Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation

Brid P. Callaghan
RMIT University

Alison Haythornthwaite
University of Queensland

Géza Berecki
RMIT University

Richard J. Clark
University of Queensland

David J. Craik
University of Queensland

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/ihmri

Part of the Medicine and Health Sciences Commons

Recommended Citation

Callaghan, Brid P.; Haythornthwaite, Alison; Berecki, Géza; Clark, Richard J.; Craik, David J.; and Adams, David J., "Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation" (2008). Illawarra Health and Medical Research Institute. 637.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation

Abstract

α-Conotoxins Vc1.1 and Rg1A are peptides from the venom of marine Conus snails that are currently in development as a treatment for neuropathic pain. Here we report that the α9α10 nicotinic acetylcholine receptor-selective conotoxins Vc1.1 and Rg1A potently and selectively inhibit high-voltage-activated (HVA) calcium channel currents in dissociated DRG neurons in a concentration-dependent manner. The post-translationally modified peptides vc1a and [P6O]Vc1.1 were inactive, as were all other α-conotoxins tested. Vc1.1 inhibited the ω-conotoxin-sensitive HVA currents in DRG neurons but not those recorded from Xenopus oocytes expressing CaV2.2, CaV2.1, CaV2.3, or CaV1.2 channels. Inhibition of HVA currents by Vc1.1 was not reversed by depolarizing prepulses but was abolished by pertussis toxin (PTX), intracellular GDPβS, or a selective inhibitor of pp60c-src tyrosine kinase. These data indicate that Vc1.1 does not interact with N-type calcium channels directly but inhibits them via a voltage-independent mechanism involving a PTX-sensitive, G-protein-coupled receptor. Preincubation with a variety of selective receptor antagonists demonstrated that only the GABAB receptor antagonists, [S-(R*,R*)]-3-[[1-(3,4-dichlorophenyl)ethyl]amino]-2-hydroxy propyl][3,4-cyclohexymethyl] phosphinic acid hydrochloride (2S)-3[[1S]-1-(3,4-dichlorophenyl)-ethyl]amino-2-hydroxypropyl][phenylmethyl] phosphinic acid and phaclofen, blocked the effect of Vc1.1 and Rg1A on Ca 2+ channel currents. Together, the results identify CaV2.2 as a target of Vc1.1 and Rg1A, potentially mediating their analgesic actions. We propose a novel mechanism by which α-conotoxins Vc1.1 and Rg1A modulate native N-type (CaV2.2) Ca2+ channel currents, namely acting as agonists via G-protein-coupled GABAB receptors.

Disciplines

Medicine and Health Sciences

Publication Details

Callaghan, B. P., Haythornthwaite, A., Berecki, G., Clark, R. J., Craik, D. J. & Adams, D. J. (2008). Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. The Journal of Neuroscience, 28 (43), 10943-10951.

Authors

Brid P. Callaghan, Alison Haythornthwaite, Géza Berecki, Richard J. Clark, David J. Craik, and David J. Adams

This journal article is available at Research Online: https://ro.uow.edu.au/ihmri/637
Introduction

Conotoxins are small peptides derived from the venom of the Conus genus of predatory marine snails (Terlau and Olivera, 2004). Many conotoxins are highly selective antagonists of a diverse range of mammalian ion channels and receptors associated with pain pathways. Thus, conotoxins are attractive as drug leads for treating neuropathic pain. Previous studies have demonstrated the analgesic potential of several different classes of conotoxins (Adams et al., 1999; Livett et al., 2004) and, most recently, antagonists of neuronal nicotinic acetylcholine receptors (nAChRs) have begun to show promise for the treatment of neuropathic pain. This work was supported by an Australian Research Council (ARC) Discovery Grant (D.J.A., D.J.C.) and a National Health and Medical Research Council Program Grant (D.J.A.). G.B. is a University of Queensland Postdoctoral Research Fellow and D.J.C. is an ARC Postdoctoral Fellow. We are grateful for helpful discussions with Prof. Mac Christie (University of Sydney, Sydney, Australia), Dr. Richard Lewis (University of Queensland, Brisbane, Australia), and Prof. Gerald Zamponi (University of Calgary, Calgary, Alberta, Canada).

Correspondence should be addressed to Dr. David J. Adams, Queensland Brain Institute, The University of Queensland, Brisbane, Qld 4072, Australia. E-mail: dadams@uq.edu.au.

Received July 23, 2008; revised Aug. 30, 2008; accepted Sept. 8, 2008.

Copyright © 2008 Society for Neuroscience 0270-6474/08/2810943-09$15.00/0

DOI: 10.1523/JNEUROSCI.3594-08.2008

Cellular/Molecular

Analgesic α-Conotoxins Vc1.1 and Rg1A Inhibit N-Type Calcium Channels in Rat Sensory Neurons via GABA_B Receptor Activation

Brid Callaghan, Alison Haythornthwaite, Ge´za Berecki, Richard J. Clark, David J. Craik, and David J. Adams

1 Queensland Brain Institute and School of Biomedical Sciences, and 2 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia

α-Conotoxins Vc1.1 and Rg1A are peptides from the venom of marine Conus snails that are currently in development as a treatment for neuropathic pain. Here we report that the α9α10 nicotinic acetylcholine receptor-selective conotoxins Vc1.1 and Rg1A potently and selectively inhibit high-voltage-activated (HVA) calcium channel currents in dissociated DRG neurons in a concentration-dependent manner. The post-translationally modified peptides vc1a and [P6O]Vc1.1 were inactive, as were all other α-conotoxins tested. Vc1.1 inhibited the α-conotoxin-sensitive HVA currents in DRG neurons but not those recorded from Xenopus oocytes expressing CaV2.2, CaV2.1, CaV2.3, or CaV1.2 channels. Inhibition of HVA currents by Vc1.1 was not reversed by depolarizing prepulses but was abolished by pertussis toxin (PTX), intracellular GDPβS, or a selective inhibitor of pp60c-src tyrosine kinase. These data indicate that Vc1.1 does not interact with N-type calcium channels directly but inhibits them via a voltage-independent mechanism involving a PTX-sensitive, G-protein-coupled receptor. Preincubation with a variety of selective receptor antagonists demonstrated that only the GABA_B receptor antagonists, [S-(R*,R*)][3-][1-(3,4-dichlorophenyl)ethyl][amino]-2-hydroxypropyl][3,4]-cyclohexymethyl] phosphinic acid hydrochloride (2S)-3[[1(S)-1-(3,4-dichlorophenyl)-ethyl][amino]-2-hydroxypropyl][phenylmethyl] phosphinic acid and phaclofen, blocked the effect of Vc1.1 and Rg1A on Ca2+ channel currents. Together, the results identify CaV2.2 as a target of Vc1.1 and Rg1A, potentially mediating their analgesic actions. We propose a novel mechanism by which α-conotoxins Vc1.1 and Rg1A modulate native N-type (CaV2.2) Ca2+ channel currents, namely acting as agonists via G-protein-coupled GABA_B Receptors.

Key words: conotoxins; N-type calcium channel; dorsal root ganglion; GABA_B receptor; G-protein; analgesia

α-Conotoxin Vc1.1, which was first discovered using a PCR screen of cDNAs from the venom ducts of Conus victoriae (Sandall et al., 2003), contains two residues, Pro6 and Glu14, that are post-translationally modified to hydroxyproline and γ-carboxyglutamate, respectively, in the native peptide, designated vc1a (Jakubowski et al., 2004). Synthetic Vc1.1 lacking these two modifications is a competitive antagonist of neuronal nAChRs in bovine adrenal chromaffin cells (Clark et al., 2006) and is potent at recombinant α9α10 nAChRs expressed in Xenopus oocytes (Vincler et al., 2006; Nevin et al., 2007). Furthermore, Vc1.1 and its post-translationally modified analogs vcl (Clark et al., 2006), [P6O]Vc1.1, and [E14Y]Vc1.1 have been reported to be equally potent at inhibiting ACh-evoked currents mediated by α9α10 nAChRs (Nevin et al., 2007). Vc1.1 also antagonizes the nicotine-induced increase in axonal excitability of unmyelinated C-fiber axons in isolated segments of peripheral human nerves (Lang et al., 2005). Blockade of nAChRs on unmyelinated peripheral nerve fibers may have an analgesic effect on unmyelinated C-fibers and/or sensory axons. Interestingly, synthetic vcl, which incorporates the modified residues, has been reported to inhibit α9α10 (Nevin et al., 2007) but not α3-containing (Clark et al., 2006) nAChRs expressed in Xenopus oocytes and is inactive with varying degrees of selectivity for different nAChR subtypes (McIntosh et al., 1999).
in two rat neuropathic pain assays (Livett et al., 2006). In contrast, Vc1.1 alleviates neuropathic pain in three rat models of human neuropathic pain and accelerates the functional recovery of injured neurons (Satkunanathan et al., 2005). α-Conotoxin Rg1A from Conus regius, which also selectively inhibits α9α10 nAChRs (Ellison et al., 2006), has similarly been shown to significantly reduce chronic constriction nerve injury-induced hyperalgesia in rats (Vincler et al., 2006; Vincler and McIntosh, 2007). Thus, although Vc1.1 is currently under development as a treatment for neuropathic pain (Livett et al., 2004, 2006), its specific receptor target has not been unequivocally identified. We show here that Vc1.1 and Rg1A act by an unexpected mechanism not reported previously for any conotoxin.

Materials and Methods

DRG neuron preparation. DRG neurons were enzymatically dissociated from ganglia of 2- to 30-d-old Wistar rats according to standard protocols. Rats were killed by cervical dislocation as approved by the University of Queensland Animal Ethics Committee, the spinal column was hemi-segmented, and the spinal cord was removed. Ganglia were removed and rinsed in cold HBSS (MultiCell). They were minced and incubated in 1 mg/ml collagenase (type 2; 405 U/mg) (Worthington Biochemical) in HBSS at 37°C for ~30 min. After incubation, ganglia were rinsed three times with warm (37°C) DMEM (Invitrogen) supplemented with 10% fetal calf serum and 1% penicillin/streptomycin, and gently triturated with a fire-polished Pasteur pipette. Cells were plated on glass coverslips, incubated at 37°C in 95% O2/5% CO2, and used within 4–48 h.

Electrophysiological methods. The external recording solution for rat DRG neurons contained the following (in mM): 150 tetraethylammonium (TEA)-Cl, 2 BaCl2, 10 D-glucose, and 10 HEPES, pH 7.3–7.4. Re-ported previously for any conotoxin.

Before recording, oocytes were injected with 25 nl of 50 mM BAPTA to eliminate the endogenous Ca2+–activated chloride conductance. Depolarization-activated Ca2+ channel currents were recorded using Ba2+ as a charge carrier and a two-electrode virtual ground voltage-clamp circuit with a GeneClamp 500B amplifier (Molecular Devices). The external bath solution contained the following (in mM): 85 TEA-OH, 5 BaCl2, 5 KCl, and 10 HEPES, pH 7.4, with methanesulfonic acid. During recording, oocytes were constantly perfused with bath solution using a gravity-fed perfusion system at a flow rate of ~1.5 ml/min. Electrodes were filled with a solution containing 3 M KCl (0.5–1.0 MΩ). Oocytes were voltage clamped at a holding potential of ~80 mV and membrane currents were elicited by 200 ms depolarization to 0 mV (for Ca2+, 2.2) or +20 mV (for Ca2+, 2.1) applied every 10 s. To construct I–V relationships, cells were voltage-clamped at ~80 mV and then stepped from ~80 mV to +50 mV in 10 mV increments. Data were low-pass filtered at 2 kHz, digitized at 10 kHz, leak subtracted online using a –P/4 protocol, and analyzed off-line.

Data analysis. Data were analyzed off-line using pClamp 9.2 software (Molecular Devices). Peak Ba2+ current amplitude in response to a depolarizing pulse was calculated and plotted against time to monitor stability of the recording. Generally, Ba2+ current reached steady state within 2–5 min of initial recording, and any recordings that did not reach steady state were discarded. Drugs were applied via perfusion in the bath solution. Current amplitudes obtained in the presence of the drug were normalized by dividing by the current amplitude obtained under control conditions. Concentration–response relationships were obtained using GraphPad Prism software by plotting normalized current amplitude as a function of drug concentration and were fitted using a logistic equation. Numerical data are presented as mean ± SEM.

Drugs and chemicals. CGP53845 (2S)-[(1S,1)-3-(4,3-dichlorophenyl)-ethyl]amino-2-hydroxypropyl[phenethyl] phosphinic acid, CGP54626 {5-[(R*,R*)]-3-[1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl[3,4]-cylohexymethyl} phosphinic acid hydrochloride, and pp60c-src peptide (521-533) corresponding to its C-terminal regulatory domain were purchased from Toarcis Bioscience. The peptide binds pp60c-src at the Src homology 2 domain suppressing its tyrosine kinase activity (Roussel et al., 1991). Phaclofen (3-amino-2-(4-chlorophenyl)propylphosphonic acid was from BIOMOL. All other drugs were obtained from Sigma-Aldrich and were prepared as concentrated stock solutions which were then diluted in bath solution and applied via perfusion. The α-conotoxins CVID and MVIIA were prepared as described previously (Lewis et al., 2000). α-Conotoxin Vc1.1, [P60]Vc1.1, [E144]Vc1.1, vcl1, Rg1A, IML, MI, BulA and [A10L]PnIA, were synthesized as reported previously (Gehrmann et al., 1999; Hogg et al., 1999; Blanchfield et al., 2003; Clark et al., 2006, 2008; Jin et al., 2007) and provided as a stock concentration in H2O of ~1 μM and used at a final concentration of 0.1 μM to 1 μM. Reduced Vc1.1 was prepared by incubation with dithiothreitol (2 μM; 1 h; room temperature) or alkylated with iodoacetamide in 0.1 M ammonium acetate buffer.

Results

α9α10 nAChR-selective conotoxins, Vc1.1 and Rg1A, inhibit voltage-gated Ca2+ channel currents in rat DRG neurons

In an attempt to account for α-conotoxin Vc1.1-induced analgesia and to elucidate the receptor target and mechanism of action, the effects of the conotoxins, Vc1.1 and Rg1A, were investigated on voltage-gated Ca2+ channel currents in rat DRG neurons. Whole-cell Ca2+ channel currents of rat DRG neurons are mediated by both LVA and HVA calcium channels (Scruggs and Fox, 1992). The effect of Vc1.1 on Ca2+ channel currents recorded from neonatal (2- to 10-d-old) rat DRG neurons was initially assessed using a two-step protocol (see Materials and
Vc1.1 inhibition of VGCC currents was not reversed during washout. However, reapplication of Vc1.1 produced an equivalent inhibition of HVA Ca\(^{2+}\) channel currents in other DRG neurons on the same coverslip (n = 5 sets), suggesting that depolarization-induced Ca\(^{2+}\) channel activation is required for inhibition by Vc1.1.

To further assess the dependence of Vc1.1 inhibition on activation of HVA Ca\(^{2+}\) channel currents, we varied the frequency and duration of the depolarizing pulse in the presence of Vc1.1 (Fig. 2). When the depolarization pulse was shortened to 15 ms with the frequency maintained at 0.05 Hz, 100 nM Vc1.1 inhibited the current to only 88.4 \(\pm\) 3.3% of control in all cells tested (n = 24). However, when the frequency of the 15 ms pulse was increased to 0.1 Hz, the current was reduced to 51.1 \(\pm\) 5.6% of control in all cells tested (n = 7) (Fig. 2A, B). Figure 2B also shows the relative inhibition of Ba\(^{2+}\) currents by Vc1.1, using the standard depolarizing pulse duration (150 ms) at both 0.05 Hz and 0.1 Hz. The action of Vc1.1 does not depend on a rise in intracellular divalent cation, because the inhibition was also observed with 2 mM Ca\(^{2+}\) as the charge carrier. In 9 of 12 cells, Vc1.1 (100 nM) inhibited the HVA Ca\(^{2+}\) current amplitude to 61.4 \(\pm\) 5.2% of control and was not reversible on washout (>30 min) (Fig. 2C). Furthermore, in fura-2-loaded DRG neurons, bath application of 1 \(\mu\)M Vc1.1 alone failed to elicit any increase in intracellular Ca\(^{2+}\) concentration (n = 14, data not shown).

Application of \(\alpha\)-conotoxin RgIa (100 nM) also significantly inhibited HVA Ca\(^{2+}\) channel currents in rat DRG neurons (11 of 14 responding cells) to 60.6 \(\pm\) 4.5% of control (Fig. 3A).

Post-translationally modified analogs of Vc1.1 and other \(\alpha\)-conotoxins do not inhibit HVA Ca\(^{2+}\) channel currents in DRG neurons

The effects of post-translationally modified analogs of Vc1.1 were examined on HVA Ca\(^{2+}\) channel currents from rat DRG neurons under the same conditions as Vc1.1. The native peptide, vc1a, did not inhibit HVA Ca\(^{2+}\) channel currents (100.0 \(\pm\) 4.8% of control, n = 9); however, the same cells responded to Vc1.1 after washout of vc1a (Fig. 3B, C). [P6O]Vc1.1 had no effect on HVA Ca\(^{2+}\) channel currents (103.7 \(\pm\) 7.2% of control, n = 9) (Fig. 3C), whereas four of five cells from this test group subsequently responded to Vc1.1 after washout of [P6O]Vc1.1. [E14\(\gamma\)]Vc1.1 was also without effect (110.1 \(\pm\) 9.2% of control, n = 7) (Fig. 3C), but after its removal, all cells of this group tested with Vc1.1 showed a response (n = 6). Both reduced Vc1.1 and alkylated Vc1.1 (1 \(\mu\)M) were without effect on HVA Ca\(^{2+}\) channel currents, whereby the peak current amplitude was 98.8 \(\pm\) 7.1% of control (n = 10) and 104.9 \(\pm\) 11.4% of control (n = 3), respectively (Fig. 3C).

The effects of other 4/7 \(\alpha\)-conotoxins (MII and [A10L]PnIa) as well as the 4/3 \(\alpha\)-conotoxin Iml, and the 4/4 \(\alpha\)-conotoxin BuIA were examined to ascertain whether inhibition of HVA Ca\(^{2+}\) channel currents was a common characteristic of \(\alpha\)-conotoxins.
α-Conotoxins ImI, MII, BuIA, and [A10L]PnIA applied at a concentration of either 100 nM or 1 μM did not inhibit HVA Ca\(^{2+}\) channel currents in DRG neurons (ImI, 95.5 ± 5.1% of control, n = 7; MII, 93.2 ± 1.6% of control, n = 3; BuIA, 97.5 ± 7.9% of control, n = 8; [A10L]PnIA, 91.0 ± 4.1% of control, n = 10) (Fig. 3C). Another conopeptide structurally related to the 4/7 α-conotoxins, ρ-TIA, an allosteric α\(_7\)-adrenoceptor antagonist (Sharpe et al., 2003), also failed to inhibit HVA Ca\(^{2+}\) channel currents in DRG neurons when bath applied at 100 nM (n = 6, data not shown).

Vc1.1 inhibits the N-type component of HVA Ca\(^{2+}\) channel currents in DRG neurons

The selective N-type Ca\(^{2+}\) channel blockers, ω-conotoxins CVID and MVIIA, were applied to determine which component of the whole-cell HVA Ca\(^{2+}\) channel currents Vc1.1 inhibited in DRG neurons. Bath application of 200 nM CVID reduced peak Ca\(^{2+}\) channel current amplitude to 54.4 ± 4.8% of control (n = 6). Application of 1 μM Vc1.1 in the presence of CVID (200 nM) produced no further reduction of the HVA Ca\(^{2+}\) channel current amplitude (51.7 ± 5.1% of control, n = 6) (Fig. 4A–C). Figure 4C also shows the result of the converse experiment, that is, the average response of cells to CVID (200 nM) after Vc1.1 (≥100 nM) application. Similar results were obtained with bath application of 100 nM ω-conotoxin MVIIA, with 51.6 ± 5.6% of the current remaining after application of MVIIA and 50.4 ± 0.1% remaining in the presence of MVIIA and 100 nM Vc1.1 (n = 5) (data not shown). These data suggest that Vc1.1 inhibits the N-type Ca\(^{2+}\) channel in DRG neurons.

Action of Vc1.1 on expressed Ca\(_{V2.1}\) and Ca\(_{V2.2}\) channels in oocytes

To assess whether Vc1.1 directly inhibits HVA Ca\(^{2+}\) channels, the α subunits of Ca\(_{V2.1}\) (P/Q-type) and Ca\(_{V2.2}\) (N-type) channels were expressed in Xenopus oocytes together with the auxiliary subunits β/α\(_{7}\)δ/δ in the ratio 1:1:1. Bath application of 1 μM Vc1.1 did not significantly inhibit the Ba\(^{2+}\) current amplitude for oocytes expressing Ca\(_{V2.2}\) channels (91.3 ± 2.2% of control, n = 8) (Fig. 5A, C). Analogous to Ca\(_{V2.2}\)-expressing oocytes, 1 μM Vc1.1 did not inhibit Ba\(^{2+}\) currents mediated by Ca\(_{V2.1}\) channels.
8.2% of control, \(n = 4 \) (Fig. 5B, C). Raising the Vc1.1 concentration to 10 \(\mu M \) similarly failed to inhibit the Ba\(^{2+} \) currents mediated by either Ca\(_{v}2.1\) or Ca\(_{v}2.2\) channels expressed in oocytes. A similar lack of effect of Vc1.1 on Ca\(_{v}2.1\) (R-type) and Ca\(_{v}1.2\) (L-type) channels expressed in Xenopus oocytes was also observed (data not shown). To investigate whether the auxiliary subunits influence the sensitivity of recombinant Ca\(^{2+}\) channels to Vc1.1 (Yasuda et al., 2004), oocytes were injected with the subunit combination Ca\(_{v}2.2\)/\(\beta_{2} \) in a 1:1 ratio. Although cells expressing Ca\(_{v}2.2\)/\(\beta_{2} \) elicited smaller Ca\(^{2+}\) channel currents than those expressed by Ca\(_{v}2.2\)/\(\beta_{1}\alpha_{4}\delta_{1} \), the Ba\(^{2+}\) current amplitude was not appreciably changed (88 ± 6.5% of control, \(n = 3 \)) in the presence of 1 \(\mu M \) Vc1.1 (Fig. 5C). Together, these data indicate that Vc1.1 does not interact with either Ca\(_{v}2.1\) (P/Q-type) or Ca\(_{v}2.2\) (N-type) channels directly, and that Vc1.1 modulation of HVA Ca\(^{2+}\) channel currents occurs via an indirect mechanism.

Vc1.1 inhibits HVA Ca\(^{2+}\) channel currents via a G-protein-coupled receptor mechanism and src tyrosine kinase

The role of G-proteins in mediating Vc1.1 inhibition of HVA Ca\(^{2+}\) channel currents in DRG neurons was examined by replacing GTP with GDP\(_{S}\), a nonhydrolyzable GDP analog, in the intracellular recording solution. GDP\(_{S}\) antagonized the effect of Vc1.1 on Ca\(^{2+}\) channel currents in the absence (control) (a) and presence (b) of 1 \(\mu M \) Vc1.1. Together, these data indicate that Vc1.1 does not interact with either Ca\(_{v}2.1\) (P/Q-type) or Ca\(_{v}2.2\) (N-type) channels directly, and that Vc1.1 modulation of HVA Ca\(^{2+}\) channel currents occurs via an indirect mechanism.
Ca2+ channel currents in the presence of the pp60c-src peptide (101.39 ± 6.9% of control, n = 10) (Fig. 6 B,C).

Vc1.1 inhibits HVA Ca2+ channel currents in DRG neurons via GAB\textsubscript{A}B\textsubscript{R} receptor

To investigate further the identity of the primary target for Vc1.1, a number of different receptor antagonists were tested for their ability to antagonize the effect of Vc1.1 (Table 1). Antagonists of neuronal nAChRs, mecamylamine and hexamethonium, and desensitizing concentrations of ACh were bath applied ∼5 min before application of Vc1.1 and in all cases failed to antagonize the inhibition of N-type VGCC currents in DRG neurons by Vc1.1. Similarly, the muscarinic acetylcholine receptor antagonist, atropine, the \(\alpha\text{I}-\) and \(\alpha\text{II}-\)adrenergic receptor antagonists, prazosin and yohimbine, respectively, the \(\mu\) opioid receptor antagonist, naloxone, and the GAB\textsubscript{A}B\textsubscript{R} receptor antagonist, bicuculine, all failed to antagonize the effect of Vc1.1 in the majority of cells tested.

Table 1. Receptor antagonists tested for reversal of the inhibition of N-type calcium channel currents by \(\alpha\text{v}-\)conotoxin Vc1.1.

| Antagonist (concentration) | Target receptor | Antagonist of Vc1.1 inhibition | Percentage inhibition of \(I_n\) by Vc1.1 (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mecamylamine (3 (\mu\text{M}))</td>
<td>nAChR</td>
<td>–</td>
<td>29.2 ± 8.6 (3)</td>
</tr>
<tr>
<td>ACh (100 (\mu\text{M}))</td>
<td>nAChR</td>
<td>–</td>
<td>28.4 ± 4.5 (7)</td>
</tr>
<tr>
<td>Atropine (1 (\mu\text{M}))</td>
<td>nAChR</td>
<td>–</td>
<td>27.2 ± 10.4 (4)</td>
</tr>
<tr>
<td>Prazosin (10 (\mu\text{M}))</td>
<td>(\alpha\text{I}-)Adrenergic</td>
<td>–</td>
<td>41.3 ± 4.8 (3)</td>
</tr>
<tr>
<td>Yohimbine (10 (\mu\text{M}))</td>
<td>(\alpha\text{II}-)Adrenergic</td>
<td>–</td>
<td>35.8 ± 11.5 (3)</td>
</tr>
<tr>
<td>Naloxone (10 (\mu\text{M}))</td>
<td>(\mu)-Opioid</td>
<td>–</td>
<td>50.1 ± 12.4 (3)</td>
</tr>
<tr>
<td>Bicuculline (30 (\mu\text{M}))</td>
<td>GAB\textsubscript{A}B\textsubscript{R}</td>
<td>–</td>
<td>32.9 ± 7.0 (10)</td>
</tr>
<tr>
<td>Phaclofen (50 (\mu\text{M}))</td>
<td>GAB\textsubscript{A}B\textsubscript{R}</td>
<td>+</td>
<td>4.6 ± 4.4 (9)</td>
</tr>
<tr>
<td>CGP 55845 (1 (\mu\text{M}))</td>
<td>GAB\textsubscript{A}B\textsubscript{R}</td>
<td>+</td>
<td>6.8 ± 4.5 (14)</td>
</tr>
<tr>
<td>CGP 54626 (1 (\mu\text{M}))</td>
<td>GAB\textsubscript{A}B\textsubscript{R}</td>
<td>+</td>
<td>7.4 ± 2.3 (4)</td>
</tr>
</tbody>
</table>

\(\pm\), Reversal of Vc1.1 inhibition; –, no effect; nAChR, muscarinic acetylcholine receptor.

Nonreceptor tyrosine kinases have been implicated in voltage-independent inhibition of N-type Ca2+ channel currents initiated by activation of GPCR pathways (Diversé-Pierluissi et al., 1997; Strock and Diversé-Pierluissi, 2004; Raingo et al., 2007). We therefore tested the ability of Vc1.1 to inhibit HVA Ca2+ channel currents when a selective peptide inhibitor of pp60c-src tyrosine kinase (Roussel et al., 1991) (100 \(\mu\text{M}\)) was included in the intracellular recording solution. Vc1.1 had no effect on HVA channel currents mediated by G-protein-coupled receptor and tyrosine kinase activation. A(i), Superimposed traces in the absence (a) and presence (b) of 1 \(\mu\text{M}\) Vc1.1 in cells incubated overnight in PTX (3 \(\mu\text{M}\)). Cells were recorded under continual perfusion of PTX (200 ng/ml). (ii), Corresponding time course. B(i), Superimposed traces in the absence (a) and presence (b) of Vc1.1 (1 \(\mu\text{M}\)) in cells recorded with pp60c-src peptide (521-533) inhibitory peptide (100 \(\mu\text{M}\)) included in the recording pipette. (ii), Corresponding time course. C, Bar graph of relative inhibition of HVA calcium channel currents by Vc1.1 (1 \(\mu\text{M}\)) in regular recording solution (GTP), when a prepulse to +80 mV (+PP) was applied 10 ms before the test pulse, when GTP was replaced with GDP/BS, after overnight incubation in PTX, or when pp60c-src inhibitory peptide was included in the pipette recording solution. **p = 0.0001 compared with control. Numbers in parentheses reflect the number of cells.

remaining after addition of 100 nM Vc1.1 in the presence of GDP/BS (n = 15) (Fig. 6C).

These results suggest that Vc1.1 inhibits N-type Ca2+ channel currents in DRG neurons via a G-protein-coupled receptor (GPCR) mechanism. Vc1.1 inhibition also persisted after application of depolarizing prepulses to +80 mV, suggesting a voltage-independent inhibitory pathway (n = 7) (Fig. 6C). Incubation of cells in medium containing 3 \(\mu\text{g}/\text{ml}\) pertussis toxin (PTX) for 24 h antagonized the inhibition of VGCC currents by Vc1.1 (99.9 ± 4.5% of control, n = 11) (Fig. 6A,C). Together, these results suggest that the mechanism by which Vc1.1 inhibits HVA Ca2+ channel currents involves a PTX-sensitive GPCR of the G\textsubscript{G\alpha/\gamma0} subfamily.

Table 1. Receptor antagonists tested for reversal of the inhibition of N-type calcium channel currents by \(\alpha\text{v}-\)conotoxin Vc1.1.

| Antagonist (concentration) | Target receptor | Antagonist of Vc1.1 inhibition | Percentage inhibition of \(I_n\) by Vc1.1 (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mecamylamine (3 (\mu\text{M}))</td>
<td>nAChR</td>
<td>–</td>
<td>29.2 ± 8.6 (3)</td>
</tr>
<tr>
<td>ACh (100 (\mu\text{M}))</td>
<td>nAChR</td>
<td>–</td>
<td>28.4 ± 4.5 (7)</td>
</tr>
<tr>
<td>Atropine (1 (\mu\text{M}))</td>
<td>nAChR</td>
<td>–</td>
<td>27.2 ± 10.4 (4)</td>
</tr>
<tr>
<td>Prazosin (10 (\mu\text{M}))</td>
<td>(\alpha\text{I}-)Adrenergic</td>
<td>–</td>
<td>41.3 ± 4.8 (3)</td>
</tr>
<tr>
<td>Yohimbine (10 (\mu\text{M}))</td>
<td>(\alpha\text{II}-)Adrenergic</td>
<td>–</td>
<td>35.8 ± 11.5 (3)</td>
</tr>
<tr>
<td>Naloxone (10 (\mu\text{M}))</td>
<td>(\mu)-Opioid</td>
<td>–</td>
<td>50.1 ± 12.4 (3)</td>
</tr>
<tr>
<td>Bicuculline (30 (\mu\text{M}))</td>
<td>GAB\textsubscript{A}B\textsubscript{R}</td>
<td>–</td>
<td>32.9 ± 7.0 (10)</td>
</tr>
<tr>
<td>Phaclofen (50 (\mu\text{M}))</td>
<td>GAB\textsubscript{A}B\textsubscript{R}</td>
<td>+</td>
<td>4.6 ± 4.4 (9)</td>
</tr>
<tr>
<td>CGP 55845 (1 (\mu\text{M}))</td>
<td>GAB\textsubscript{A}B\textsubscript{R}</td>
<td>+</td>
<td>6.8 ± 4.5 (14)</td>
</tr>
<tr>
<td>CGP 54626 (1 (\mu\text{M}))</td>
<td>GAB\textsubscript{A}B\textsubscript{R}</td>
<td>+</td>
<td>7.4 ± 2.3 (4)</td>
</tr>
</tbody>
</table>

\(\pm\), Reversal of Vc1.1 inhibition; –, no effect; nAChR, muscarinic acetylcholine receptor.
A (i) 0 mV
-70 mV
1 nA
50 ms
1 min
Phaclofen
VC1.1
1 nA
50 ms
1 min
B (i) 0 mV
-70 mV
1 nA
50 ms
1 min
CGP55845
VC1.1
1 nA
50 ms
1 min
C (i) -10 mV
-80 mV
1 nA
50 ms
1 min
Baclofen
VC1.1
1 nA
50 ms
1 min

Figure 7. GABAB receptor activation mediates Vc1.1 inhibition of N-type calcium channel currents in rat DRG neurons. A(i), Superimposed traces of depolarization-activated whole-cell Ba2+ currents in the presence of the GABAB inhibitor phaclofen (50 μM) followed by application of 100 nM VC1.1 (ii), Corresponding time course. Numbers on the plot indicate which points were used for sample traces in A(i). B(i), Superimposed traces of depolarization-activated whole-cell Ba2+ currents in the presence of another GABAB inhibitor CGP55845 (1 μM) (a), in the presence of CGP55845 and VC1.1 (100 nM) (b), and in the presence of VC1.1 alone (100 nM) (c). (ii), Corresponding time course. Numbers on the plot indicate which points were used for sample traces in B(i). C(i), Superimposed traces of depolarization-activated whole-cell Ba2+ currents in the absence (a), in the presence of the GABAB agonist baclofen (30 μM) (b), and in the presence of 100 nM VC1.1 (c). (ii), Corresponding time course. Numbers on the plot indicate which points were used for sample traces in C(i).

control, n = 4) was not significantly greater than that produced by 100 nM VC1.1 alone (61.2 ± 15.9% of control, n = 4) in the same cells. Similarly, application of VC1.1 (100 nm) after addition of 30 μM baclofen did not further inhibit HVA Ba2+ current amplitude (63.6 ± 7.2% of control, n = 5) compared with baclofen alone (64.6 ± 6.6% of control, n = 5) (Fig. 7C). Under the present recording conditions (150 ms depolarizing pulse to −10 mV applied at a frequency of 0.05 Hz), the time to maximum inhibition (9.3 ± 1.2 min) and reversal (<5% after 10 min washout) by 30 μM baclofen (n = 11) was significantly slower than when the depolarizing pulse was shortened to 15 ms or the frequency of depolarization was increased to 0.1 Hz (time to maximum inhibition occurred in 2.8 ± 0.9 min and complete recovery within 5 min after washout of baclofen, n = 5).

In subsequent experiments, we observed that in ~70% of oocytes expressing recombinant CaV2.2 (N-type) but not CaV2.1 (P/Q-type), CaV2.3 (R-type), or CaV2.1.2 (L-type) calcium channels, application of baclofen (100 μM) inhibited Ba2+ currents (supplemental Fig. 1, available at www.jneurosci.org as supplemental material). We therefore tested the effect of α-conotoxins VC1.1 and Rg1A in these oocytes. Both VC1.1 and Rg1A inhibited Ba2+ currents through recombinant CaV2.2 channels in baclofen–responding oocytes (n ≥ 28). Preincubation of oocytes with the selective GABAB receptor antagonist CGP55845 (1 μM) abolished the inhibition of Ba2+ currents observed with 1 μM VC1.1 (n = 4) (supplemental Fig. 2, available at www.jneurosci.org as supplemental material).

Discussion

To date, the α-conotoxins have been classified as competitive nAChR antagonists (Dutton and Craik, 2001; Livett et al., 2006). The present study is the first to identify the N-type calcium channel of mammalian DRG neurons as a target of the α-conotoxins VC1.1 and Rg1A. To the best of our knowledge, this study is also the first to describe conotoxin modulation of an ion channel via a G-protein receptor–activated pathway.

VC1.1 and Rg1A are of great interest as analgesic drugs because of their effectiveness in peripheral nerve–injured rats (Satkanathan et al., 2005; Vincler et al., 2006). Although these peptides have been shown to be potent antagonists of α9ε10 nAChRs, post-translationally modified analogs of VC1.1, [P6O]VC1.1, and Vc1a are ineffective in assays of neuropathic pain (Livett et al., 2006; Nevin et al., 2007). However, they are equipotent to VC1.1 as α9ε10 nAChR antagonists, indicating that this nAChR is not the therapeutic target of VC1.1 (Nevin et al., 2007).

N-type calcium channels are an appealing target of VC1.1 because they are well known to play a central role in the detection and transmission of nociceptive stimuli in DRG neurons (Altier and Zamponi, 2004). Several studies have highlighted the importance of N-type calcium channels in neuropathic pain: N-type α1β channel knock-out mice have a decreased response to neuropathic pain (Hatakeyama et al., 2001; Kim et al., 2001; Saegusa et al., 2001), there is an upregulation of N-type α1β as well as αδ subunits in rat nerve injury models (Abe et al., 2002; Gzikova et al., 2002; Yokoyama et al., 2003), and currently used treatments, or treatments being developed, for pain relief include direct (ω-conotoxin MVIIA, also known as Pcialt) and indirect (morphine) inhibitors of N-type channels (McGivern, 2006).

HVA Ca2+ channel currents of rat DRG neurons include contributions from N-, P/Q-, L-, and R-type calcium channels (Scruggs and Fox, 1992). The present study indicates that VC1.1 targets solely the N-type component of the whole-cell Ca2+ current, because it had no effect in the presence of the N-type Ca2+ channel blockers, α-conotoxins CVID and MVIIA. VC1.1 inhibition of N-type Ca2+ channel current was irreversible after wash-out of up to 30 min, but subsequent cells patched from the same coverslip were as sensitive to VC1.1 as the initial cell exposed to VC1.1. This suggests that VC1.1 inhibition of N-type current is dependent on membrane depolarization. Consistent with this hypothesis, VC1.1 had no effect on HVA Ca2+ currents in DRG neurons when the duration of the depolarization pulse was shortened to one-tenth of its initial duration with the frequency maintained at 0.05 Hz. VC1.1 inhibition was only observed with this short depolarizing pulse when the frequency was increased to 0.1 Hz.

DRG neurons have been shown to express a splice variant CaV2.2 that differs at exon 37 (Bell et al., 2004) from the peripheral splice variant we expressed, but extensive studies reported here indicate that the reason VC1.1 is ineffective on recombinant N-type Ca2+ channels is that it is acting via a G-protein receptor–activated pathway. Our results suggest that the GPCR responsible is the GABAB receptor: first, VC1.1 inhibition of N-type Ca2+ current was antagonized by selective GABAB receptor antagonists, and second, similar to previous studies of the GABAB receptor agonist baclofen in rat or chick DRG neurons (Dolphin and Scott, 1987; Richman and Diversé-Pierluissi, 2004; Raingo et
al., 2007), Vc1.1 inhibition of N-type Ca\(^{2+}\) currents in rat DRG neurons was antagonized when GTP was replaced in the patch pipette with GDPβS, when the cells were incubated overnight with PTX, and when c-Src tyrosine kinase activity was inhibited. Activation of the GABA\(_B\) receptor has been shown to inhibit N-type Ca\(^{2+}\) channel current by voltage-dependent (relieved by a strong depolarizing prepulse) and voltage-independent pathways, and to be readily reversible after washout of baclofen (Richman and Diversé-Pierluissi, 2004; Raingo et al., 2007). No relief of Vc1.1 inhibition was observed after depolarizing preps to +80 mV. Although baclofen inhibition during prolonged depolarizations (150 ms, 0.05 Hz) was also irreversible, baclofen inhibition of N-type Ca\(^{2+}\) current during short depolarization pulses (15 ms, 0.05 Hz) was rapidly reversible after washout of baclofen (our unpublished observations). These results suggest that Vc1.1 does not inhibit the N-type current via the fast, Gβγ-mediated, membrane-delimited, voltage-dependent pathway associated with GABA\(_B\) receptor activation. Rather, it activates a pathway that remains to be fully elucidated but involves pp60c-src tyrosine kinase and leads to a maintained inhibition of the N-type Ca\(^{2+}\) channel current, possibly as a result of persistent binding of Vc1.1 to the GABA\(_B\) receptor. Alternatively Vc1.1 may interact differently with the GABA\(_B\) receptor than baclofen, which binds to the Venus fly trap motif of the GABA\(_B\) subunit, leading to its closure and activation of the receptor (for review, see Emson, 2007).

Vc1.1 was without effect on recombinant Ca\(_{\alpha,2.1}\) (P/Q-type), Ca\(_{\alpha,1.2}\) (L-type), and Ca\(_{\alpha,2.3}\) (R-type) channels expressed in Xenopus oocytes. However, in subsequent experiments we found that baclofen activation of endogenous GABA\(_B\) receptors in batches of Xenopus oocytes mediates inhibition of Ba\(^{2+}\) current through recombinant Ca\(_{\alpha,2.2}\) (N-type) channels. In oocytes expressing endogenous GABA\(_B\) receptors, α-conotoxins Vc1.1 and Rg1A also inhibit recombinant Ca\(_{\alpha,2.2}\) channels via agonist activation of a GABA\(_B\) receptor-signaling pathway in Xenopus oocytes (Yang et al., 2001).

The characteristics of the G-protein-induced inhibition of voltage-dependent N-type calcium channels by Vc1.1 and Rg1A activation of GABA\(_B\) receptors is reminiscent of the agonist-induced internalization of N-type calcium channels observed in rat DRG neurons (Altier et al., 2006) and embryonic chick DRG neurons (Puckerin et al., 2006; Tombler et al., 2006). Prolonged exposure of opioid receptor-like receptor 1 (ORL1) receptors to the agonist nociceptin has been shown to trigger the internalization of the ORL1 receptors and Ca\(_{\alpha,2.2}\) channels coexpressed in human embryonic kidney tsA-201 cells (Altier et al., 2006), which is accompanied by a tonic inhibition of calcium entry. Baclofen, a GABA\(_B\) agonist, has also been shown to induce the rapid removal of α-conotoxin GVIA-sensitive (N-type) calcium channels from the plasma membrane of DRG neurons (Tombler et al., 2006). A mechanism proposed for the internalization of voltage-dependent calcium channels involves the selective binding of β-arrestin 1 to the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-binding region of the calcium channel whereby, on GABA\(_B\) receptor activation, receptors are recruited to the arrestin–channel complex and internalized (Puckerin et al., 2006). Furthermore, β-arrestins have been shown to be required to target nonreceptor tyrosine kinase c-Src to constitutively active G-protein–coupled μ-opioid receptors in DRG neurons, resulting in their internalization (Walwyn et al., 2007). It is likely, therefore, that α-conotoxin activation of GABA\(_B\) receptors and the inhibition of N-type calcium channels in DRG neurons is mediated by a mechanism similar to that reported previously for internalization of GPCR–channel complexes.

In conclusion, our results identify Ca\(_{\alpha,2.2}\) as a target of the analgesic α-conotoxins Vc1.1 and Rg1A. We propose a novel mechanism by which these α-conotoxins modulate N-type calcium channel currents in DRG neurons, that is, acting as agonists via G-protein-coupled GABA\(_B\) receptors. The activation of GABA\(_B\) receptors by agonists such as baclofen is well established to produce antinoceptive and antiallodynic actions in chronic pain models (Schuler et al., 2001; Betterl et al., 2004). Therefore, the activation of GABA\(_B\) receptors by Vc1.1 and Rg1A and subsequent inhibition of Ca\(_{\alpha,2.2}\) (N-type) channels is most likely the mechanism mediating their analgesic properties, despite their recently reported modulation, at lower efficacy, of the α9α10 nAChR (Vincler et al., 2006; Vincler and McIntosh, 2007).

References

