2005

An investigation of the effect of preparation on response execution and inhibition in the go/nogo task

Janette L. Smith

University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
AN INVESTIGATION OF THE EFFECT OF PREPARATION ON RESPONSE EXECUTION AND INHIBITION IN THE GO/NOGO TASK

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from the

UNIVERSITY OF WOLLONGONG

by

JANETTE L. SMITH, BPsyc (Hons)

DEPARTMENT OF PSYCHOLOGY

2005
I, Janette L. Smith, declare that this thesis, submitted in fulfilment of
the requirements for the award of Doctor of Philosophy, in the
Department of Psychology, University of Wollongong, is wholly my
own work unless otherwise referenced or acknowledged. The document
has not been submitted for qualifications at any other academic
institution.

Janette Smith
20 October 2005
Acknowledgements

My greatest thanks are due to my two thesis supervisors – Dr. Stuart Johnstone and Professor Robert Barry – whose support, wisdom and encouragement have spurred me on throughout this PhD and beyond.

My thanks are also due to Jason Bruggemann, for his love, patience, understanding and support, and reminding me that the sun shines on my path. Thanks to my family, especially Mum, who kept me focused (and fed). Thanks also to my postgraduate friends Carlie Lawrence, Samantha Broyd, Simone Favelle and Aneta Dimoska, for their humour and sagacity concerning the PhD process, and to my Georgie girls, who became excited in sympathy when I found interesting results, and for always wishing me the very best.
Abstract

In five studies, this thesis examined inhibitory processing in the Go/NoGo task, during which participants were instructed to either execute or withhold a prepared response. These studies extended previous Go/NoGo research by investigating the relationship between prior response preparation and subsequent inhibitory processing, with the aim of clarifying the relationship between the N2 and P3 ERP components and inhibitory processing. This was achieved by (1) the use of a fixed foreperiod prior to the Go/NoGo stimulus, (2) the concurrent examination of other components related to stimulus perception (e.g., N1, P2, early CNV) and action (e.g., the late slow wave), (3) the use of both overt and covert responses, and (4) the use of informative cues to elicit differential preparation for a Go or NoGo stimulus. The main results were that a NoGo N2 effect can be robustly observed using auditory stimuli, but that the N2 does not appear to reflect motor or cognitive/pre-motor inhibition, or the detection of conflict between responses. The NoGo P3, however, behaved in a fashion consistent with an inhibitory interpretation, being increased following higher levels of preparation for a response, absent when no inhibition was required to NoGo stimuli, and increased over the brain region specifically involved in motor commands. The results cast doubt on the current inhibitory and conflict interpretations of the N2, and suggest rather that the P3 may represent an inhibitory process.
Overview

This thesis aimed to extend knowledge regarding the functional significance of the N2 and P3 event-related potential (ERP) components in the Go/NoGo inhibition task. This was achieved via the elicitation of response preparation prior to the imperative (i.e., Go or NoGo) stimulus in a fixed foreperiod (S1-S2) paradigm, based on the logic that highly prepared responses are difficult to inhibit. An examination of N2 and P3 NoGo effects following varying levels of response preparation was used to test current theories of these components’ functional significance (i.e., that the N2, but not the P3, reflects the inhibition of a response, or the detection of response conflict). Study 1 considered the inhibitory processes following high and low levels of response preparation within-subjects, in a paradigm where inhibition was rarely required. Study 2 provided a between-subjects assessment of the inhibitory processes in a group of Fast and Slow responders to Go stimuli. In both Studies 1 and 2, the relationship of the N2 and P3 to the late contingent negative variation (CNV) and other components was determined using regression analyses. In Study 3, the effect of trial sequence on the responses to both Go and NoGo stimuli was examined, and Study 4 considered the effect of overt vs. covert responding on typical Go/NoGo effects. The final study introduced the use of informative cues to differentially predict bimanual responses, and allowed the examination of other theories of the N2 (that is, the conflict model).

The first three chapters of the thesis provide a brief introduction to the common interpretations of several ERP components (Chapter 1), and comprehensive reviews of the literature on preparation and anticipation (Chapter 2), and inhibition (Chapter 3). The final section of Chapter 3 brings together the literature from these two areas, which have remained largely separate until now.

Study 1 (Chapter 4) investigated inhibitory processing in 44 adult participants who completed a warned Go/NoGo task with 70% Go stimuli. A within-subject median split of reaction time on Go trials allowed topographic analysis (over nine scalp sites) of ERP components associated with Fast and Slow Go responses, as well as with NoGo stimuli. The components measured in all studies were the S1-N1, S1-
P2, early CNV and late CNV (occurring in the S1-S2 interval), and also the S2-N1, S2-N2, S2-P3 and late slow wave (LSW) following the presentation of Go/NoGo stimuli. In addition to the typical analyses comparing N2 and P3 on Go and NoGo trials, a median split of NoGo trials following high- and low-amplitude late CNV allowed a direct investigation of inhibitory processes in relation to response preparation. Furthermore, regression analyses enabled examination of the relationship of components in the foreperiod to post-S2 events, including reaction time and the N2 and P3 inhibitory effects. The usual NoGo > Go effect was observed for N2 amplitude, as well as a frontocentral increase in NoGo P3 amplitude. NoGo P3 was larger following high levels of preparation, an effect not present for the NoGo N2. Further, the NoGo P3 effect, but not the NoGo N2 effect, was significantly related to the late CNV in regression analyses. These results suggest that the NoGo P3, rather than the NoGo N2, may reflect inhibition.

Study 2 (Chapter 5) aimed to replicate and extend the findings of the first study in a between-subjects analysis of Fast and Slow responders to Go stimuli. The data from 32 participants in a warned Go/NoGo task with equiprobable Go/NoGo stimuli were analysed, with the hypothesis that inhibition would be more difficult for the group of Fast responders. Despite a higher level of response preparation (larger late CNV) in the Fast responders, they did not display a larger N2 NoGo effect than the Slow responders. In contrast, the P3 NoGo effect was greater in the Fast responders. Similar to the first study, regression analyses showed that the NoGo N2 was unrelated to prior preparation, while the NoGo P3 was significantly related to the late CNV. The results of Study 2 confirm the conclusion of Study 1, that the NoGo N2 is not related to inhibition, while the NoGo P3 does display characteristics indicative of an inhibitory process.

In Study 3 (Chapter 6), an analysis of the effect of stimulus sequence on responses to Go and NoGo stimuli was undertaken. It was hypothesised that, as Go responses became faster with repetitions of Go stimuli, inhibition of the response to the NoGo stimulus would be more difficult. To test this, 26 participants completed a warned Go/NoGo task (75% Go stimuli) with the number of Go stimuli that preceded each NoGo trial varying systematically. Participants’ responses to a post-experimental questionnaire indicated that inhibition was most difficult
following a long run of repetitive Go stimuli. The N2 NoGo effect was greatest when expectancy for a Go stimulus was high (directly after another NoGo trial), but the effect did not change over short to long runs of preceding Go stimuli. In contrast, the NoGo P3 did increase with the number of immediately preceding Go responses. If participants’ reports are correct, then the NoGo P3 may be more strongly related to the inhibitory process than the NoGo N2.

Because many researchers have discussed the notion of movement-related potential overlap causing the observed P3 NoGo effect, Study 4 (Chapter 7) aimed to examine the effect of overt vs. covert responding on inhibitory processing. Twenty adult participants completed two versions of a warned-Go/NoGo task, with low probability Go and NoGo stimuli (20% each) as well as high probability Go trials (60%). Two versions were completed – in one condition, participants were required to count the number of Go stimuli, while in another condition they were to make a fast button press in response to Go stimuli. The N2 NoGo effect did not differ between the Count and Press tasks, but the P3 NoGo effect was much larger during the overt response (i.e., Press) task. Additionally, subtraction of the ERP waveform for Count NoGo from Press NoGo trials (forming a difference wave indicative of processes related specifically to motor inhibition) revealed a positive wave between 200 to 400 ms, occurring maximally over the central region, contralateral to the responding hand. This difference wave became significant in the range 210-260 ms at most sites, which may indicate that this activity reflects a motoric inhibition process.

The final study (Chapter 8) introduced the use of informative cues to prime bimanual responses, with the aim of directly manipulating the amount of inhibition required when a NoGo target was presented. In addition, the use of invalid priming (where the target demands the opposite response to that planned) allowed examination of the conflict interpretation of N2. Twenty-six adult participants completed the task, and showed significant reaction time benefits with valid cueing, and costs with invalid cueing. Analyses of the late CNV showed that participants used the information provided by the cue to prepare their responses. The NoGo N2, however, did not increase according to these prior levels of preparation, and was in fact largest when participants had not prepared a response at all, which may
be taken as strong evidence against its inhibitory interpretation. Additionally, the N2 was smaller on invalidly-cued trials, in contrast to predictions from a conflict account of the N2. However, the NoGo P3 increased with prior levels of preparation, and the invalidly-cued P3 was larger than when validly cued. The study provides further evidence that the NoGo P3, not the NoGo N2, represents an inhibitory process.

Chapter 9 provides a summary and discussion of the results of this thesis in relation to current theories of response preparation, execution and inhibition. The relationship of the late CNV to reaction time across studies is examined, and the LSW is discussed as a response-related process. Further research is suggested on the motoric inhibition process identified in Study 4, particularly in relation to the stop-signal task and populations known to suffer behavioural disinhibition. It is concluded that the N2 represents neither inhibitory nor conflict processing, and that the P3 instead represents the inhibitory process.
**Abbreviations used in the text**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-D</td>
<td>Analog to Digital</td>
</tr>
<tr>
<td>CNV</td>
<td>Contingent Negative Variation</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyogram</td>
</tr>
<tr>
<td>EOG</td>
<td>Electrooculogram</td>
</tr>
<tr>
<td>ERN</td>
<td>Error-Related Negativity</td>
</tr>
<tr>
<td>ERP</td>
<td>Event-Related Potential</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>LRP</td>
<td>Laterised Readiness Potential</td>
</tr>
<tr>
<td>LSW</td>
<td>Late Slow Wave</td>
</tr>
<tr>
<td>MMN</td>
<td>Mismatch Negativity</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Components Analysis</td>
</tr>
<tr>
<td>PN</td>
<td>Processing Negativity</td>
</tr>
<tr>
<td>RP</td>
<td>Readiness Potential</td>
</tr>
<tr>
<td>RSI</td>
<td>Response to Stimulus Interval</td>
</tr>
<tr>
<td>RT</td>
<td>Reaction Time</td>
</tr>
<tr>
<td>S1</td>
<td>Stimulus 1</td>
</tr>
<tr>
<td>S2</td>
<td>Stimulus 2</td>
</tr>
<tr>
<td>SOA</td>
<td>Stimulus Onset Asynchrony</td>
</tr>
<tr>
<td>SPL</td>
<td>Sound Pressure Level</td>
</tr>
<tr>
<td>SPM</td>
<td>Standard Progressive Matrices</td>
</tr>
<tr>
<td>SPN</td>
<td>Stimulus-Preceding Negativity</td>
</tr>
<tr>
<td>S-R</td>
<td>Stimulus-to-Response</td>
</tr>
<tr>
<td>SS</td>
<td>Standardised Score</td>
</tr>
<tr>
<td>SSRT</td>
<td>Stop-Signal Reaction Time</td>
</tr>
<tr>
<td>SW</td>
<td>Slow wave</td>
</tr>
</tbody>
</table>
# Table of Contents

Acknowledgements........................................................................................................... i  
Abstract ............................................................................................................................. ii  
Overview .......................................................................................................................... iii  
Abbreviations used in the text ..................................................................................... vii  
Table of Contents ......................................................................................................... viii  
Table of Figures ............................................................................................................ xii  
Table of Tables............................................................................................................ xvii  

1 Introduction to Event-Related Potentials ................................................................. 1  

2 Preparation and anticipation ....................................................................................... 5  
   2.1 Chapter aims ....................................................................................................... 5  
   2.2 The foreperiod paradigm: preparation and anticipation....................................... 5  
   2.3 Anticipation: The Stimulus-Preceding Negativity .............................................. 7  
   2.4 Response Preparation: The Readiness Potential............................................... 8  
   2.5 The Late CNV .................................................................................................. 11  
   2.6 Outcomes of preparation.................................................................................. 14  
      2.6.1 Reaction time.............................................................................................. 14  
      2.6.2 The P3 component...................................................................................... 15  
      2.6.3 Other post-S2 components ................................................................. 16  
   2.7 Other foreperiod components and RT............................................................. 17  
   2.8 Preparation and anticipation: general summary............................................. 17  

3 Inhibition ...................................................................................................................... 18  
   3.1 Chapter aims ..................................................................................................... 18  
   3.2 The concept of inhibition ............................................................................... 18  
   3.3 Tasks measuring behavioural inhibition......................................................... 19  
      3.3.1 The Go/NoGo task ................................................................................... 20  
      3.3.2 The stop-signal task ............................................................................... 38  
      3.3.3 The Eriksen flanker task ......................................................................... 39  
      3.3.4 The Posner task ...................................................................................... 42  
   3.4 Linking response preparation with execution and inhibition ....................... 44
4 Study 1 – An investigation of the within-subject relationships of response preparation, reaction time and inhibition in an auditory warned frequent-Go/rare-NoGo task .................................................46

4.1 Introduction......................................................................................................46

4.2 Method...............................................................................................................47

4.2.1 Participants ...................................................................................................47

4.2.2 Stimuli............................................................................................................48

4.2.3 Procedure......................................................................................................48

4.2.4 Electrophysiological recording.................................................................49

4.2.5 Data extraction.............................................................................................50

4.2.6 Data analysis .................................................................................................53

4.3 Results................................................................................................................56

4.3.1 Behavioural performance ...........................................................................56

4.3.2 Warning ERP analyses ................................................................................56

4.3.3 Go/NoGo analyses .....................................................................................60

4.3.4 NoGo N2 and P3 after high and low preparation ..................................66

4.3.5 Regression analyses......................................................................................69

4.4 Discussion .........................................................................................................73

4.4.1 Fast vs. Slow effects ....................................................................................74

4.4.2 Go vs. NoGo effects...................................................................................76

5 Study 2 – Comparison of response preparation, execution and inhibition processes in groups of Fast and Slow responders in an auditory warned equiprobable Go/NoGo task ...........................................79

5.1 Introduction......................................................................................................79

5.2 Method...............................................................................................................80

5.2.1 Participants ...................................................................................................80

5.2.2 Stimuli............................................................................................................81

5.2.3 Procedure......................................................................................................81

5.2.4 Data extraction.............................................................................................82

5.2.5 Data analysis .................................................................................................85

5.3 Results................................................................................................................86

5.3.1 Behavioural performance ...........................................................................87

5.3.2 Warning ERP analyses ................................................................................87

5.3.3 Go/NoGo analyses .....................................................................................91
5.3.4 Regression analyses

5.4 Discussion

5.4.1 Pre-S2 effects

5.4.2 Post-S2 effects

6 Study 3 – An investigation of sequence effects on inhibitory processing

6.1 Introduction

6.1.1 Sequence effects on performance

6.1.2 Sequence effects on P3

6.1.3 Sequence effects on other ERP components

6.1.4 Explanatory theories of sequence effects

6.1.5 Application to the warned Go/NoGo task

6.2 Methods

6.2.1 Participants

6.2.2 Stimuli

6.2.3 Procedure

6.2.4 Data extraction

6.2.5 Data analysis

6.3 Results

6.3.1 Behavioural performance

6.3.2 Post-experimental questionnaire

6.3.3 Warning ERP analyses

6.3.4 Go/NoGo ERP analyses

6.4 Discussion

6.4.1 Behavioural performance

6.4.2 Electrophysiological data

7 Study 4 – The effect of overt vs. covert response requirements on inhibitory processing

7.1 Introduction

7.2 Methods

7.2.1 Participants

7.2.2 Stimuli

7.2.3 Procedure

7.2.4 Data extraction
7.2.5 Data analysis ...............................................................................................154
7.3 Results..............................................................................................................155
    7.3.1 Behavioural performance .................................................................155
    7.3.2 Warning ERP analyses .......................................................................155
    7.3.3 Go/NoGo ERP analyses .....................................................................158
    7.3.4 Comparison of Count and Press NoGo P3 ........................................165
7.4 Discussion .......................................................................................................168
    7.4.1 Count vs. Press effects.........................................................................168
    7.4.2 Stimulus type effects............................................................................171

8 Study 5 – An investigation of the inhibitory and conflict models of N2 and P3 using a modified Posner task ................................................ 176
    8.1 Introduction ...............................................................................................176
    8.1.1 ERPs in the Posner task ......................................................................176
    8.1.2 The present study .................................................................................185
    8.2 Methods ....................................................................................................187
    8.2.1 Participants ..........................................................................................187
    8.2.2 Stimuli .................................................................................................187
    8.2.3 Procedure .............................................................................................189
    8.2.4 Data extraction .....................................................................................190
    8.2.5 Data analysis .........................................................................................192

8.3 Results..............................................................................................................193
    8.3.1 Behavioural performance ....................................................................193
    8.3.2 Effects of cue type on late CNV .........................................................194
    8.3.3 Effects of cue type on ERPs to NoGo targets .....................................197
    8.3.4 Effects of target type following Non-specific cues ...........................200
    8.3.5 Effects of target type following Specific cues ....................................204
    8.3.6 Separation of N2 and P3 components ..............................................211
8.4 Discussion .......................................................................................................213
    8.4.1 Behavioural results ..............................................................................213
    8.4.2 Activity to cue stimuli .........................................................................214
    8.4.3 Activity to targets ...............................................................................216

9 General discussion and future directions ......................................................222
    9.1 Summary and general discussion .........................................................222
    9.1.1 Response preparation and execution .................................................224
9.1.2 Response preparation and inhibition ............................................................ 225
9.2 Future directions .................................................................................................. 229
10 References ................................................................................................................. 232
11 Appendix A .............................................................................................................. 256
12 Appendix B .............................................................................................................. 259
12.1 Results ..................................................................................................................... 259
  12.1.1 Effects of cue type on Warning ERPs .......................................................... 259
  12.1.2 Effects of cue type on ERPs to NoGo targets ............................................. 262
  12.1.3 Effects of target type following Non-specific cues .................................. 264
  12.1.4 Effects of target type following Specific cues .......................................... 266
12.2 Discussion ............................................................................................................... 270
13 Appendix C .............................................................................................................. 273
Table of Figures

Figure 4.1. Grand mean ERPs to Fast Go, Slow Go and NoGo trials. Vertical bars represent warning stimulus onset, time zero represents imperative stimulus onset. Amplitude in μV and time in ms are marked at Cz. Also marked at Cz are the components of interest. Similar components were selected in subsequent studies of this thesis.................................................................51

Figure 4.2. Varimax-rotated components extracted in Study 1. Numbers above show the order of extraction.................................................................52

Figure 4.3. Grand mean ERPs to warning stimuli, prior to Fast Go, Slow Go and NoGo trials. Vertical bars represent onset of warning stimulus. Amplitude in μV and time in ms are marked at Cz.............................................................57

Figure 4.4. Topographic maps of activity for components in the foreperiod. Scale values represent the ends of the colour scale in μV for each component. Darkest blue = negativity, red = positivity .......................................................60

Figure 4.5. Grand mean ERPs for Fast Go, Slow Go and NoGo trials. Vertical bars represent stimulus onset, amplitude in μV and time in ms are marked at Cz ...............................................................................................................................61

Figure 4.6. Topographic maps of components to Fast Go, Slow Go and NoGo trials. Scale values represent the ends of the colour scale in μV for each component. Darkest blue = negativity, red = positivity.................................63

Figure 4.7. Grand mean ERPs for NoGo stimuli after high and low levels of preparation. Vertical bars represent onset of NoGo stimulus. Amplitude in μV and time in ms are marked at Cz .................................................................67

Figure 4.8. Topographic maps of component activity to NoGo stimuli following High and Low levels of preparation. Scale values represent the ends of the colour scale in μV for each component. Darkest blue = negativity, red = positivity .................................................................................................................68

Figure 5.1. Grand mean ERPs over the whole S1 and S2 epoch to Go and NoGo stimuli for the Fast and Slow groups. Vertical bars represent the onset of the warning stimulus, time zero represents the onset of the imperative stimulus. Amplitude in μV and time in ms are marked at Cz .........................83
Figure 5.2. Varimax-rotated components extracted in Study 2. Numbers above show the order of extraction.

Figure 5.3. Grand mean ERPs to warning stimuli, averaged across Go and NoGo S2. Vertical bars represent warning stimulus onset. Amplitude in μV and time in ms are marked at Cz.

Figure 5.4. Topographic maps of activity of components in the foreperiod. Scale values represent the ends of the colour scale in μV for each component. Darkest blue = negativity, red = positivity.

Figure 5.5. Grand mean ERPs for the Fast group and Slow group, to Go and NoGo stimuli. Vertical bars represent stimulus onset. Amplitude in μV and time in ms are marked at Cz.

Figure 5.6. Topographic maps of activity of components to imperative stimuli. Scale values represent the ends of the colour scale in μV for each component. Darkest blue = negativity, red = positivity.

Figure 6.1. Representation of the sequence and categorisation of Go (G) and NoGo (N) trials.

Figure 6.2. Varimax-rotated components extracted in Study 3. Numbers above show the order of extraction.

Figure 6.3. Mean reaction time to Go stimuli over train length.

Figure 6.4. Go and NoGo performance accuracy over train length.

Figure 6.5. Grand mean ERPs to warning stimuli. Vertical bars represent warning stimulus onset. Amplitude in μV and time in ms are marked at Cz.

Figure 6.6. Topographic maps of component activity in the foreperiod. Scale values represent the ends of the colour scale in μV for each component. Darkest blue = negativity, red = positivity.

Figure 6.7. Grand mean ERPs to Go stimuli. Vertical bars represent onset of Go stimulus. Amplitude in μV and time in ms are marked at Cz.

Figure 6.8. Grand mean ERPs to NoGo stimuli. Vertical bars represent onset of NoGo stimulus. Amplitude in μV and time in ms are marked at Cz.

Figure 6.9. Grand mean ERPs to Go and NoGo stimuli at midline sites. Train Length 0 to 6, left to right. Vertical bars represent stimulus onset. Amplitude in μV and time in ms are marked at Cz.

Figure 6.10. Topographic maps of S2-N1 activity for Go and NoGo following train lengths 0 to 6. Colour scale from -12 (darkest blue) to +1 μV (red).
Figure 6.11. Topographic maps of S2-N2 activity for Go and NoGo following train lengths 0 to 6. Colour scale from -9 (darkest blue) to +6 μV (red).............132

Figure 6.12. Mean S2-N2 amplitude (across the scalp) for NoGo and Go trials for each train length ..................................................................................................132

Figure 6.13. Topographic maps of S2-P3 activity for Go and NoGo trials following train lengths 0 to 6. Colour scale from -3 (darkest blue) to +24 μV (red) .134

Figure 6.14. Mean S2-P3 amplitude (across the scalp) for NoGo and Go trials for each train length ..................................................................................................134

Figure 6.15. Topographic maps of LSW activity for Go and NoGo trials following train lengths 0 to 6. Colour scale from 0 (darkest blue) to +11 μV (red)...136

Figure 7.1. Varimax-rotated components extracted in Study 4. Numbers above show the order of extraction..........................................................153

Figure 7.2. Grand mean ERPs to warning stimuli in the Count and Press blocks. Vertical bars represent stimulus onset. Amplitude in μV and time in ms are marked at Cz........................................................................................................156

Figure 7.3. Topographic maps of activity of components in the foreperiod. Scale values represent the ends of the colour scale in μV for each component. Darkest blue = negativity, red = positivity .....................................................158

Figure 7.4(a) Grand mean ERPs to NoGo and LPG stimuli in the Count block Vertical bars represent stimulus onset. Amplitude in μV and time in ms are marked at Cz........................................................................................................160

Figure 7.4(b) Grand mean ERPs to NoGo and LPG stimuli in the Press block. Vertical bars represent stimulus onset. Amplitude in μV and time in ms are marked at Cz........................................................................................................161

Figure 7.5. Grand mean ERPs in the midline to (a) LPG and (b) NoGo stimuli. Vertical bars represent stimulus onset. Amplitude in μV and time in ms are marked at Cz........................................................................................................162

Figure 7.6. Topographic maps of activity of components to LPG and NoGo stimuli. Scale values represent the ends of the colour scale in μV for each component. Darkest blue = negativity, red = positivity...............................163

Figure 7.7. Grand mean difference waveforms (Press–Count) for NoGo and Low Probability Go stimuli. Vertical bars represent stimulus onset. Amplitude in μV and time in ms are marked at Cz ...............................................................167
Figure 7.8. t-scores over time for the difference between Press NoGo and Count NoGo waveforms. Vertical bars represent stimulus onset. t score and time in ms are marked at Cz. Dotted lines represent p < .05 level of significance, two-tailed.................................................................169

Figure 8.1. Varimax-rotated components extracted in Study 5. Numbers above show the order of extraction.................................................................191

Figure 8.2. Percent commission errors (to NoGo stimuli) with the left and right hand following each type of cue.........................................................193

Figure 8.3. Grand mean ERPs to cue stimuli. Vertical bars represent warning stimulus onset. Amplitude in μV and time in ms are marked at Cz.............195

Figure 8.4. Topographic maps of late CNV following different cue types. Darkest blue on the colour scale represents -7 μV, red represents +2 μV..............196

Figure 8.5. Grand mean ERPs to NoGo targets following different types of cues. Vertical bars represent NoGo stimulus onset. Amplitude in μV and time in ms are marked at Cz........................................................................198

Figure 8.6. Topographic maps of activity of the S2-N2 and S2-P3 to NoGo targets following different types of cues. The ends of the colour scale represent -4 to +6 μV for S2-N2, and -1 to +21 μV for S2-P3. Darkest blue = negativity, red = positivity.................................................................................199

Figure 8.7. Grand mean ERPs to targets following Non-specific cues. Vertical bars represent onset of target stimulus. Amplitude in μV and time in ms are marked at Cz........................................................................201

Figure 8.8. Topographic maps of S2-N2 and S2-P3 components to targets following Non-specific cues. The ends of the colour scale represent -5 to +8 μV for S2-N2, and -2 to +18 μV for S2-P3. Darkest blue = negativity, red = positivity.................................................................................202

Figure 8.9(a). Grand mean ERPs to targets following Specific Left cues. Vertical bars represent target stimulus onset. Amplitude in μV and time in ms are marked at Cz.................................................................205

Figure 8.9(b). Grand mean ERPs to targets following Specific Right cues. Vertical bars represent target stimulus onset. Amplitude in μV and time in ms are marked at Cz.................................................................206

Figure 8.10. Topographic maps of S2-N2 and S2-P3 to targets following Specific Left and Specific Right cues. The ends of the colour scale represent -5 to +8
µV for S2-N2 and -4 to +21 µV for S2-P3. Darkest blue = negativity, red = positivity .................................................................207

Figure 12.1. Topographic maps of activity of components to cues. Scale values represent the ends of the colour scale in µV for each component. Darkest blue = negativity, red = positivity .................................................................261

Figure 12.2. Topographic maps of activity of the S2-N1 and LSW to NoGo targets following different cues. The ends of the colour scale represent -10 to +1 µV for S2-N1, and -4 to +6 µV for LSW. Darkest blue = negativity, red = positivity ............................................................................................... 264

Figure 12.3. Topographic maps of S2-N1 and LSW activity to targets following Non-specific cues. The ends of the colour scale represent -10 to +1 µV for S2-N1, and 0 to +8 µV for LSW. Darkest blue = negativity, red = positivity ...............................................................................................265

Figure 12.4. Topographic maps of S2-N1 and LSW activity to targets following Specific Left and Specific Right cues. The ends of the colour scale represent -10 to +2 µV for S2-N1 and -0 to +9 µV for LSW. Darkest blue = negativity, red = positivity ...............................................................................................267
Table of Tables

Table 4.1. Search latency and site of detection for all peaks, and their mean latency for each stimulus type ................................................................. 53
Table 4.2. Significant results for ERP components to warning stimuli .......... 59
Table 4.3. Significant effects for the S2-N1 component ................................ 62
Table 4.4. Significant effects for the S2-N2 component .............................. 64
Table 4.5. Significant effects for the S2-P3 component .............................. 65
Table 4.6. Significant effects for the LSW component .............................. 66
Table 4.7. Significant effects for the NoGo-N2 ........................................ 68
Table 4.8. Full correlations between pre-S2 predictor variables and post-S2
dependent variables (88 pairs).................................................................. 70
Table 4.9. Significant predictor variables for each Fast/Slow regression analysis,
with standardised coefficients (Beta), and unstandardised coefficients (B)
and their standard error (SE B)...................................................................... 71
Table 4.10. Full correlations between pre-S2 predictor variables and post-S2
dependent variables (44 pairs).................................................................. 72
Table 4.11. Significant predictor variables for each Go/NoGo regression analysis,
with standardised coefficients (Beta) and unstandardised coefficients (B) and
their standard errors (SE B) ......................................................................... 73
Table 5.1. Search latency and site of detection for all peaks, and their mean latency
for each stimulus type and group ................................................................. 85
Table 5.2. Significant results for ERP components to warning stimuli .......... 89
Table 5.3. Significant results for the S2-N1 component .............................. 91
Table 5.4. Significant results for the S2-N2 component .............................. 94
Table 5.5. Significant results for the S2-P3 component .............................. 95
Table 5.6. Significant results for the late slow wave ................................. 96
Table 5.7. Full correlations between pre-S2 predictor variables and post-S2
dependent variables .................................................................................... 98
Table 5.8. Significant predictor variables for each regression analysis, with
standardised coefficients (Beta), and unstandardised coefficients (B) and
their standard errors (SE B) ......................................................................... 98
Table 6.1. Search latency and site of detection for all peaks ......................... 119
Table 6.2. Significant results for components to warning stimuli

Table 6.3. Significant results for the S2-N1 component

Table 6.4. Significant results for the S2-N2 component

Table 6.5. Significant results for the S2-P3 component

Table 6.6. Significant results for the late slow wave component

Table 7.1. Search latency and site of detection for all peaks, and their mean latency in each condition

Table 7.2. Significant results for components to warning stimuli

Table 7.3. Significant results for the S2-N1 component

Table 7.4. Significant results for the S2-N2 component

Table 7.5. Significant results for the S2-P3 component

Table 7.6. Significant results for the LSW component

Table 7.7. Correlations of LPG sample RT with the NoGo P3 peak difference between tasks

Table 7.8. Significant results for the NoGo difference wave (Press–Count)

Table 8.1. Cue-target pairs and their probabilities

Table 8.2. Search latency and site of detection for all peaks

Table 8.3. Significant results for the late CNV component

Table 8.4. Significant results for the S2-N2 to NoGo stimuli

Table 8.5. Significant results for the S2-P3 to NoGo stimuli

Table 8.6. Significant general topography results for responses to targets following Non-specific cues

Table 8.7. Significant Go Left/Go Right results for responses to targets following Non-specific cues

Table 8.8. Significant Go/NoGo results for responses to targets following Non-specific cues

Table 8.9. Significant general topography results for responses to targets following Specific cues

Table 8.10. Significant Valid/Invalid results for the S2-N2 to targets following Specific cues

Table 8.11. Significant Valid/Invalid results for the S2-P3 to targets following Specific cues

Table 8.12. Significant Go/NoGo results for targets following Specific cues

Table 8.13. Significant results for focused frontal analysis of the N2
Table 12.1. Significant results for the S1-N1 component .........................................260
Table 12.2. Significant results for the S1-P2 component ...........................................260
Table 12.3. Significant results for the early CNV component.................................262
Table 12.4. Significant results for the S2-N1 and LSW to NoGo stimuli..................263
Table 12.5. Significant results for the S2-N1 to targets following Non-specific cues..........................................................264
Table 12.6. Significant results for the LSW to targets following Non-specific cues..........................................................265
Table 12.7. Significant results for the S2-N1 to targets following Specific cues........266
Table 12.8. Significant results for the LSW to targets following Specific cues ......269