2006

Mass spectrometric studies of non-covalent biomolecular complexes

Thitima Urathamakul
University of Wollongong, thitima@uow.edu.au

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Mass Spectrometric Studies of Non-Covalent Biomolecular Complexes

A thesis submitted in (partial) fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

University of Wollongong

by

Thitima Urathamakul
Bachelor of Science (Honours)

Department of Chemistry

October 2006
DECLARATION

I, Thitima Urathamakul, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The work has not been submitted for qualification at any other academic institution.

Thitima Urathamakul

24th October 2006
ACKNOWLEDGEMENTS

While this thesis is a culmination of three years’ worth of work and study, my contribution in the form of its writing is but a small part of the overall process. The following is a list of people who have played an integral part in my life over the past several years – people who have provided me with guidance and support both immeasurable and invaluable. In short, people without whom this thesis would not have been possible.

Firstly, my supervisors Dr Jennifer Beck, Dr Stephen Ralph and Professor Margaret Sheil. Margaret, thank you for giving me the opportunity to complete my postgraduate research here at the University of Wollongong. You have never failed to help and encourage me through difficult times.

Steve, your enthusiasm has been a real driving force that has kept the ruthenium work (and my focus) on track. I have found your energy infectious and your ideas a constant source of inspiration.

Jenny, you have been an amazing supervisor throughout my time working with you. You have always found time to help me both academically and personally, your commitment to your students and your work is tremendous. You are my mentor and my confidant.

The three people mentioned above have been the best supervisors that any student could hope for.
Mr Larry Hick for his knowledgeable advice and assistance with the mass spectrometer. You have always been approachable and helpful to everyone. The lab is a warmer place with your presence. Larry, you are a legend.

Raj Gupta and Stephen Watt for their help in teaching me invaluable skills for the various instruments in the early stages of my degree. David Harman, Karin Maxwell, Stephen Blanksby, Roger Kanitz, Todd Mitchell, Jihan Talib, Karina Gornall, Linda Jessop, Michael Thomas, Jane Deeley, and other past and present members of the Mass Spectrometry group for making this a fun and enjoyable place to work.

Dr Nicholas Dixon and his group (Research School of Chemistry Australian National University) for their kindness in providing the proteins used in this study.

Dr Janice Aldrich-Wright (School of Science, Food and Horticulture, University of Western Sydney, Australia University of Western Sydney) for the ruthenium drugs used for the DNA work.

The Department of Chemistry, around which so much of my life has revolved over the past 8 years. The friendliness, support and guidance I have experienced during my time here have been truly memorable.

My family – my brothers, sister, and most especially my mother for all her support over the years and for giving me the opportunity to study overseas in the first place.

Last but not least, my dearest husband Min for all his endless support and patience, particularly during the tough time of writing up. Min, thank you for believing in me and for always being there for me.

Electrospray ionisation mass spectrometry (ESI-MS) was employed to investigate non-covalent associations of macromolecules with ligands, metal ions and other macromolecules. Firstly, ESI-MS was used to examine the interactions of six ruthenium compounds with three different DNA sequences (D1, D2 and D3). The relative binding affinities of these ruthenium compounds towards dsDNA was determined to be:

\[
[Ru(phen)_2(dppz)]^{2+} \geq [Ru(phen)_2(dpqMe_2)]^{2+} > [Ru(phen)_2(dpqC)]^{2+} > [Ru(phen)_2(dpq)]^{2+} > [Ru(phen)_2(pda)]^{2+} > [Ru(phen)_3]^{2+}.
\]

This order was in good agreement with that obtained from DNA melting temperature experiments. Competition experiments involving ruthenium compounds and organic drugs were also conducted to obtain information about the DNA binding modes of the ruthenium compounds. These studies provide strong support for the routine application of ESI-MS as a tool for analysis of non-covalent complexes between metallointercalators and dsDNA.

ESI-MS also proved to be a rapid and efficient tool for investigation of interactions between the N-terminal domain of ε (ε186, the exonuclease proofreading subunit of E. coli DNA) and three different metal ions (Mn^{2+}, Zn^{2+} and Dy^{3+}). The dissociation constants (K_d) for binding of Mn^{2+}, Zn^{2+} and Dy^{3+} to ε186 were determined from ESI-MS data to be 38.5 x 10^{-6}, 3.7 x 10^{-6} and 2.0 x 10^{-6} M, respectively. Despite binding the least tightly to the protein, incorporation of Mn^{2+} into the enzyme resulted in the highest enzymatic activity as measured by spectrophotometric studies. This suggested that Mn^{2+} is possibly the native metal ion present in ε186. The ability of the metal ions to enhance ε186 enzymatic activity was found to follow the order:
Mn$^{2+}$ >> Zn$^{2+}$ > Dy$^{3+}$. The results of these experiments also provided evidence that the presence of two divalent metal ions was essential for efficient enzyme-catalysed hydrolysis.

The distribution of different oligomeric forms of wild-type *E. coli* DnaB helicase and DnaB helicase mutants (F102E, F102H, F102W and D82N) was examined using a factory-modified Q-ToF mass spectrometer equipped with a 32,000 m/z quadrupole. Previous experiments showed that the heptamer form of the wild-type protein was favoured in the presence of methanol (30% v/v). In the current work, mixtures of hexamer, heptamer, decamer and dodecamer were observed in solutions containing 1000 mM NH$_4$OAc, 1 mM Mg$^{2+}$ and 0.1 mM ATP, pH 7.6. When the proteins were prepared in solutions containing a lower concentration of Mg$^{2+}$ (0.1 mM), only the hexameric form was observed for all proteins except D82N, which showed a mixture of hexamer and heptamer. These observations suggest that the higher order structures were stabilised at high concentrations of Mg$^{2+}$. In addition, the hexamers of DnaB and mutants ((DnaB)$_6$, (F102W)$_6$ and (D82N)$_6$) formed complexes with four to six molecules of the helicase loading partner, DnaC.

ESI-MS was used in conjunction with hydrogen/deuterium exchange studies to probe the unfolding mechanisms of linear and cyclised DnaB-N (the N-terminal domain of DnaB helicase) containing linkers comprised of different numbers of amino acid residues (3, 4, 5 and 9). The unfolding rates for all the cyclised proteins were about ten-fold slower than for the corresponding linear proteins. These observations suggest that enhancement of protein stability against unfolding could be achieved
through cyclisation. Furthermore, the HDX data showed that all the proteins examined exhibited a rare EX1 mechanism at near neutral pH.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε186</td>
<td>N-terminal domain of ε</td>
</tr>
<tr>
<td>A<sub>420</sub></td>
<td>Absorbance at 420 nm wavelength</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine-5′-diphosphate</td>
</tr>
<tr>
<td>AMP-PNP</td>
<td>β, γ-imidoadenosine-5′-triphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine 5′-triphosphate</td>
</tr>
<tr>
<td>BIRD</td>
<td>Blackbody infrared radiative dissociation</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>bpy</td>
<td>2,2'-Bipyridine</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CD</td>
<td>Circular dichroism</td>
</tr>
<tr>
<td>CI</td>
<td>Chemical ionisation</td>
</tr>
<tr>
<td>CID</td>
<td>Collision-induced dissociation</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′,6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dppz</td>
<td>Dipyrido[3,2-a:2',3'-c]phenazine</td>
</tr>
<tr>
<td>dpq</td>
<td>Dipyrido[3,2-d:2',3'-f]quinoxaline</td>
</tr>
<tr>
<td>dpqC</td>
<td>Dipyrido3,2-a:2',3'-cphenazine</td>
</tr>
<tr>
<td>dpqMe₂</td>
<td>Dipyrido[6,7-d:2',3'-f]2,3-dimethylquinoxaline</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double-stranded DNA</td>
</tr>
<tr>
<td>DTT</td>
<td>D, L-Dithiothreitol</td>
</tr>
<tr>
<td>Dy(OAc)₃</td>
<td>Dysprosium(III) acetate</td>
</tr>
</tbody>
</table>
ECD Electron-capture dissociation
EDTA Ethylenediaminetetraacetic acid
EI Electron ionisation
EM Electron microscopy
EPR Electron paramagnetic resonance
ESI Electrospray ionisation
FAB Fast atom bombardment
FD Field desorption
FTICR Fourier transform ion cyclotron resonance
HDX Hydrogen/deuterium exchange
HSQC Heteronuclear single quantum correlation
HMQC Heteronuclear multiple quantum correlation
HX Hydrogen exchange
ICP Inductively coupled plasma
IR Infrared
ITC Isothermal titration calorimetry
k_{cat} Turnover number (Michaelis-Menten kinetics)
K_d Dissociation constant
$k\text{Da}$ Kilo Dalton
KF Klenow fragment of Pol I (contains exonuclease domain)
kV Kilovolts
NMR Nuclear magnetic resonance
NOESY Nuclear Overhauser effect spectroscopy
m/z Mass-to-charge ratio
MALDI Matrix-assisted laser desorption ionisation
Mg(OAc)$_2$ Magnesium(II) acetate
MLCT Metal-to-ligand charge transfer
Mn(OAc)$_2$ Manganese(II) acetate
M_r Molecular mass
MS Mass spectrometry
MWCO Molecular weight cut off
NH Amide hydrogen
NH$_4$OAc Ammonium acetate
NMR Nuclear magnetic resonance
NTP Nucleoside triphosphate
PAGE Polyacrylamide gel electrophoresis
PAP Purple acid phosphatase
PD Plasma desorption
Pda 9,10-diaminophenanthrene
PEG Polyethylene glycol
phen 1,10-Phenanthroline
pm Picometres
pNP-TMP 5′-p-nitrophenyl ester of thymidine-5′-monophosphate
Pol I DNA polymerase I
Pol III DNA polymerase III
Q-ToF Quadrupole-time-of-flight
RNA Ribonucleic acid
SPR Surface plasmon resonance
SUPREX Stability of unpurified proteins from rates of H/D exchange
ssDNA Single-stranded DNA
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMP</td>
<td>Thymidine-5′-monophosphate</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>Tris (hydroxymethyl) amino methane hydrochloride</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>Zn(OAc)$_2$</td>
<td>Zinc(II) acetate</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DECLARATION ... i

PUBLICATIONS ... iv

ACKNOWLEDGEMENTS .. ii

ABSTRACT .. v

ABBREVIATIONS .. viii

TABLE OF CONTENTS ... xii

LIST OF FIGURES .. xvii

LIST OF TABLES ... xx

Chapter 1 Introduction to Biological Mass Spectrometry 1

1.1 Development of Biological Mass Spectrometry .. 1

1.2 Current Ionisation Techniques Used in Biological Mass Spectrometry 3

1.2.1 Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry .. 3

1.2.2 Electrospray ionisation (ESI) mass spectrometry .. 5

1.3 Non-Covalent Complexes ... 8

1.3.1 Brief overview of techniques for studying non-covalent complexes... 10

1.3.2 ESI-MS studies of non-covalent complexes ... 14

1.3.2.1 ESI-MS of protein-DNA complexes .. 15

1.3.2.2 ESI-MS of protein-metal and protein-ligand complexes 17
1.3.2.3 ESI-MS of dsDNA ... 18
1.3.2.4 ESI-MS of dsDNA-drug complexes 21
1.3.2.5 ESI-MS of multimeric protein subunits 23

1.4 Scope of the Thesis .. 25

Chapter 2 Materials & Methods .. 28

2.1 Materials .. 28

2.2 Methods .. 29

2.2.1 Reactions of oligonucleotides with ruthenium compounds 29

Preparation of oligonucleotides .. 29

Preparation of 16-mer double-stranded DNA (dsDNA) 30

Titration of dsDNA with ruthenium complexes 30

Competition for dsDNA among ruthenium compounds 31

Competition between ruthenium compounds and organic drugs 32

Melting temperatures of drug-DNA complexes determined by UV
spectroscopy ... 33

2.2.2 Preparation of proteins, protein-metal and protein-protein complexes 34

Determination of protein concentrations 34

Metal ion binding to ε186 ... 35

Spectrophotometric assay of ε186 activity 36

Oligomerisation of DnaB and DnaB mutants 36

Formation of (DnaB)_6(DnaC)_x complexes 37

Hydrogen/deuterium (H/D) exchange of linear and cyclised DnaB-N ... 39

2.2.3 Mass spectrometry ... 41

Conditions for mass spectrometry ... 41
Chapter 3 Non-Covalent Interactions between DNA and Metallointercalators

3.1 Structure of DNA

3.2 DNA-Drug Interactions

3.2.1 Covalent (irreversible) binding

3.2.2 Non-covalent (reversible) binding

3.3 Transition Metal Complexes

3.4 Interactions of Ruthenium-Based Intercalators with dsDNA

3.5 Applications of Ruthenium and Other Metal-Based Metallointercalators

3.6 Scope of This Chapter

3.7 Results and Discussion

3.7.1 Reactions of ruthenium compounds with individual 16-mer duplexes

3.7.1.1 Titration experiments

3.7.1.2 Competition experiments between ruthenium compounds

3.7.1.3 DNA selectivity

3.7.1.4 Saturation experiments

3.7.1.5 DNA melting experiments

3.7.2 Competition experiments involving ruthenium compounds and organic drugs

3.7.2.1 Competition between daunomycin and ruthenium compounds

3.7.2.2 Competition between distamycin and ruthenium compounds
Chapter 4 Investigation of Interactions of Metal ions with the Exonuclease Subunit of E. coli DNA Polymerase III

4.1 Introduction ... 105
4.2 Replication in Escherichia coli ... 106
4.3 DNA Polymerases .. 107
4.4 DNA Polymerase III Holoenzyme .. 109
 4.4.1 Epsilon (ε) ... 110
4.5 Metal Ions in Proteins and Enzymes .. 112
 4.5.1 Metal ion involvement in exonuclease activities of Pol I and Pol III115
4.6 Scope of This Chapter ... 118
4.7 Results and Discussion ... 119
 4.7.1 Binding of metal ions (Mn\(^{2+}\), Zn\(^{2+}\) and Dy\(^{3+}\)) to ε186 119
 4.7.2 Spectrophotometric assay of ε186 activity 130
4.8 Conclusions ... 136

Chapter 5 Oligomeric Forms of Escherichia coli Replicative Helicase

DnaB and Complexes with Its Loading Partner DnaC 137

5.1 Helicases .. 137
 5.1.1 DnaB helicase ... 137
 5.1.2 DnaC protein ... 140
5.2 ESI-MS of Large Macromolecular Complexes 142
5.3 Scope of This Chapter .. 144
Chapter 5

5.4 Results and Discussion ... 145
 5.4.1 Oligomers of DnaB and DnaB mutants revealed by nanoESI-MS... 145
 5.4.2 Effect of Mg$^{2+}$ concentration on oligomerisation of DnaB and mutants .. 153
 5.4.3 Titration of DnaB, F102W and D82N with DnaC 155
 5.4.4 Formation of complexes of DnaB and mutants with ADP 158

5.5 Conclusions ... 160

Chapter 6

Comparison of Unfolding Rates of Linear and Cyclised DnaB-N using Hydrogen/Deuterium Exchange 162

6.1 Introduction .. 162
 6.1.1 Protein splicing ... 163

6.2 Hydrogen/Deuterium Exchange (HDX) 167

6.3 Techniques for Probing Protein Conformational Dynamics and Interaction Sites of Protein Complexes 170
 6.3.1 Hydrogen exchange coupled with mass spectrometry (HX MS).... 171

6.4 Cyclisation of the N-terminal Domain of DnaB (DnaB-N) 174

6.5 Scope of This Chapter ... 176

6.6 Results and Discussion ... 177
 6.6.1 Hydrogen/deuterium exchange rates.. 177
 6.6.2 Effect of salt concentration on H/D exchange rates................. 187

6.7 Conclusions ... 192

REFERENCES .. 194

APPENDICES .. 247
LIST OF FIGURES

Figure 1.1 A schematic representation of the matrix-assisted laser desorption
ionisation (MALDI) process ... 4

Figure 1.2 A Schematic representation of droplet formation at atmospheric pressure
inside an ESI mass spectrometer source. ... 6

Figure 3.1 Essential features of the structure of double-stranded (ds) DNA 45

Figure 3.2 The A-, B- and Z-conformations of DNA. 47

Figure 3.3 Examples of small molecules that covalently bind to DNA 50

Figure 3.4 Structures of well known minor groove binders 54

Figure 3.5 X-ray crystallographic structures of complexes of a minor groove binder
and an intercalator with dsDNA ... 55

Figure 3.6 Structures of some intercalators .. 57

Figure 3.7 Enantioselective interactions of a ruthenium compound with B-DNA ... 59

Figure 3.8 Structures of ruthenium metallointercalators used in this study 62

Figure 3.9 The “molecular light switch” effect displayed by [Ru(bpy)_2(dppz)]^{2+} 63

Figure 3.10 Structure of a synthetic restriction enzyme 65

Figure 3.11 Oxidative repair of UV-damaged DNA by a rhodium metallointercalator
... 66

Figure 3.12 Negative ion ESI mass spectra of reaction mixtures containing different
ratios of [Ru(phen)_2(dppz)]^{2+} and D2 ... 69

Figure 3.13 Negative ion ESI mass spectra of reaction mixtures containing a 6:1
ratio of ruthenium compound and duplex D2 71

Figure 3.14 Relative abundances of non-covalent complexes obtained from reaction
mixtures containing a 6:1 ratio of ruthenium compound and duplex D2 76
Figure 3.15 Negative ion ESI mass spectra of reaction mixtures containing a 3:3:1 ratio of two ruthenium compounds and D1................................. 79

Figure 3.16 Crystal structure of Δ-α-[Rh[(R,R)-Me$_2$trien]phi]$^{3+}$ bound dsDNA 82

Figure 3.17 DNA sequence selectivity of [Ru(phen)$_2$(dpqMe$_2$)]$^{2+}$............................... 83

Figure 3.18 DNA sequence selectivity of [Ru(phen)$_3$]$^{2+}$.. 84

Figure 3.19 Relative abundances of ions assigned to non-covalent complexes present in ESI mass spectra of reaction mixtures containing [Ru(phen)$_2$(dpqC)]Cl$_2$ and D2... 87

Figure 3.20 DNA melting curves for D2... 89

Figure 3.21 Negative ion ESI mass spectra of reaction mixtures containing ruthenium compound, organic drug and D2................................. 94

Figure 3.22 Negative ion ESI mass spectra of reaction mixtures containing ruthenium compound, organic drug D3 ... 99

Figure 4.1 Structural model showing the stoichiometry of E. coli DNA polymerase III holoenzyme subunits ... 110

Figure 4.2 Proposed mechanism for hydrolysis of phosphodiester bonds by the ε subunit of DNA polymerase III... 117

Figure 4.3 Positive ion ESI mass spectra (transformed to a mass scale) of ε186 with increasing Mn$^{2+}$ concentrations... 120

Figure 4.4 Positive ion ESI mass spectra (transformed to a mass scale) of a 1:500 mixture of ε186:Mn$^{2+}$ before and after dialysis .. 123

Figure 4.5 Relative abundances of ε186, and complexes of ε186 with different numbers of bound Mn$^{2+}$ ions in ESI mass spectra ... 124

Figure 4.6 Relative abundances of ε186, and complexes of ε186 with different numbers of bound Zn$^{2+}$ ions in ESI mass spectra. 127
Figure 4.7 Relative abundances of ε^{186} and $\varepsilon^{\text{186}} + 1 \text{ Dy}^{3+}$ in ESI mass spectra of solutions containing different concentrations of Dy$^{3+}$ 129

Figure 4.8 Hydrolysis of pNP-TMP by ε^{186} in the presence of different metal ions .. 132

Figure 5.1 Model of the three dimensional structure of DnaB hexamer constructed from cryoelectron micrographs ... 139

Figure 5.2 Electron micrographs after self-organising map algorithm analysis showing different quaternary structures of the DnaB helicase at different pH .. 140

Figure 5.3 Models of the $(\text{DnaB})_6(\text{DnaC})_6$ complex developed from electron micrographs ... 141

Figure 5.4 A schematic representation of the custom-built Waters Q-ToF Ultima™ ... 143

Figure 5.5 X-ray crystal structure of the dimeric DnaB-N 145

Figure 5.6 Positive ion nanoESI mass spectra of full length DnaB and mutants... 147

Figure 5.7 Positive ion nanoESI mass spectra of titration experiments of hexameric DnaB and mutants with DnaC hexameric helicase with DnaC............. 157

Figure 5.8 An expansion of the m/z range \sim8920-9120 of the 34^+ ion from the nanoESI mass spectrum of F102H .. 159

Figure 6.1 Proposed mechanism of protein splicing 165

Figure 6.2 Kinetic mechanisms of amide hydrogen/deuterium exchange of native proteins .. 169

Figure 6.3 NMR structures of 9-lin- and 9-cz-DnaB-N 177

Figure 6.4 ESI-MS analysis of HDX for 3-lin- and 3-cz-DnaB-N 179
Figure 6.5 Relative abundance plots of peaks A and B obtained during HDX experiments for linear and cyclised DnaB-N containing different linker lengths in 10 mM NH₄OAc ... 184

Figure 6.6 First order plots of HDX of linear and cyclised DnaB-N containing different linker lengths in 10 mM NH₄OAc ... 185

Figure 6.7 ESI-MS analysis of HDX for 3-lin- and 3-cz-DnaB-N in in 100 mM NH₄OAc. .. 188

Figure 6.8 Relative abundance plots of peaks A and B obtained during HDX experiments for linear and cyclised DnaB-N containing different linker lengths in 100 mM NH₄OAc .. 190

Figure 6.9 First order plots of HDX of linear and cyclised DnaB-N containing different linker lengths in 100 mM NH₄OAc ... 191

LIST OF TABLES

Table 2.1 Compositions of reaction mixtures used for competition experiments among ruthenium compounds and organic drugs 33

Table 2.2 Extinction coefficients (ε₂₈₀) used to determine protein concentrations. 34

Table 2.3 Examples of compositions of (DnaB)₆(DnaC)ₓ, (F102W)₆(DnaC)ₓ or (D82N)₆(DnaC)ₓ oligomerisation mixtures ... 39

Table 2.4 ESI-MS conditions used for the analysis of ruthenium-DNA and protein samples .. 43

Table 3.1 DNA melting temperatures obtained from reaction mixtures containing D2 and different ruthenium compounds .. 90
Table 4.1 Kinetics and equilibrium parameters for ε186 treated with Mn$^{2+}$, Zn$^{2+}$ or Dy$^{3+}$... 134

Table 5.1 Calculated values of m/z for the 35$^+$ ion of hexameric DnaB ((DnaB)$_6$) and its complexes with ADP and magnesium ... 148

Table 6.1 Peptide sequences of the DnaB-N linkers used in this study. 177

Table 6.2 Average molecular masses of peaks A and B from HDX of DnaB-N with different linker lengths obtained at different salt concentrations 182

Table 6.3 Average numbers of amide protons exchanged obtained from solutions containing 10 and 100 mM NH$_4$OAc ... 182

Table 6.4 First order rate constants for unfolding of linear and cyclised DnaB-N with different linker lengths in 99% D$_2$O, 10 mM NH$_4$OAc. 186

Table 6.5 First order rate constants for unfolding of linear and cyclised DnaB-N with different linker lengths in 99% D$_2$O, 100 mM NH$_4$OAc. 192