2007

The adaptive serializable snapshot isolation protocol for managing database transactions

Yang Yang
University of Wollongong

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
The Adaptive Serializable Snapshot Isolation Protocol for Managing Database Transactions

A thesis submitted in fulfillment of the requirements for the award of the degree

Master of Computer Science by Research

from

UNIVERSITY OF WOLLONGONG

by

Yang Yang

Computer Science Department
February 2007
© Copyright 2007

by

Yang Yang

All Rights Reserved
Dedicated to

My parents
Declaration

This is to certify that the work reported in this thesis was done by the author, unless specified otherwise, and that no part of it has been submitted in a thesis to any other university or similar institution.

Yang Yang
February 15, 2007
In this thesis, concept of database concurrency control, computational models of database transaction, the correct criterias of concurrent execution of transactions and concurrency control algorithms such as two phase locking, serialization graph testing, Snapshot Isolation are reviewed. A graph based mechanism is proposed for preserving Snapshot Isolation protocol(SI) serializable at run-time. Firstly, we present Dynamic Managed Snapshot Isolation Serialization Graph(called DSISG). By using this mechanism, non-serializable transactions under Snapshot Isolation protocol can be detected at run-time. Secondly, in order to guarantee the effectivity of DSISG, a new model of database transaction(segmented transaction model) is proposed. Thirdly, an algorithm of managing a hierarchical structured acyclic graph is presented. The run-time characterzing of non-serializable transaction under Snapshot Isolation protocol will be more efficient when this hierachical graph structure is applied to DSISG. We also summarize the contributions of this thesis and formulate some open problems.
Acknowledgments

I would like to extend my sincere thanks to my supervisor Dr. Janusz R. Getta without whose invaluable assistance this thesis would not have been possible.

My thanks also go to the technical staff in the school of Information Technology and Computer Science for the help they gave me.

I am also grateful to my parents and friends for their supports throughout this work.
Abstract v
Acknowledgments vi
1 Introduction 1
2 Database Concurrency Control 4
 2.1 Database Transaction .. 4
 2.2 Transaction model and conventions in concurrency control 6
 2.2.1 Transaction Application 6
 2.2.2 Page Model .. 7
 2.2.3 Object Model ... 9
 2.2.4 Semantic Model .. 10
 2.2.5 Transaction model used in this thesis 11
 2.3 Correct execution of concurrent transactions 12
 2.3.1 Typical concurrency problems 12
 2.3.2 Serializability of concurrent execution 14
3 Concurrency Control Algorithms 17
 3.1 Pessimistic Protocol ... 17
 3.1.1 Two Phase Locking .. 18
 3.1.2 Some variants of two phase locking 20
 3.2 Optimistic Protocol ... 22
 3.2.1 Long Transactions ... 22
 3.2.2 Serialization Graph Testing 23
 3.2.3 Time Stamp Ordering 24
 3.2.4 Multiversion Concurrency Control 25
4 Snapshot Isolation
 4.1 Isolation levels ... 29
 4.2 Snapshot Isolation protocol 31
 4.3 Characterize the serializability of Snapshot Isolation 34

5 Multiversion Serialization Graph for Snapshot Isolation 36
 5.1 Motivations .. 36
 5.2 Multiversion Serialization Graph 36
 5.3 Dynamic Management of MVSG 38
 5.4 Dynamic managed Snapshot Isolation serialization graph 39
 5.5 The evaluation of time complexity 43

6 Segmented Transaction Model 45

7 Self-adjusting Acyclic Serialization Graph 48
 7.1 Motivations .. 48
 7.2 Self-adjusting acyclic graph 50
 7.3 Parameterized Self-adjusting Acyclic Graph 57
 7.4 Implement the SAAG on Snapshot Isolation Protocol 65

8 Contributions and Open Problems 69

Bibliography 71
List of Figures

2.1 Example for object model transaction 10
2.2 The serialization graph of a non conflict serializable schedule 16
3.1 Compatibility of Locks in Two Phase Locking 18
3.2 Serialization graph of schedule in example 3.1.1 19
3.3 Wait-for graph of schedule in example 3.1.2 20
3.4 An example of Multiversion Serialization Graph 28
4.1 ANSI SQL Isolation Levels Defined in the terms of phenomena 30
4.2 Interference Graph of Read-only transaction anomaly 35
5.1 MVSG for S5.2.1 under a general Multiversion concurrency control . . 37
5.2 MVSG of S5.2.2 under Snapshot Isolation 38
5.3 non-serializability can be found earlier 39
5.4 Dynamic Managed Snapshot Isolation Serialization Graph 44