, and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels). The corresponding radiative forcings are shown on the right hand axes of the large panels (IPCC, 2007). ..8

Fig. 2.2. Hydrogen density of materials (Satyapal et al. 2006).................................15

Fig. 2.3. Schematic structure of a liquid-hydrogen tank (Green Car Congress 2006)....17

Fig. 2.4. Schematic of the compressed hydrogen Type-IV Storage Tank (Warner 2005). ...19

Fig. 2.5. Pressure-composition-temperature plots (left-hand side) for a hypothetical metal hydride. The corresponding van’t Hoff plot is shown on the right-hand side (Züttel 2004). ..22

Fig. 2.6. Van’t Hoff plots of some selected hydrides. The stabilization of the hydride of LaNi5 by the partial substitution of nickel with aluminium in LaNi5 is shown, as well as stabilization by the substitution of lanthanum with mischmetal (e.g. 51 % La, 33 % Ce, 12 % Nd, 4 % Pr) (Züttel 2004). ..23

Fig. 2.7. Effect of grain size on hydrogen absorption of magnesium powders (Zaluska et al. 1999 b). ...29

Fig. 2.8. Comparison of the desorption rates of MgH2 with different metal oxide catalyst additions (Barkhordarian et al. 2003)..31

Fig. 2.9. Hydriding behavior of various Mg/G composites. (Mg/G)none was prepared without organic additives; the rest were prepared as follows: with cyclohexadiene, i.e. (Mg/G)DIENE; with cyclohexene, i.e. (Mg/G)ENE; with tetrahydrofuran, i.e. (Mg/G)THF; with cyclohexane, i.e. (Mg/G)CH; and with benzene, i.e. (Mg/G)BN. Hydrogen absorption conditions: H2 = 66.7 kPa; 453 K (Imamura et al. 2000)...34
Fig. 2.10. DSC measurements of various Mg/G composites. (Mg/G)\textsubscript{none} was prepared without organic additives; the rest were prepared with cyclohexadiene, i.e. (Mg/G)\textsubscript{DIENE} or with cyclohexene, i.e. (Mg/G)\textsubscript{ENE} (Imamura et al. 2000). ...34

Fig. 2.11. Stable forms of carbon clusters: (a) a piece of a graphene sheet, (b) the fullerene \textit{C}\textsubscript{60}, and (c) a model for a carbon nanotube (Dresselhaus 1997).45

Fig. 2.12. Hydrogen storage capacity of various carbon nanostructures versus SSA at RT and at 77 K. The slopes of the curves are 0.23×10^{-3} at RT and 1.91×10^{-3} at 77 K (Hirscher and Panella 2005). ..48

Fig. 2.13. Schematic representation of the arrangement of platelets in a graphite nanofiber; (b) an enlarged section showing the detail of area marked in (a) (Chambers et al. 1998). ...49

Fig. 2.14. Flow chart showing the possible routes for the manufacture of nanostructured activated intermetallics and their composites and hydrides (Varin and Czujko 2002)...55

Fig. 2.15. Hydrogen absorption (a) and desorption (b) curves of un-milled MgH\textsubscript{2} (filled symbols) and milled MgH\textsubscript{2} (open symbols) (Huot et al. 2001). ..56

Fig. 2.16. The Uni-Ball-Mill 5 with the FeNdB external magnets operating in the shearing mode (Calka and Radlinski 1991). ...58

Fig. 2.17. The Uni-Ball-Mill 5 with the FeNdB external magnets operating in the impact mode (Calka and Radlinski 1991)..58

Fig. 3.1. Schematic of the volumetric Sieverts apparatus. ...65

Fig. 4.1. SEM image of the as-prepared Mg\textsubscript{1.9}Cu\textsubscript{0.1}Ni\textsubscript{1.9} alloy and Mg, Ni, Cu, and O distributions in the alloy..70

Fig. 4.2. X-ray diffraction patterns of the as-prepared Mg\textsubscript{1.9}Cu\textsubscript{0.1}Ni\textsubscript{x} (x = 1.8, 1.9, 2.0, and 2.1) alloys. ...71

Fig. 4.3. Bright field and selected area electron diffraction (SAED) patterns obtained from as-prepared Mg\textsubscript{1.9}Cu\textsubscript{0.1}Ni\textsubscript{1.8}: (a) TEM image, (b) SAED pattern of an amorphous region, and (c) SAED pattern of a region that was heated by the electron beam.72
Fig. 4.4. DSC curves of the as-prepared Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloys.

Fig. 4.5. XRD patterns of the as-prepared Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloys annealed at 600 °C for two hours.

Fig. 4.6. XRD patterns of the as-prepared Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloys hydrogenated at 200 °C in 5 atm. hydrogen for 20 mins.

Fig. 4.7. DSC traces of the as-prepared Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloys hydrogenated at 200 °C in 5 atm. hydrogen for 20 mins.

Fig. 4.8. XRD patterns of the as-prepared Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloys hydrogenated at 250 °C in 5 atm. hydrogen for 20 mins.

Fig. 4.9. DSC traces of the as-prepared Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloys hydrogenated at 250 °C in 5 atm. hydrogen for 20 mins.

Fig. 4.10. XRD patterns of the as-prepared Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloys hydrogenated at 300 °C in 5 atm. hydrogen for 20 mins.

Fig. 4.11. DSC traces of the as-prepared Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloys hydrogenated at 300 °C in 5 atm. hydrogen for 20 mins.

Fig. 4.12. Desorption peak temperatures of the as-prepared Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloys hydrogenated at 200 °C, 300 °C, and 350 °C in 5 atm. hydrogen for 20 mins.

Fig. 5.1. Discharge capacities of Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloy electrodes as a function of cycle number.

Fig. 5.2. Cyclic voltammograms for Mg_{1.9}Cu_{0.1}Ni_{1.9} alloy electrode. Scan rate: 10 mV/s.

Fig. 5.3. SEM image and concentration distributions of Mg, Ni, Cu, and O in Mg_{1.9}Cu_{0.1}Ni_{1.9} alloy electrode after five cycles.

Fig. 5.4. Cyclic voltammograms for Mg_{1.9}Cu_{0.1}Ni_x (x = 1.8, 1.9, 2.0, and 2.1) alloy electrodes after 5 cycles. Scan rate: 10 mV/s.
Fig. 5.5. Electrochemical impedance spectra (EIS) of Mg$_{1.9}$Cu$_{0.1}$Ni$_x$ ($x = 1.8$, 1.9, 2.0, and 2.1) alloy electrodes after 15 cycles at 80 % depth of discharge. .. 93
Fig. 5.6. Linear polarization curves of Mg$_{1.9}$Cu$_{0.1}$Ni$_x$ ($x = 1.8$, 1.9, 2.0, and 2.1) alloy electrodes after 15 cycles at 20 % depth of discharge. .. 94
Fig. 5.7. Variation of exchange current density with x in Mg$_{1.9}$Cu$_{0.1}$Ni$_x$ ($x = 1.8$, 1.9, 2.0, and 2.1) alloy electrodes. ... 95
Fig. 6.1. XRD patterns obtained from the as-prepared composites: (a) MgH$_2$ + Fe$_2$O$_3$ and (b) MgH$_2$ + Fe$_3$O$_4$... 99
Fig. 6.2. SEM images of the as-prepared composites: (a) MgH$_2$ + Fe$_2$O$_3$ and (b) MgH$_2$ + Fe$_3$O$_4$.. 100
Fig. 6.3. DSC curves obtained from the as-prepared composites. 101
Fig. 6.4. Hydrogen desorption kinetics of the as-prepared composites at 350 °C under 0.05 MPa .. 102
Fig. 6.5. TG curves obtained from the as-prepared composites.............................. 103
Fig. 6.6. XRD patterns obtained from MgH$_2$ + Fe$_2$O$_3$ composite after DSC heating of the as-prepared powders to 205 °C, 310 °C, and 368 °C................................. 104
Fig. 6.7. XRD patterns obtained from MgH$_2$ + Fe$_3$O$_4$ composites after DSC heating of the as-prepared powders to 235 °C, 320 °C, and 378 °C................................. 106
Fig. 6.8. Hydrogen absorption kinetics at 300 °C under 2 MPa............................ 107
Fig. 6.9. XRD patterns obtained from rehydrogenated composites: (a) MgH$_2$ + Fe$_2$O$_3$, and (b) MgH$_2$ + Fe$_3$O$_4$... 108
Fig. 6.10. TG curves obtained from the rehydrogenated composites.................. 109
Fig. 6.11. DSC curves obtained from the rehydrogenated composites................. 109
Fig. 6.12. Hydrogen desorption kinetics of the rehydrogenated composites at 350 °C under 0.05MPa. ... 110
Fig. 7.1. XRD patterns obtained from the as-prepared composites...................... 113
Fig. 7.2. SEM images of carbon allotropes and the as-prepared composites with associated EDS mapping for carbon: (a) CB, (b) MgH$_2$ + CB, (c) distribution of CB, (d)
G, (e) MgH$_2$ + G, (f) distribution of G, (g) MWCNT, (h) MgH$_2$ + MWCNT, and (i) distribution of MWCNT.

Fig. 7.3. Raman spectra of carbon black, graphite, and multiwalled carbon nanotubes before and after ball milling.

Fig. 7.4. DSC curves of the as-prepared composites as a function of temperature.

Fig. 7.5. Hydrogen desorption kinetics of the as-prepared composites at 350 °C at 0.05 MPa.

Fig. 7.6. First cycle hydrogen absorption kinetics of the composites at 300 °C under 2 MPa.

Fig. 7.7. XRD patterns obtained from the rehydrogenated composites.

Fig. 7.8. DSC curves of the rehydrogenated composites.

Fig. 7.9. Hydrogen desorption kinetics of the rehydrogenated composites at 350 °C.

Fig. 7.10. SEM images of the rehydrogenated composites and the associated EDS maps of carbon: (a) MgH$_2$ + CB, (b) distribution of CB, (c) MgH$_2$ + G, (d) distribution of G, (e) MgH$_2$ + MWCNT, and (f) distribution of MWCNT.

Fig. 7.11. DSC trace of the as-prepared MgH$_2$+G composite annealed at 300 °C for two hours. The inset shows the XRD patterns before and after annealing.

Fig. 7.12. Raman spectra of pristine graphite and of graphite in the as-prepared and rehydrogenated MgH$_2$ + G composites.

Fig. 7.13. TEM images of the as-prepared and rehydrogenated MgH$_2$ + G composite: (a) low magnification bright-field image of the as-prepared composite; (b) dark-field images of the as-prepared composite; (c) and (d) dark-field images of the rehydrogenated composite. (b)-(d) were obtained using the circled reflections in the insets, which contain the associated SAED patterns.

Fig. 7.14. Infrared spectra of the as-prepared MgH$_2$ and of the as-prepared and rehydrogenated MgH$_2$+G composites. An IR spectrum of ball-milled graphite is also shown here.

Fig. 8.1. XRD pattern obtained from the pristine graphite.
Fig. 8.2. XRD pattern obtained from the as-prepared SGH.................................138
Fig. 8.3. XRD pattern of SGH annealed at 240 °C. ...139
Fig. 8.4. XRD pattern of SGH annealed at 300 °C. ...139
Fig. 8.5. XRD pattern of SGH annealed at 480 °C. ...140
Fig. 8.6. XRD pattern of SGH annealed at 600 °C. ...140
Fig. 8.7. TEM images of pristine graphite (a), as-prepared SGH (b), and SGH annealed at 600 °C (c). Insets in (b) and (c) show the associated SAED patterns........142
Fig. 8.8. XRD pattern obtained from IGH..143
Fig. 8.9. XRD pattern of IGH annealed at 240 °C. ...143
Fig. 8.10. XRD pattern of IGH annealed at 300 °C. ...144
Fig. 8.11. XRD pattern of IGH annealed at 480 °C. ...144
Fig. 8.12. DSC traces of SGH and IGH. The insets show enlargements of selected peaks. ..145
Fig. 8.13. DSC traces of SGHe and IGHe. ..146
Fig. 8.14. Infrared spectra of SGH, IGH, and pristine graphite. The dashed circle indicates an unidentified peak in the IGH spectrum.................................149
Fig. 9.1. DSC traces of the fresh, as-prepared SBH..152
Fig. 9.2. DSC traces of the fresh, as-prepared IBH..152
Fig. 9.3. DSC traces of the fresh, as-prepared SBHe..153
Fig. 9.4. DSC traces of the fresh, as-prepared IBHe..154
Fig. 9.5. SEM image of IBH..158
Fig. 9.6. SEM image of SBH..158
Fig. 9.7. DSC traces of the aged SBH..159
Fig. 9.8. DSC traces of the aged IBH..160
Table of Contents

Abstract .. i

Chapter 1 Introduction .. 1

Chapter 2 Literature review .. 6
 2.1 Background ... 6
 2.2 Hydrogen economy ... 10
 2.2.1 Why hydrogen? ... 10
 2.2.2 How to produce hydrogen? ... 10
 2.2.3 How to use hydrogen? .. 11
 2.2.4 How to store hydrogen? ... 12
 2.3 Requirements for hydrogen storage .. 13
 2.4 Various hydrogen storage methods ... 15
 2.4.1 Liquid hydrogen (LH₂) .. 15
 2.4.2 Compressed gaseous hydrogen (CGH₂) ... 18
 2.4.3 Intermetallic compounds .. 20
 2.4.3.1 AB₅ type compounds.. 23
 2.4.3.2 AB type compounds .. 24
 2.4.3.3 AB₂ type compounds .. 25
 2.4.3.4 BCC type compounds .. 25
 2.4.4 Magnesium hydride .. 26
 2.4.4.1 Surface modification ... 27
 2.4.4.2 Nanocrystallization .. 28
 2.4.4.3 Effect of additives .. 29
 2.4.4.3.1 Metal elements ... 30
 2.4.4.3.2 Metal oxides ... 30
 2.4.4.3.3 Alloys ... 32
 2.4.4.3.4 Carbon ... 32
Abstract

The objectives of this work are to further enhance the hydrogen storage properties of some promising candidate materials and to investigate the impact of milling mode on the hydrogen storage properties.

Mg$_{1.9}$Cu$_{0.1}$Ni$_x$ ($x = 1.8, 1.9, 2.0,$ and 2.1) alloys were synthesized using a high-energy Spex 8000 ball mill. The effects of nickel content on the thermal stability and on the hydrogenation of the alloys are discussed. It was found that the nickel content affects the recrystallization of the predominately amorphous alloys, and as a result, affects the formation of Mg$_2$NiH$_4$.

The Mg$_{1.9}$Cu$_{0.1}$Ni$_x$ ($x = 1.8, 1.9, 2.0,$ and 2.1) alloys were also investigated with respect to the electrochemical performance. Ni was found to be effective in maintaining the reversibility and discharge capacity of the alloy electrodes.

With the aim of improving the hydrogen cycling properties of magnesium, two types of catalysts were studied. In order to investigate the differences in the catalysis arising from the respective valence states of a transition metal in the oxides, two types of iron oxides, i.e. Fe$_2$O$_3$ and Fe$_3$O$_4$, were ball milled with Mg in hydrogen using the low-
energy shearing mode of a Uni-Ball-Mill 5, as discussed below. The hydrogen cycling properties of the ball-milled composites were studied. There was little difference in the hydrogen absorption and desorption kinetics of the two composites, which is presumably due to the reduction reaction occurring during hydrogen cycling.

Three carbon allotropes with very different structure, i.e. graphite, carbon black, and multiwalled nanotubes, were also tried as catalysts. Although the graphitic structure experienced the most disruption, graphite showed a noticeable catalytic effect by improving the hydrogen absorption and desorption kinetics of Mg. The possible origins of the enhancement are probed.

In order to investigate the effects of milling energy on the hydrogen storage properties, a special mill was used, the Uni-Ball-Mill 5, which allows the control of the movements of the grinding balls. Two milling modes, a high-energy impact mode and a low-energy shearing mode can be realized through the adjustment of the attached external magnet.

Graphite, a very interesting material for hydrogen storage, was studied in particular. The influence of the different milling modes on the hydrogen absorption and storage capacity is discussed. It was found that there is a strong correlation between the composition of the milled graphite and the milling mode. As a result, different thermal behaviors were observed for the respective samples.
Boron was milled in hydrogen using both low-energy shearing and high-energy impact. The amount of hydrogen trapped during milling is dependent on the milling mode. The thermal behaviors were also different for the respective samples.

Key words: hydrogen storage, ball milling, nanocrystalline, graphite, magnesium, boron, nickel, carbon, catalyst