A case study of an alternative approach to coal mine site water management: West Cliff Colliery NSW

Antony Volcich
University of Wollongong

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
A CASE STUDY OF AN ALTERNATIVE APPROACH
TO COAL MINE SITE WATER MANAGEMENT:
WEST CLIFF COLLIERY, NSW.

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE AWARD OF THE DEGREE OF
MASTER OF ENVIRONMENTAL SCIENCE (RESEARCH)

From The
University of Wollongong

By
ANTONY VOLCICH
School of Earth and Environmental Sciences
Faculty of Science
The University of Wollongong

2007
CERTIFICATION

I, Antony John Volcich, declare that this thesis, submitted in fulfilment of the requirements for the award of the degree of Master of Environmental Science (Research), University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Antony John Volcich
ABSTRACT

The provision of water supply, its usage and discharge, are major concerns for all mines, both underground and opencut, often accounting for a significant portion of the daily running cost of mining. To reduce these costs, mines will often collect as much site runoff as possible, and recycle the water whenever economically feasible. The constant recycling of on-site waters can mean that, over time, the levels of salinity, acidity or alkalinity, or other contaminants may build up within the internal water management system to a point which may lead to problems with licensed discharge requirements.

This project investigated the water quality at West Cliff Colliery, an underground coal mine, in the Illawarra Coal Measures, in order to develop an improved system for managing water resources with minimal environmental impact. While West Cliff Colliery is totally self sufficient and independent of any town water supply, issues have arisen with the quality of water being discharged into the receiving waterways, Brennans Creek and the upper Georges River. To alleviate these issues, a new water management system (WMS) has been established to try and maintain an adequate supply of clean recycled water and to prevent uncontrolled discharges to the environment outside West Cliff’s Environmental Protection Licence (EPL) requirements.

To monitor changes in the WMS, a new operation of the system involved a daily testing and monthly sampling regime of the key water quality parameters pH, EC, temperature and ORP. These parameters were measured at designated sites within the WMS using probes and meters that had been freshly calibrated each day. Monthly grab samples were also taken from the same designated sites for laboratory analysis of trace (heavy) metals. Chemical speciation modelling was also carried out in order to determine the ecotoxicity of dissolved trace metals in the discharge water.

Operating the WMS in the new manner prescribed led to a significant reduction in uncontrolled discharges to the environment, a reduction in salinity of the WMS water, a reduction in the concentrations of potentially ecotoxic elements As, Cu, Ni, and Zn. It also maintained a high level of compliance with the mines current EPL and provided a more constant environmental flow in the upper Georges River without having to resort to much more costly forms of water treatment.
Acknowledgements

A number of people have contributed much of their time to this study; their efforts have provided valuable guidance, knowledge, support and assistance throughout its duration. I would like to extend my appreciation to the following people:

- To Dr Stephen Short, Ecoengineers Pty Ltd, for his constructive advice, valuable comments, editing, direction, constant provision of information, and geochemical modelling expertise;

- To Professor John Morrison for his constructive advice, valuable comments, editing, and direction;

- To Professor Adrian Hutton for his constructive advice, valuable comments, editing, and direction;

- To Ken Simpson, West Cliff Colliery for his valuable knowledge on the day to day workings of the coal washery, the mine, and daily water usage;

- And finally Melissa Karu-Dunning for her endless hours of editing and proof reading.
TABLE OF CONTENTS

1. **INTRODUCTION**
 1.1 General Introduction...12
 1.2 Research questions..14

2. **BACKGROUND AND LITERATURE REVIEW**
 2.1 Coal mining in the Illawarra..16
 2.2 Geology of the Sydney Basin and Illawarra Coalfield......................18
 2.3 Water issues at mine sites...19
 2.4 Acid mine drainage (AMD)...20
 2.5 Salinity...21
 2.6 Carbonate systems..24
 2.7 Trace Metals...25
 2.8 Environmental behaviour of Arsenic...28
 2.9 Environmental behaviour and essentiality of Copper.......................29
 2.10 Environmental behaviour and essentiality of Nickel.......................31
 2.11 Environmental behaviour and essentiality of Zinc..........................32
 2.12 Tahmoor Colliery..33
 2.13 Douglas Park Project/Appin Collieries...34
 2.14 West Cliff Colliery..36
 2.15 Metropolitan Colliery...40
 2.16 Elouera Colliery...40
 2.17 Dendrobium..42
 2.18 Gujarat NRE No 1 Colliery...44
 2.19 Summary of water management issues for coal mines...................46
3. MATERIALS AND METHODS

3.1 Study area and sampling sites
3.2 Water sampling methodology and quality control
3.3 Water testing techniques and methodology
3.4 Operation of the Water Management System
3.5 Data Handling

4. RESULTS AND DISCUSSION

4.1 POINT 0 and POINT 1 monthly water quality measurements
4.2 POINT 10 monthly water quality measurements
4.3 POINT 9 monthly water quality measurements
4.4 POINT 13 monthly water quality measurements
4.5 Continuous pH and salinity behaviour of POINT 10
4.6 Behaviour of Brennans Creek Dam, pH and salinity of POINTS 0,1,9
4.7 Continuous pH and salinity behaviour of POINTS 11, and12
4.8 Daily and total flows through POINT 10 during the trial
4.9 Daily and total flows through POINT 1 during the trial
4.10 Brennans Creek Dam water level management and rainfall during trial
4.11 Complementary Studies

5. CONCLUSIONS AND RECOMMENDATIONS

6. REFERENCES

7. APPENDIX
LIST OF TABLES

Table 2.1: National guideline trigger values for Arsenic (III) and Arsenic (IV) concentrations in freshwaters for the protection against ecotoxicity of 99%, 95%, 90% and 80% of species (ANZECC and ARMCANZ, 2000a)...29

Table 2.2: National guideline trigger concentrations for Copper, Nickel, and Zinc in freshwaters for the protection against ecotoxicity of 99%, 95%, 90% and 80% of species (ANZECC and ARMCANZ, 2000a)…………………....31

Table 3.1: Parameters measured, sampling method, and detection limit for POINTS 9, 0, and 13………………………………………………............53

Table 3.2: Parameters measured, sampling method, and detection limit for POINTS 1 and 10...55

Table 4.1: Monthly BCD Spillway (POINT 1) water quality monitoring data obtained from August 2004 through to December 2005…………………………..60

Table 4.2: Monthly BCD Surface (POINT 0) water quality monitoring data obtained from March 2004 through to February 2006……………………………..61

Table 4.3: Monthly licensed discharge (POINT 10) water quality monitoring data obtained from August 2004 through to February 2006………………..62

Table 4.4: Monthly BCD discharge (POINT 9) water quality monitoring data obtained from September 2004 through to February 2006…………….67

Table 4.5: Monthly upcoming mine water POINT 13 water quality monitoring data obtained from August 2004 through to February………………...70

LIST OF FIGURES

Figure 2.1: Approximate location of coalmines in the Illawarra region. Berrima Colliery lies just outside the Illawarra area. Bellambi West is now known as NRE Colliery No 1………………………………………………17

Figure 2.2: Aerial view of Appin Colliery looking south...35

Figure 2.3: The West Cliff colliery Mine site and the surrounding catchment of Brennans Creek Dam, which supplies the colliery with water37

Figure 2.4: Aerial view of West Cliff Colliery south site...37

Figure 2.5: Schematic diagram of the West Cliff WMS..39

Figure 2.6: Aerial photo of the Gujarat NRE No 1 Colliery site at Russellvale........45
Figure 3.1: Schematic diagram of the West Cliff Colliery Washery area with relative locations of sample POINTS 0, 1, 9, 10, 11, 12, 13, and 14 shown......49

Figure 3.2: Cross sectional diagram of the BCD dam wall and the manual operation POINTS 9 and 10...57

Figure 4.1: The concentrations of As and Cu out of the licensed discharge POINT 10 over time from August 2004 to February 2006.................................64

Figure 4.2: The concentrations of Ni and Zn out of the licensed discharge POINT 10 over time from August 2004 to February 2006.................................65

Figure 4.3: The concentrations of As and Cu out of the BCD discharge POINT 9 over time from September 2004 to February 2006..................................68

Figure 4.4: The concentrations of Ni and Zn out of the BCD discharge POINT 9 over time from September 2004 to February 2006..................................69

Figure 4.5: The concentrations of As and Cu out of the upcoming mine water POINT 13 over time from August 2004 to February 2006.....................71

Figure 4.6: The concentrations of Ni and Zn out of the upcoming mine water POINT 13 over time from August 2004 to February 2006.....................72

Figure 4.7: Average weekly pH values for BCD Spillway (POINT 1) and licensed discharge (POINT 10) from August 2004 through to February..73

Figure 4.8: Average weekly EC at POINTS 10, 0, 9, and the BCD..................75

Figure 4.9: Total monthly rainfall recorded at West Cliff Colliery from August 2004 through to February 2006...76

Figure 4.10: EC of pumped out underground mine water at POINT 13 from August 2004 through to February 2006..77

Figure 4.11: Average weekly density in the BCD bottom (POINT 9) and surface (POINT 0) waters from August 2004 through to February 2006...........79

Figure 4.12: Brennans Creek Dam density difference, bottom minus top (g/cm^3) from August 2004 through to February 2006...80

Figure 4.13: Average weekly temperatures of the BCD bottom and surface waters from August 2004 through to February 2006..80

Figure 4.14: Average weekly pH values of the BCD bottom water (POINT 9) and the surface water (POINT 0) from August 2004 through to February 2006..81

Figure 4.15: Redox values in the BCD (POINT 9) water between February 2005 and February 2006...81
List of Symbols and Acronyms

AMD – Acid Mine Drainage
BCD – Brennans Creek Dam
CPP – Coal Preparation Plant
CWM – Coal Washery Material
DEC – Department Environment and Conservation
Density – Grams per centimetre3
EC – Electrical Conductivity
EPA – Environmental Protection Authority
EPL – Environmental Protection License
GAC – Granular Activated Charcoal
GRP – Gross Regional Product
LDP – Licensed Discharge Point
LOR – Limit of Resolution
mg/L – Milligrams per litre
ML – Megaliters
mV – Millivolts
NATA – National Association of Testing Laboratories
NOEC – No Observable Effect Concentration
O&G – Oil and Grease
ORP – Oxidation Reduction Potential
pH – Potential Hydrogen
PLC – Programmable Logic Control
PRP – Pollution Reduction Program
S.d. – Standard deviation
T – Temperature Degrees Celsius
TDS – Total dissolved solids
TSS – Total suspended solids
μg/L – Micrograms per litre
μS – Micro Siemens
WMS – Water Management System