Design and synthesis of chiral ligands for use in stereoselective atropisomeric biaryl coupling reactions

Mary J. Gresser
University of Wollongong
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
DESIGN AND SYNTHESIS OF CHIRAL LIGANDS
FOR USE IN
STEREOSELECTIVE ATROPISOMERIC
BIARYL COUPLING REACTIONS

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

THE UNIVERSITY OF WOLLONGONG

by

Mary J. Gresser, B. Sc. (Adv.) (Hons)

DEPARTMENT OF CHEMISTRY
MARCH 2007
Certification

I, Mary Jacinta Gresser, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution.

Mary Jacinta Gresser

March 2007
Acknowledgments

Thank you to everyone who has helped me in any way throughout my PhD.

To **PK**, without your guidance, encouragement and understanding, I would not have finished.

To **Steve P**, for the supervision while PK was away.

To **G. Bringmann** and **M. Breuning** in Würzburg, for help with the graphics used in this thesis.

To **Andrew** and **Mark**, for making me laugh and cry (!) and every emotion in between! Our times here together will stay with me forever.

To **Chris**, thank you so much for being there for me, especially this last year.

To **Jody, Sue, Dan, Bill, Neal** and all other members of the **KRG**, past and present.

To my “Team Ligand” counterpart **Walesy**, where would our project be without us???

To **Roger, Larry, Wilford, Karin and John**, for having the solutions to all my MS and NMR problems!

To **Glennys** and **Di**, for providing me with the opportunity to do what I love - teaching.

To **Georgia**, for being such a good friend to me the last six years.

Finally, to my family - **Dad, Mum, Laurence, Anne, Matt, Peter, John, Jane, Bernard, Lucy, Elizabeth**, and the boys, **Joseph, Michael** and **Xavier** - who are always there for me.
Abstract

A new chiral ligand design program was initiated for the stereoselective synthesis of sterically hindered systems, such as atropisomeric biaryls. The concept of helical-sense discrimination was investigated, for use in the Pd-based Suzuki coupling reaction. A new set of design principles was established for chiral ligands for use in these reactions; 1) the ligand must contain a defined helical twist enclosed at each end by donor atoms, 2) the ligand must be bidentate, to best transfer the helical aspect of the ligand to the Pd reaction site, 3) the substituents of the donor atoms should be tied back in ring systems to prevent steric hindrance of the already sterically demanding reaction site and 4) the helical twist should be in close proximity to the Pd reaction site. The first two target scaffolds which would incorporate the above principles were chiral 2,2’-bispyrrolidine and 2,2’-bisindoline.

A new synthetic strategy was devised, which provided both enantiomers of 2,2’-bispyrrolidine and was modified to access 2,2’-bisindoline. The key steps of the synthesis were the metathesis dimerisation and subsequent Sharpless asymmetric dihydroxylation (AD) from achiral starting materials.

(R,R)-N,N’-Di-tert-butoxycarbonyl-2,2’-bispyrrolidine 92a was synthesised in 13% yield, over 10 steps, from commercially available 4-penten-1-ol. The metathesis reaction gave the desired benzyl protected alkene as a mixture of geometric isomers (4:1), which were dihydroxylated using AD mix α and standard Sharpless conditions to give the corresponding diol with an ee of 80%.

The procedure was repeated using the PMB protected derivatives to give (R,R)-92a in overall 9% yield, with the AD reaction using AD mix α giving the diol in 92% ee. The procedure was repeated using AD mix β, which gave the enantiomeric 2,2’-bispyrrolidine (S,S)-92b in 24% overall yield and 88% ee.
The synthetic strategy was applied towards the synthesis of chiral 2,2’-bisindoline, for which there is no literature precedent. Benzyl protected 2-allylphenol was dimerised via the metathesis reaction using Grubbs 1st generation catalyst, to give the dimeric aromatic allylic alkene in 81% yield (E:Z 5.2:1). The geometric ratio could be improved to 9:1 via recrystallisation from DCM/hexanes. Grubbs 2nd generation catalyst was found to increase the geometric ratio, however the alkene could not be separated from the secondary metathesis products. The alkene was dihydroxylated using AD mix α in 15% yield and 64% ee. The yield was increased to 60% by using modified Sharpless conditions, however the enantiopurity decreased to 36% ee.

The poor outcome of the AD reaction lead to extensive investigations into the Sharpless AD reaction via the modification of the ortho substituent of dimeric aromatic allylic alkenes. A variety of dimeric, heterodimeric and monomeric alkenes were synthesised, including seven phenolic based and two nitrogen based dimeric alkenes, via the metathesis reaction using both Grubbs 1st and 2nd generation catalysts. The alkenes were subsequently dihydroxylated using AD mix α and AD mix β. The diols were formed in poor yield (0% to 58%) and poor enantioselectivity (1% to 58%). The AD reaction of the ortho-tolyl derivative increased the yield (45-65%) and the ee (62-70%) while the unsubstituted derivative gave the corresponding diol in 84-88% yield with excellent stereocontrol (93-95% ee).

It was therefore concluded that the presence of ortho-substituents in the aromatic rings of dimeric allylic aromatic alkenes prevented access of the substrate to the ligand bound OsO₄, thereby minimising chemical yield and enantioselection.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>AD</td>
<td>asymmetric dihydroxylation</td>
</tr>
<tr>
<td>BINAP</td>
<td>2,2’-bis(diphenylphosphino)-1,1’-binaphthyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>CI</td>
<td>chemical ionisation</td>
</tr>
<tr>
<td>CM</td>
<td>cross-metathesis</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DHQ</td>
<td>dihydroquinine</td>
</tr>
<tr>
<td>DHQD</td>
<td>dihydroquinidine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N’-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>EI</td>
<td>electron ionisation</td>
</tr>
<tr>
<td>ES</td>
<td>electrospray</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple bond correlation experiment</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HR</td>
<td>high resolution</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single quantum correlation</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>m/z</td>
<td>mass/charge ratio</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>Ms</td>
<td>methanesulfonyl</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>PMB</td>
<td>p-methoxybenzyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>RCM</td>
<td>ring-closing metathesis</td>
</tr>
<tr>
<td>ROMP</td>
<td>ring-opening polymerization</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>SM</td>
<td>self-metathesis</td>
</tr>
<tr>
<td>SMPs</td>
<td>side metathesis products</td>
</tr>
<tr>
<td>Tf</td>
<td>trifluoromethanesulfonyl (triflate)</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilane</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>
Table of Contents

Certification
Publications
Acknowledgements
Abstract
Abbreviations
Table of contents

1 Introduction

1.1 Atropisomerism

1.2 Chiral biaryl synthesis
 1.2.1 Resolution or desymmetrisation of stereochemically undefined biaryl compounds
 1.2.2 Direct atroposelective biaryl coupling
 1.2.3 Enantioselective biaryl formation

1.3 Project aims

2 Ligand Design and Synthetic Strategy

2.1 Ligand function

2.2 Design of a chiral ligand for stereoselective atropisomeric biaryl couplings

2.3 Synthetic strategy
 2.3.1 Chiral diamines
 2.3.2 Diastereomeric strategies towards the 2,2-bispyrrolidine scaffold
 2.3.3 Enantiospecific strategies towards the 2,2’-bispyrrolidine scaffold
 2.3.4 Synthesis of 2,2’-bisindoline

2.4 Proposed enantioselective synthesis of chiral 2,2’-bispyrrolidine and 2,2’-bisindoline
3 \hspace{1cm} \textbf{Synthesis of chiral 2,2’-Bispyrrolidine} \hspace{1cm} 47

3.1 Protection of 4-penten-1-ol \hspace{1cm} 47

3.2 Metathesis of protected 4-penten-1-ol (Key Step 1) \hspace{1cm} 49

3.3 Sharpless asymmetric dihydroxylation (Key Step 2) \hspace{1cm} 55

\hspace{1cm} 3.3.1 Determination of enantiomeric excess via HPLC analysis \hspace{1cm} 58

\hspace{1cm} 3.3.2 Mechanism of the Sharpless AD \hspace{1cm} 61

3.4 Synthesis of chiral (2\text{R},2’\text{R})-2,2’-bispyrrolidine \hspace{1cm} 65

3.5 Optimisation of the stereochemical yield of chiral 2,2’-bispyrrolidine \hspace{1cm} 92

3.6 Attempted strategy optimisation \hspace{1cm} 79

\hspace{1cm} 3.6.1 Separation of chiral (R,R)-153b and meso-153 via derivatisation \hspace{1cm} 79

\hspace{1cm} 3.6.2 Potential alternate N nucleophiles \hspace{1cm} 83

3.7 Derivatisation of the bispyrrolidine scaffold \hspace{1cm} 86

3.8 Conclusion \hspace{1cm} 87

4 \hspace{1cm} \textbf{Towards the Synthesis of 2,2’-Bisindoline} \hspace{1cm} 89

4.1 Protection of 2-allylphenol \hspace{1cm} 90

4.2 Dimerisation via the metathesis reaction (Key Step 1) \hspace{1cm} 90

4.3 Asymmetric dihydroxylation (Key Step 2) \hspace{1cm} 93

4.4 Towards the synthesis of 2,2’-bisindoline \hspace{1cm} 96

\hspace{1cm} 4.4.1 Mesylation of diol (S,S)-166a \hspace{1cm} 96

\hspace{1cm} 4.4.2 Attempted azidation of dimesylate (S,S)-174a \hspace{1cm} 97

\hspace{1cm} 4.4.3 Alternative strategy towards 2,2’-bisindoline \hspace{1cm} 100

\hspace{1cm} 4.4.4 Conclusion \hspace{1cm} 101

5 \hspace{1cm} \textbf{The Asymmetric Dihydroxylation of Dimeric Aromatic Allylic Alkenes} \hspace{1cm} 103

5.1 Phenol-based derivatives \hspace{1cm} 104

\hspace{1cm} 5.1.1 Synthesis of the phenol-based monomers \hspace{1cm} 105

\hspace{1cm} 5.1.2 Metathesis reaction of phenol-based monomers \hspace{1cm} 106

\hspace{1cm} 5.1.3 Asymmetric dihydroxylation of phenol-based dimers \hspace{1cm} 108
5.2 Nitrogen-based derivatives
5.2.1 Synthesis of the nitrogen-based monomers
5.2.2 Metathesis reaction of nitrogen-based monomers
5.2.3 Asymmetric dihydroxylation of nitrogen-based dimers

5.3 Derivatives not containing a heteroatom
5.3.1 Synthesis of the non-coordinating monomers
5.3.2 Metathesis reaction of non-coordinating monomers
5.3.3 Asymmetric dihydroxylation of non-coordinating dimers

5.4 Ortho, meta and para substituted derivatives
5.4.1 Synthesis of the ortho, meta and para substituted monomers
5.4.2 Metathesis reaction of ortho, meta and para substituted monomers
5.4.3 Asymmetric dihydroxylation of ortho, meta and para substituted dimers

5.5 Metathesis and AD summary
5.5.1 Metathesis of dimeric aromatic allylic alkenes
5.5.2 Asymmetric dihydroxylation of dimeric aromatic allylic alkenes

5.6 ortho-Substituted monomeric aromatic allylic alkenes

5.7 Heterodimeric 1,2-disubstituted aromatic allylic alkenes
5.7.1 Cross-metathesis reaction
5.7.2 The AD reaction of heterodimeric 1,2-disubstituted aromatic allylic alkenes

5.8 Conclusion

6 Conclusions and Future Directions
6.1 Ligand design
6.2 2,2’-Bispyrrolidine synthesis
6.3 2,2’-Bisindoline synthesis
6.3.1 Improvement of the AD reaction
6.3.2 Alternative approach to 2,2’-bisindoline
6.4 Biaryl coupling reactions

7 Experimental
7.1 General experimental procedure
7.2 Bispyrrolidine synthesis
7.2.1 Bispyrrolidine synthesis using the PMB protecting group
7.3 Attempted bisindoline synthesis 173

7.4 Phenolic-based derivatives 177
 7.4.1 Phenolic-based derivatives (Monomers) 177
 7.4.2 Phenolic-based derivatives (Dimers) 181
 7.4.3 Phenolic-based derivatives (Diols) 184

7.5 Nitrogen-based derivatives 187
 7.5.1 Nitrogen-based derivatives (Monomers) 187
 7.5.2 Nitrogen-based derivatives (Dimers) 190
 7.5.3 Nitrogen-based derivatives (Diols) 192

7.6 Non-coordinating derivatives 194
 7.6.1 Non-coordinating derivatives (Monomers) 194
 7.6.2 Non-coordinating derivatives (Dimers) 195
 7.6.3 Non-coordinating derivatives (Diols) 197

7.7 Meta and para substituted derivatives 199
 7.7.1 Meta and para substituted derivatives (Monomers) 199
 7.7.2 Meta and para substituted derivatives (Dimers) 200
 7.7.3 Meta and para substituted derivatives (Diols) 201

7.8 AD reaction of terminal alkenes 203

7.9 Heterodimeric alkenes 205

8 References 209