2017

Effects of span-to-depth ratios on moment connection damage evolution under catenary action

Ling Li
Tongji University, University of Wollongong

Wei Wang
Tongji University

Lip H. Teh
University of Wollongong, lteh@uow.edu.au

Yiyi Chen
Tongji University

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation
Li, Ling; Wang, Wei; Teh, Lip H.; and Chen, Yiyi, "Effects of span-to-depth ratios on moment connection damage evolution under catenary action" (2017). _Faculty of Engineering and Information Sciences - Papers: Part B_. 684.
https://ro.uow.edu.au/eispapers1/684

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Effects of span-to-depth ratios on moment connection damage evolution under catenary action

Abstract
This paper proposes an improved method for determining the gravity resistance of a moment resisting beam-column assembly following an interior column loss. The proposed method accounts for the connection's damage evolution and for the catenary mechanism developed by the assembly as it deflects downward. Through a full-scale laboratory test and finite element simulations, the complete responses of moment resisting beam-column assemblies including the connection's damage evolution are investigated under different beam span-to-depth ratios. The welded unreinforced flange-bolted web (WUF-BW) connection method is used for its robustness in developing the catenary action. It is found that, under the same span-to-depth ratio, beam-column assemblies exhibit similar normalized load-rotation relationships, even with different beam depths. The assembly with a larger span-to-depth ratio is able to develop the gravity resistance earlier, and provides a higher ultimate resistance by developing a more effective catenary mechanism. On the other hand, the assembly with a smaller span-to-depth ratio exhibits a more ductile response. A simplified curve model of the gravity resistance development of a moment beam-column assembly with damage evolution has been proposed for a convenient assessment of the progressive collapse resistance following a central column loss.

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/684
Effects of Span-to-Depth Ratios on Damage Evolution of Moment Connections in Column Removal Scenario

Ling Li a,c, Wei Wang a,b,* Lip H. Teh c, Yiyi Chen a,b

State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
Department of Structural Engineering, Tongji University, Shanghai 200092, China
School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

Abstract: This paper proposes an improved method for determining the gravity resistance of a moment resisting beam-column assembly following an interior column loss. The proposed method accounts for the connection’s damage evolution and for the catenary mechanism developed by the assembly as it deflects downward. Through a full-scale laboratory test and finite element simulations, the complete responses of moment resisting beam-column assemblies including the connection’s damage evolution are investigated under different beam span-to-depth ratios. The welded unreinforced flange-bolted web (WUF-BW) connection method is used for its robustness in developing the catenary action. It is found that, under the same span-to-depth ratio, beam-column assemblies exhibit similar normalized load-rotation relationships, even with different beam depths. The assembly with a larger span-to-depth ratio is able to develop the gravity resistance earlier, and provides a higher ultimate resistance by developing a more effective catenary mechanism. On the other hand, the assembly with a smaller span-to-depth ratio exhibits a more ductile response. A simplified curve model of the gravity resistance development of a moment beam-column assembly with damage evolution has been proposed for a convenient assessment of the progressive collapse resistance following a central column loss.

Keywords: progressive collapse; span-to-depth ratio; steel moment connection; gravity resistance development; damage evolution; catenary mechanism; flexural mechanism.

* Corresponding author. Tel.: +86-21-65982926; Fax: +86-21-65984976.
Email address: weiwang@tongji.edu.cn (W. Wang)
1. Introduction

There have been several guidelines [1-3] for the progressive collapse design and analysis of building structures under extreme or abnormal load, all of which employ basically the same principles and analysis methods. According to UFC 4-023-03 “Design of building to resist progressive collapse” [2], a progressive collapse design may use different methods depending on the occupancy category of the building, including the Tie Force (TF) method for the entire structure, the Alternate Path (AP) method and the Enhanced Local Resistance (ELR) method for some specific structure regions.

The Alternate Path method [4], as both the design and the analysis methods, is the most popular for the study of progressive collapse prevention [1-3]. A structure must be able to bridge over vertical load-carrying elements notionally removed from itself by satisfying the requirements of the Alternate Path method, otherwise it must be re-designed or retrofitted to increase the structural bridging capacity [2, 3]. In this method, any further failure of structural components (connections, beams and columns) following the notional column removal is prevented by ensuring the components meet certain criteria for various building materials including reinforced concrete, structural steel, masonry and wood [2, 3].

It has been found [5-10] that the structural bridging capacity depends on the performance of the connections. There have been a number of experimental tests and numerical simulations focusing on the behaviour of various connections [11-21] following an interior column loss. The moment connections were found to work firstly by flexural action and later by catenary action [6, 14, 15, 18-20]. It was found [15, 18-21] that a steel moment connection usually acquires a meaningful contribution to the gravity resistance from the
When the nonlinear static analysis procedure is employed, nominally rigid moment connections must deform within the prescribed deformation limits so as to meet the acceptance criteria [2]. The acceptance criteria for moment connections are given in terms of the plastic rotation, whose values for a primary component correspond to its plastic deformation limit prior to capacity degradation [2-3]. Moment connections are permitted to deform within a small range of plastic rotations, below 0.025 radians for the typical “improved welded unreinforced flange-bolted web” (WUF-BW) connection [2, 3], which does not allow any significant catenary action to be developed [15, 18-22]. However, the capacity degradation does not usually occur until a much larger rotation, typically greater than 0.06 radians [15, 18-21].

In traditional seismic structural designs, the occurrence of fracture signifies the ultimate limit state of a moment connection due to the loss of its flexural capacity. However, in an interior column removal scenario, catenary action can still be developed by the tensioning of the connected beam members under large deflection following fracture, provided the connections are designed appropriately [18-22]. Two types of moment connection failure modes, being the beam-end interrupted failure mode and the column-wall failure mode, have been identified [18-20] as being able to allow the assembly to obtain a higher gravity resistance (from the catenary mechanism) in the post-fracture stage than its previous peak resistance (under the flexural mechanism). It is therefore rational to explore new design criteria that take advantage of the catenary mechanism that develops following an interior column loss.
Among the various levels of sub-structure idealisation in the simplified framework proposed by Izzuddin et al. [23] for multi-storey buildings, the double-span beam-column assembly within the bays above the lost column is the lowest level of sub-structure whose response is used for composing the higher level sub-structures. The beam’s span-to-depth ratio has been found to significantly affect the response of the double-span beam-column assembly following the column removal [24-27]. However, these investigations did not account for the damage evolution of the beam-to-column connections.

In this paper, the complete responses of the moment resisting beam-column assemblies under the column removal scenario are investigated. The welded unreinforced flange-bolted web (WUF-BW) is used to connect the beams and the column as such a connection facilitates the development of the catenary mechanism following an initial fracture. The development of the assembly’s gravity resistance in the post-fracture stage and the effects of the span-to-depth ratio are studied in detail.

A full-scale laboratory test is conducted where a pushdown action at the central column is applied in order to simulate the column removal scenario. The test results are used to verify the refined finite element model incorporating material fracture, which is employed in subsequent parametric analyses of the effects of the beam span-to-depth ratio on the gravity resistance of the beam-column assemblies. Based on the parametric analyses results, an improved development model will be proposed for the structural gravity resistance taking into account the damage evolution of the connection region.
2. Full-scale laboratory test

2.1. Test specimen

Due to its robustness during the beam-end interrupted failure and column-wall failure under a central column removal scenario [18, 19], the welded unreinforced flange-bolted web (WUF-BW) connection was used for the test specimen whose details are given in Fig. 1. The double-span assembly consisted of two I-section beams (H300×150×6×8) and a square hollow section column (SHS250×14) with two inner diaphragms (thickness $t = 8\text{mm}$) at locations corresponding to the top and the bottom flanges of the beam, as illustrated in Fig. 1 (b).

The flanges of the beam and the inner diaphragms were joined to the column wall using complete joint penetration (CJP) groove welds, and weld access holes of the beam were cut from the beam web in accordance with the standard recommendation [28]. The beam webs were bolted to the shear tab welded to the column via four M20 Grade 10.9 frictional type high-strength bolts arranged in one vertical row. The tightening torque applied on the bolts was 440 N-m according to standard requirements [29]. All the contact surfaces were treated with sand blasting. The measured material properties of the specimen are summarized in Table 1.
Fig. 1. Details of the WUF-BW connection.

Table 1. Material properties of test specimen.

<table>
<thead>
<tr>
<th>Components</th>
<th>Yield strength f_y (MPa)</th>
<th>Tensile strength f_u (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate of SHS250×14</td>
<td>410</td>
<td>655</td>
</tr>
<tr>
<td>Corner of SHS 250×14</td>
<td>415</td>
<td>750</td>
</tr>
<tr>
<td>Beam flange ($t_f = 8$ mm)</td>
<td>400</td>
<td>670</td>
</tr>
<tr>
<td>Beam web ($t_w = 6$ mm)</td>
<td>405</td>
<td>640</td>
</tr>
</tbody>
</table>

The Beam-Joint-Beam (B-J-B) assembly [18] was employed for the specimen, as illustrated in Fig. 2 (a). A relatively small span of the beam $l_0 = 2400$ mm was used, giving a gross span-to-depth ratio of $l_0/H = 8$, in order to obtain the complete response of the beam-to-column connection including the damage evolution since there was a limited vertical displacement range (approximately 400 mm). The length of the central column was 1100 mm. The design of beam-column assembly was based on the strong column-weak beam seismic design philosophy according to Chinese codes [30, 31].

2.2. Test setup and instrumentation

The test specimen, mounted on a purpose-built test rig as illustrated in Fig. 2 (b), was
loaded vertically at the unsupported central column by the actuator at a stroke rate less than 7 mm/min. The central column was guided at the bottom end using a sliding support so that only vertical movement of the column is possible. The two pin supports at the outer ends of the beams were designed using latch-type rollers for free rotation in the assembly plane, with their distance matching the span of 2,400 mm. The test was terminated when the connection totally lost its bearing capacity on either side.

![Diagram of test setup](image)

(a) B-J-B pattern [18].

(b) Components.

Instrumentations were arranged as shown in Fig. 3 to measure the displacement of the assembly and strains at the critical regions during the test. Sixteen displacement transducers (see Fig. 3 (a)) were used to measure the assembly deflection along the beam length and any possible movements of the two pin supports. Strain gauges were arranged at six beam sections as shown in Fig. 3 (b).
2.3. Test results

The tested specimen exhibited a complete failure process at the beam-to-column connection, where the beam on the east side totally separated from the central column. The final condition of the beam-column assembly and the detailed view of the WUF-WB connection at the end of the test are shown in Fig. 4.

The load-displacement curve of the central column is shown in Fig. 5. A few key stages are identified on the curve, and the associated damage evolutions are depicted in the corresponding photographs in Fig. 6. The nominal plastic load F_p is the vertical load causing the formation of plastic hinges at the critical locations (Sections W3 and E3), which is 359 kN. The beam chord rotation θ is obtained by dividing the vertical displacement of the
central column by the distance of 1,200 mm between the column and the pin support (effectively the half-span length).

Fig. 4. Photographs of the specimen at the end of the test.

(a) Southern view of the test assembly

(b) Northern view of the tested WUF-WB connection

Fig. 5. Load-displacement curve of test specimen.
As demonstrated in Fig. 5 and Fig. 6, the first significant event (point “A1” on the load-displacement curve) took place when local buckling occurred at the top flanges near Sections W3 and E3 with the displacement reaching about 40 mm, which corresponded to the beam chord rotation θ of 0.033 rad.

The applied load kept increasing until the specimen reached the first peak load (point “A2”) when the bottom flange near the access hole at Section E3 fractured at a displacement...
of 73 mm ($\theta = 0.061$ rad). The fracture caused a drastic drop of the applied load from the peak value of 419 kN (1.17F_p) to 281 kN (0.78F_p).

However, the flexural capacity of the beam on the other side (west side) enabled the applied load to reach a second peak value of 355 kN (0.99F_p) at a displacement of 120 mm ($\theta = 0.100$ rad), when the column wall fractured near the southern end of the bottom flange on the west side (point “A3”), which induced an abrupt drop of load to about 250 kN (0.70F_p).

With the increasing displacement of the central column, the specimen saw two small fluctuations of the applied load from the peak value of 287 kN (0.80F_p) at a displacement of 132 mm ($\theta = 0.110$ rad) and from 268 kN (0.75F_p) at 144 mm ($\theta = 0.120$ rad). In the latter event, the load suddenly reduced to about 250 kN (0.70F_p) due to the tear-out of the lowest bolt on the east side out of the web (point “A4”).

When the displacement reached 180 mm ($\theta = 0.150$ rad), the column wall fractured near the northern end of the bottom flange on the west side (point “A5”), after which the load decreased due to the crack propagation across the entire width of the bottom flange on the west side, until a complete fracture through its thickness formed below the bottom flange (point “A6”). The displacement at this point was 197 mm ($\theta = 0.164$ rad) and the load reached the lowest value of 172 kN (0.48F_p).

Thereafter the west-side column wall tore up from the two ends of the bottom flange as the applied load gradually recovered, on account of the development of the catenary mechanism. At a displacement of 298 mm ($\theta = 0.248$ rad), the shear tab fractured vertically at the middle and top parts through the bolt holes on the east side (point “A7”) following the
horizontal crack below the third bolt, causing a slight drop in the applied load from 330 kN
(0.92 F_p) to 317 kN (0.88 F_p).

The load quickly increased and reached another peak value of 345 kN (0.96 F_p) at a
displacement of 311 mm ($\theta = 0.259$ rad) when the column wall fractured along the weld
connecting the shear tab and column on the west side (point “A8”) with an abrupt drop of
load to 280 kN (0.78 F_p). Although the load was able to slightly pick up to 303 kN (0.84 F_p),
the beam-column assembly virtually lost its bearing capacity due to the complete fracture of
the top flange at Section E3 and hence the separation between the eastern beam and the
column (point “A9”). At this point, the displacement of central column was 321 mm ($\theta =
0.268$ rad) and the test was terminated.

Two failure modes, the interrupted beam-end failure mode and the column-wall failure
mode [19], took place during the test. A complete process of the interrupted beam-end
failure mode covering the entire damage evolution was present for the WUF-BW connection
on the east side. The fracture took place initially at the bottom flange, then at the bottom of
the web and the middle-top part of the shear tab, and eventually at the top flange. The
fracture of the top flange signified the end of the damage evolution on this side.

On the other side (west side), the column-wall failure mode did not present a complete
damage evolution, with the cracks extending upwards to one third of the beam’s depth. As
discussed in previous papers [19, 20], the occurrence of fracture at the column wall was
preceded by the separation between the inner diaphragm and the column inside wall as
shown in Fig. 7 (a).
3. Verification of numerical simulations

Numerical analyses were carried out using the explicit time integration approach in the general-purpose finite element (FE) analysis software ABAQUS [32]. The verification of the FE model was firstly made by comparing the FE simulation results against the present laboratory test results. The verified FE analysis method was subsequently used in parametric analyses for studying the performance of moment resisting beam-column assemblies under different span-to-depth ratios.

3.1. FE modelling of test specimen

The present test assembly was modelled in whole to enable the simulation of the asymmetric damage evolutions on the two sides of the WUF-BW connection. The actuator’s load was simulated by a prescribed vertical displacement of the central column. The geometric, boundary and material nonlinearities including material fracture were taken account into the FE simulation. The stress-strain constitutive relationships of the steel material were defined based on the coupon test results (see Table 1).

All components were created using solid elements of the 8-node linear brick elements with reduced integration (C3D8R). In order to capture the fracture at the connection region, sufficiently fine mesh of solid elements was employed at the parts where fracture may occur, with an element size of approximately 1.0 mm, as shown in Fig. 8 (b), including the
I-section at the beam end segment together with the bolted shear tab on the east side, and the bottom inner diaphragm together with the connected column wall on the west side.

(a) FE model of the test assembly.

(b) Meshes in the connection region.

Fig. 8. Finite element models composed of solid elements.

The “Damage for Ductile Metals” approach was employed to activate the deletion of elements whose strain responses reach the pre-specified fracture threshold [32]. The fracture strain limits ranged from 0.2 to 0.8 for the column wall, I-section (bottom and top flanges and web) and the shear tabs surrounding the bolts. In order to simulate the column-wall failure mode on the west side, i.e. the separation between the bottom inner diaphragm and the column inside wall, the western edge of the bottom inner diaphragm was given a relatively small fracture strain limit of 0.04.
3.2. Simulation results

The final state of the test specimen in the FE simulation is shown in Fig. 9 (a), involving a beam-end interrupted failure at Section E3 on the east side and a column-wall failure on the west side. The key stages in the simulated failure process shown in Fig. 9 (b) agreed reasonably well with the experimental results presented earlier in Fig. 6, and are labelled in the same manner with respect to the fracture mode as the experimental key stages using the lower case “a” in lieu of the upper case. The numerals for the simulated key stages are not always consecutive, indicating that the sequence of fractures do not necessarily match the experimental sequence.

The FE load-displacement curve is compared against the experimental curve in Fig. 10, with the indicated key events corresponding to Fig. 6 and Fig. 9 (b). The comparison shows a reasonable agreement between the two sets of data in terms of the load development and the damage evolution.

(a) Final state of the beam-column assembly.
(b) Key stages in the failure process

Fig. 9. Simulated failure modes.

![Simulated failure modes](image)

Fig. 10. Comparison of load-displacement curves between FE simulation and test for specimen.

![Comparison of load-displacement curves](image)
4. Parametric analyses on span-to-depth ratios

In this section, thirty-two double-span beam-column assemblies of four different configurations shown in Table 2 were analysed under varying span-to-depth ratios. The fourth configuration in the table is the same as that of the test specimen depicted in Fig. 1. As can be seen from the table, all connections are of the WUF-BW type.

Due to symmetry, only one half of each assembly was modelled. Four span-to-depth ratios (R) of 18, 15, 12 and 8 were employed in the parametric analyses, which cover the commonly used range in design codes [33]. The beam-end interrupted failure mode and the column-wall failure mode were separately simulated (refer to Section 3.1). The label of each specimen indicates its span-to-depth ratio, failure mode (“BF” or “CF”) and beam depth, in that order. The “BF” designation refers to the beam-end interrupted failure mode, and the “CF” designation refers to the column wall failure mode. For example, Specimen R18-BF-H600 is the beam-column assembly with a span-to-depth ratio R of 18, composed of beam section H600×300×12×20 connected to column section SHS 500×25 by M30×10 bolts (see Table 2), and fails by the beam-end interrupted failure mode.

<table>
<thead>
<tr>
<th>Beam section</th>
<th>Column section</th>
<th>WUF-BW connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>H600×300×12×20</td>
<td>SHS 500×25</td>
<td>M30×10</td>
</tr>
<tr>
<td>H500×200×9×14</td>
<td>SHS 400×20</td>
<td>M24×10</td>
</tr>
<tr>
<td>H400×200×7×9</td>
<td>SHS 300×16</td>
<td>M24×8</td>
</tr>
<tr>
<td>H300×150×6×8</td>
<td>SHS 250×14</td>
<td>M20×4</td>
</tr>
</tbody>
</table>

4.1. Assemblies having the same span-to-depth ratio

As explained in [27], a normalized chord rotation over the plastic hinge rotation θ_p is more appropriate to use as the generalized displacement variable for the purpose of
comparing the progressive collapse resistance performance between double-span moment resisting assemblies. The plastic hinge rotation θ_p is defined [27] as

$$\theta_p = \frac{\delta_{pp}}{l_{pp}/2} = \frac{F_p f_s}{K_e l_0} = \frac{4W_p f_s / l_0}{48EI_s / l_0^3} = \frac{W_p f_s l_0}{6EI_s}$$

(1)

where K_e is the elastic stiffness of a simply supported beam under a concentrated force at midspan, and I_0 is the second moment of area of the beam section.

The normalized load-rotation curves of the assemblies having different beam depths but the same span-to-depth ratio are shown in Fig. 11 (a) and (b), corresponding to the beam-end interrupted failure mode and the column-wall failure mode, respectively. It can be seen that the different assemblies behave similarly to each other if their span-to-depth ratios and failure modes are the same, irrespective of their beam depths. The slight differences in the post-fracture stage of the beam-end interrupted failure mode are mostly caused by the different connection geometry (see Table 2). For the column-wall failure mode, the different capacities of the column-wall (thickness) of the assemblies relative to their respective beam section’s plastic capacities may lead to some differences in their progressive collapse behaviour. However, such differences are much smaller than those between the assemblies having different span-to-depth ratios, as demonstrated in the following subsection.
Fig. 11. Normalized load-displacement curves for assemblies having the same span-to-depth ratio.

4.2. Assemblies having different span-to-depth ratios

In order to study the effects of span-to-depth ratio, the normalized load-rotation curves of assemblies configured with H300×150×6×8 beam under different span-to-depth ratios are compared to each other in Fig. 12 and Fig. 13, for the beam-end interrupted failure mode and the column-wall failure mode, respectively. Certain key stages of the damage evolution are identified on the curves and depicted in the accompanying figures of FE simulation. As shown in Fig. 12, each assembly experiencing the beam-end interrupted failure mode has two peak resistances associated with fractures of the bottom and the top flanges. The bottom
flanges (Step “BF1” in Fig. 12) fracture when the resistances are equal to 1.25F_p to 1.43F_p at normalized chord rotations θ/θ_p ranging from 4 to 10 (at an approximately constant chord rotation of 0.07 rad), each of which is followed by a drop in the resistance to about half the plastic hinge load F_p. The resistance then recovers on account of the interaction between the bolts and the web as well as the shear tab, before it is eventually lost when the top flange fractures (Step “BF2”). The second peak value of F/F_p range from 0.8 to 1.8, reached at θ/θ_p ranging from 11 to 36. The smaller the span-to-depth ratio, the lower the peak resistance and the larger the normalized rotation demand.

Fig. 12. Responses of assemblies having different span-to-depth ratios experiencing beam-end interrupted failure.

Fig. 13 (a) shows that, for each of the four assemblies undergoing the column-wall failure mode, the resistance quickly recovers after the first two interruptions, and the peak resistances generally exhibit an increasing trend. The first two interruptions are due to the separation between the bottom inner diaphragm and the column wall, and the fracture of the column wall, respectively, as illustrated in Fig. 13 (b). The resistance is only lost when crack takes place near the top flange. The maximum normalized resistances F/F_p range from 1.5 to 3.1, reached at θ/θ_p ranging from 16 to 49. As in the case of the assemblies undergoing the
beam-end interrupted failure mode, the smaller the span-to-depth ratio, the lower the peak resistance and the larger the normalized rotation demand.

![Normalized load - rotation curves](image1)

(a) Normalized load - rotation curves.

![Key stages causing resistance drops](image2)

(b) Key stages causing resistance drops.

Fig. 13. Responses of assemblies having different span-to-depth ratios experiencing column-wall failure.

5. **Flexural and catenary mechanisms under different span-to-depth ratios**

Under the central column removal scenario, the gravity resistance of a moment beam-column assembly is contributed by the flexural and the catenary mechanisms. As discussed in reference [18], the vertical reaction V_R in Fig. 14, can be calculated from the following equation

$$V_R = V_i \cos \phi_i + N_i \sin \phi_i = F_i + F_c \tag{2}$$

where V_i, N_i and ϕ_i are the transverse shear force, axial force and rotation of the deflected
beam section, respectively. The internal forces V_i and N_i can be determined from the strain readings located at some distances from the supports [18].

![Fig. 14. Analysis of resistance and internal force for the beam-column assembly (modified from [18]).](image)

The first term on the right hand side of Equation (2), F_f, is the resistance component due to the flexural mechanism, and the second term, F_c, is due to the catenary mechanism. The developments of these two resistance components of assemblies in Section 4.2 as computed from the equation at certain sections of the beams are shown in Fig. 15, normalized by the corresponding plastic hinge load F_p and plotted against the normalized chord rotation.

It is demonstrated in Fig. 15 (a) and (b) that the flexural resistances F_f of all assemblies develop in the same manner during the elastic stage until they exceed the plastic hinge load F_p, following which the respective initial damages (step “BF1” or “CF1”) cause drastic declines of the flexural resistances. The negative zone of each flexural resistance is due to the rapidly growing horizontal reaction force at the pin support, associated with the development of the catenary mechanism.

Fig. 15 (c) and (d) show that, although the catenary resistances F_c are affected by the early damages (step “BF1” or “CF1” and “CF2”) to drop temporarily, thereafter they increase to peak values ranging from $1.4F_p$ to $3.6F_p$.
Based on the parametric analyses (Fig. 11, Fig. 12, Fig. 13, and Fig. 15), a schematic illustration is provided in Fig. 16 to outline the development of the progressive collapse resistance of the moment beam-column assemblies having the same beam section but two span-to-depth ratios \(R_1 \) and \(R_2 \) (\(R_1 > R_2 \)). The two components of the gravity resistance due to the flexural and the catenary mechanisms are separately plotted in Fig. 16 (a), denoted ‘\(f_f \)’ and ‘\(f_c \)’, respectively, and their resultant is plotted in Fig. 16 (b). Three distinctive stages are identified as indicated in the graphs, being the flexure dominated stage “I”, the combined flexure-catenary stage “II” and the catenary dominated stage “III”. The three stages are separated from each other by the plastic hinge formation and the initial fracture of the connection (such as “BF1” and “CF1” when \(\theta/\theta_p = \gamma_{f1} \) or \(\gamma_{f2} \)). Stage “III” ends when the last fracture takes place in the connection (such as “BF2” and “CF3” when \(\theta/\theta_p = \gamma_{uf1} \) or \(\gamma_{uf2} \)).
It can be seen that the assembly with a larger span-to-depth ratio \(R_1 \) is able to provide a higher ultimate gravity resistance ratio \(\eta_{u1} \) due to its more effective facilitation of the catenary mechanism. However, the smaller span-to-depth ratio \(R_2 \) enables the assembly to resist the ultimate load at a greater chord rotation ratio \(\gamma_{u2} \).

Fig. 16. Schematic illustration of gravity resistance development for beam-column assembly.

For a convenient assessment of the beam-column assembly directly affected by the removed column [23], a simplified curve for the gravity resistance development is proposed in Fig. 17. It is suitable for the connection methods exhibiting failure modes that facilitate an effective development of the catenary mechanism in the post-fracture stage, such as the beam-end interrupted failure mode and the column-wall failure mode. The assembly has a gravity resistance of \(F_p \) when a plastic hinge forms at the beam-end section at chord rotation \(\theta_p \) (refer to equation (1)). Afterwards, the gravity resistance grows to \(\eta_d F_p \) (at a slower rate) until the initial fracture occurs at chord rotation \(\eta_d \theta_p \), which causes a loss of gravity resistance equal to \(\Delta \eta_d F_p \). The gravity resistance may then plateau, a response which is most pronounced for the assembly having a small span-to-depth ratio undergoing the beam-end interrupted mode (see Fig. 12), and which can be neglected otherwise. The assembly reaches the ultimate gravity resistance \(\eta_u F_p \) when the damage has extended upwards close to the top.
flange, with corresponding chord rotation of $\gamma_u \theta_p$, after which the gravity resistance is deemed to be lost completely.

![Simplified curve model for the development of gravity resistance.](image)

Fig. 17. Simplified curve model for the development of gravity resistance.

The values of the parameters in the proposed simplified curve model in Fig. 17, including the gravity resistance ratios and the chord rotation ratios, depend on the span-to-depth ratio and connection methods as well as the failure modes. Further research is required to quantify them.

6. Conclusions

The full response of moment resisting beam-column assemblies, extracted from the bays directly affected by a failed interior column in a typical steel framing system, have been investigated under different span-to-depth ratios covering the commonly used range through an experimental test and thirty-three numerical simulations.

The tested specimen, a B-J-B assembly with a beam span-to-depth ratio of 8, experienced failures at the beam-end section and in the column wall on the two sides of the WUF-BW connection, respectively. Both the beam-end interrupted failure mode and the column-wall failure mode enabled the assembly to effectively facilitate the development of the catenary mechanism in the post-fracture stage, which is important for structure bridging over a failed interior column so as to prevent progressive collapse.
Parametric analyses of beam-column assemblies having four span-to-depth ratios (18, 15, 12 and 8) have been conducted, using validated finite element (FE) models which took account of material fracture. It has been demonstrated that assemblies having the same span-to-depth ratio behave similarly in terms of their normalized load-rotation relationships even though they are configured with different beam depths. Conversely, assemblies having the same beam and column sections but different span-to-depth ratios behave differently in terms of their normalized load-rotation relationships.

Nevertheless, for a particular failure mode of the moment connection that is capable of facilitating an effective development of the catenary mechanism, the gravity resistance developments of all assemblies share a common trend despite their different span-to-depth ratios (and different beam sections). The three development stages, being the flexure dominated stage, the combined flexure-catenary stage and the catenary dominated stage, are separated from each other by the plastic hinge formation at the critical beam section and the initial fracture in the connection region.

In general, the beam-column assembly with a larger span-to-depth ratio is able to develop the gravity resistance earlier, and provide a higher ultimate resistance by facilitating a more effective catenary mechanism. However, the assembly with a smaller span-to-depth ratio exhibits a more ductile response.

A simplified curve model of the gravity resistance development of a moment beam-column assembly with damage evolution has been proposed for a convenient assessment of the progressive collapse resistance following a central column loss. Further research is required to quantify the model parameters.
Acknowledgments

The research presented in this paper was supported by the Natural Science Foundation of China (NSFC) through No. 51008220 and 51378380. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

References

List of figures
Fig. 1. Details of the WUF-BW connection.
Fig. 2. Test setup.
Fig. 3. Schematic arrangements of test instrumentation.
Fig. 4. Photographs of the specimen at the end of the test.
Fig. 5. Load-displacement curve of test specimen.
Fig. 6. Damage evolutions at key stages of test specimen.
Fig. 7. Final conditions between the bottom inner diaphragm and column inside wall.
Fig. 8. Finite element models composed of solid elements.
Fig. 9. Simulated failure modes.
Fig. 10. Comparison of load-displacement curves between FE simulation and test for specimen.
Fig. 11. Normalized load-displacement curves for assemblies having the same span-to-depth ratio.
Fig. 12. Responses of assemblies having different span-to-depth ratios experiencing beam-end interrupted failure.
Fig. 13. Responses of assemblies having different span-to-depth ratios experiencing column-wall failure.
Fig. 14. Analysis of resistance and internal force for the beam-column assembly (modified from [18]).
Fig. 15. Developments of gravity resistances contributed by flexural and catenary mechanisms.
Fig. 16. Schematic illustration of gravity resistance development for beam-column assembly.
Fig. 17. Simplified curve model for the development of gravity resistance.

List of tables
Table 1. Material properties of test specimen.
Table 2. Components of four groups for beam-column assemblies in the parametric analyses.