Periodic and continuous landslide monitoring to assess landslide frequency – selected Australian examples

P. Flentje
University of Wollongong, pflentje@uow.edu.au

R. Chowdhury
University of Wollongong, robin@uow.edu.au

Anthony Miner
AS Miner Geotechnical, Australia, aminer@uow.edu.au

C. Mazengarb
Mineral Resources Tasmania

2010

http://ro.uow.edu.au/engpapers/553

Publication Details

Periodic and continuous landslide monitoring to assess landslide frequency – selected Australian examples

P. Flentje & R. Chowdhury
University of Wollongong, Wollongong, New South Wales, Australia

A.S. Miner
A.S. Miner Geotechnical, Geelong, Victoria, Australia

C. Mazengarb
Mineral Resources Tasmania, Hobart, Tasmania, Australia

ABSTRACT: Landslide frequency is one of the major challenges that must be managed when undertaking a landslide risk assessment. Important issues to be considered when assessing landslide frequency include recognition of the landslide types and processes, landslide volume and magnitudes of displacement. Landslide frequency assessments must also recognize anthropogenic factors (in place and or proposed) such as any remedial measures (subsurface drainage and or retaining structures) as such works will be designed to have significant effects in reducing the frequency of landsliding at any site. Periodic and or continuous monitoring will certainly be of benefit in such assessments, but will only provide an aid to sound scientific and engineering based decision making.

KEYWORDS: landslide monitoring, real-time, inclinometer, frequency, hazard, risk.

1 INTRODUCTION

Understanding and assessing landslide frequency is one of the first major challenges to be addressed in the process of the assessment of landslide risk. Landslide frequency can be a difficult concept to understand and of course there are numerous ways in which it can be assessed. Some methods commonly used include direct field mapping and interpretation of the age of the landscape, counting the number of historical occurrences of a known landslide and dividing by the number of years during which these have occurred, or by assigning a frequency based on the frequency of the triggering rainfall event. Geomorphological evidence has been cited elsewhere by the authors to constrain the age of known landsliding (Miner et al, 2008). All such techniques may be quite valid for given situations and in their own right to assess the frequency of landsliding.

In collaboration with a number of industry partners, a network of continuous landslide monitoring stations have been installed throughout the Illawarra Region of NSW, Australia and at other selected landslide locations in Victoria and Tasmania. Building on 20 years of periodically recorded inclinometer data, continuous data is now being recorded from a range of landslide locations. This data is helping to define site specific relationships between the initiations or triggering of landslide movement and also between the duration and magnitude of landslide movement. The monitoring data is also being made available in near real-time via web-based secure graphical user interfaces for asset and emergency risk management purposes.

The Australian Geomechanics Society Landslide Risk Management (LRM) Guidelines (AGS 2007a and b) and Fell et al., (2008) confirm a generic approach that has been widely used, albeit quite variably, by practitioners throughout Australia and internationally. To highlight some important aspects of these guidelines, a series of papers have been prepared; one concerning the recognition of landslides aided by the use of LiDAR (Miner et al, 2010), another on the application of landslide inventory data through GIS-based modeling into landslide susceptibility maps (Miner et al, 2010) and another on the design of a GIS-based landslide database and a national database interoperability trial (Mazengarb et al, 2010) and this paper on the application of moni-
stored landslide performance data to aid in the assessment of landslide frequency at three different landslide sites in Australia.

It may be expected that with the aid of detailed investigation, instrumentation and monitoring that the task of assessing frequency could be simplified. In some aspects the data can simplify assessments, but with the added effects of anthropogenic factors such as remedial works the task can be quite difficult. In the end, the data provides an important aid to decision making which must be based on good scientific and engineering judgment.

2 NSW ROADS AND TRAFFIC AUTHORITY MOUNT OUSLEY ROAD F6 FREEWAY SITE 141 LANDSLIDE AREA

The Mount Ousley Road section of the F6 freeway between Sydney and Wollongong traverses the problematic Illawarra Escarpment. This section of road comprises a 6 lane divided road that experiences approximately 40,000 vehicle movements per day with a general speed restriction of 80km/hour. The road corridor is certainly located in a challenging environment that negotiates in excess of 300m change of elevation in 4.5km of road and includes steep, terraced terrain, low strength claystones and higher strength sandstones, coal seams, colluvium up to 20m or so in depth and variable annual rainfall which can exceed 1600mm annually. In this environment, the corridor includes numerous natural and man made hazards that effect the serviceability of the road. The natural hazards include fall, flow and slide category landslides and hydrological issues. Anthropogenic hazards include historical mine subsidence, aging retaining wall infrastructure, rock cuttings, road batters and culvert related issues. Despite this hazardous environment, due to the traffic (passenger and freight) demand the road is under, this asset is extremely well maintained and rarely experiences closure due to these hazards.

The F6 freeway traverses the Site 141 landslide as shown in Fig. 1(a). Site 141 exhibits a tension crack along the crown which extends across the pavement of Mount Ousley Road. This tension crack is currently evident on the south bound lanes adjacent to the Continuous Real-Time Monitoring (CRTM) enclosure and is associated with some minor subsidence on the south bound side of the tension crack. The southern extent of the slide is a narrow compression/transverse ridge feature (periodically a mound between repairs) across the south bound lanes near the entrance to the north end of the roadside emergency speed arrestor beds. Mapping of the inferred toe region was based on an examination of RTA boreholes and inclinometer profiles and extrapolating horizontally and/or on a shallow down slope gradient out of the slope to an intersection with the ground surface.

Figure 1. (a) Site 141 landslide on the Mount Ousley Road section of the Sydney to Wollongong F6 freeway, showing investigation boreholes, dewatering wells, G3264 BH 2 and the two Site 141 and Site 141 South CRTM stations; (b) G3264 BH 2 Inclinometer profile A axis cumulative displacement, drilled to 28m in November 2000, Inclinometer casing installed to 27m and shearing at 20.5m.
This landslide is approximately 67,000m2 in area. With an assumed maximum depth to sliding of 18.5m, the calculated volume of the landslide is 720,000m3. This landslide area includes a 400m length of Mount Ousley Road F6. Movement within this translational slide category landslide is complex and involves a series of different mechanisms and areas of movement.

The site has been subject to detailed subsurface investigation over the last 3 decades. Figure 1(b) shows the manual inclinometer A axis data for G3264 BH 2 in the road pavement just downslope of the tension crack across the head scarp of the landslide. In the late 1980’s, a series of twenty 20m and 30m deep vertical boreholes were drilled to investigate and establish a series of water pumping wells. Early results from this pumping were positive and in the early 1990’s a series of 9 eductor pumps were installed to maintain lower groundwater levels across the site. This pumping system has been most effective in maintaining lower ground water levels across the site, at times pumping up to 400 Kilolitres per day from the subsurface profile (see Fig. 2 and 3, third plot up from the base of each figure). Since mid 2004 an average of 135 Kilolitres per day has been extracted from the site. In 2006, due to the age of the eductor pumps and associated power and water infrastructure, the system was upgraded to nine new downhole direct pumps.

Figure 2 shows the continuously monitored hourly data for Site 141 during the second half of 2006. The lower two plots in this graph display the daily rainfall histogram and two cumulative rainfall curves for the 30 and 90 day periods. The next plot up shows the pumping system output and it is during this period that the eductor well system was upgraded to the nine new direct pumps. The next plot up shows the two vibrating wire piezometer (vwp) pore water pressure device readings. The lower of these two curves shows the data for the vwp that was installed at 17.9m near the base of the colluvium interval and above the shear surface, whilst the upper curve being for the deeper device that was installed at 22.5m within the upper bedrock interval and several meters below the landslide shear surface. A rise to above 60kPa for the deeper vwp in Sept 2006 is associated with a very small but real step (0.25mm) in the In Place Inclinometer (IPI) displacement curve at a rate of approximately 0.05mm/day over a 5 day period. In the 5.5 years of continuous monitoring to date at this site, this is one of only two minor movement events to be recorded. It is important to note that the bulk of this full monitoring period has been during an extended period of near drought conditions on the east coast of NSW. Whilst recording 0.25mm of total displacement does not constitute a disruptive failure to the road pavement it is significant in that movement occurred. A disruptive pavement movement would, perhaps be two orders of magnitude higher (25mm).

The CRTM system and the continuous data have provided a comprehensive understanding of this site with data also being available in real-time via the web. The pore water pressure fluctuations that can be seen in Fig. 2 and over the full monitoring history as shown in Fig. 3 display quite sharp variations (from less than 20kPa up to 80kPa) that are the result of heavy rainfall but

![Figure 2. Site 141 June to Dec 2006 composite graph of continuously monitored rainfall, pump output, pore water pressure and In Place Inclinometer Shear displacement (cumulative and rate).](image-url)
also the dewatering effect of the pumping system, including various scheduled and unscheduled pump outages. The pumping data is not being collected as part of the CRTM system at present but that is one goal of future monitoring developments.

In regards to assessing the frequency of landsliding at this site, a consideration of the rainfall recurrence here would not be appropriate due to the intensive pumping and dewatering of the site. A consideration of pump system mechanical and electrical reliability may be appropriate of course, but in the absence of such work, a review of the pore water pressure (the real trigger) variation is useful. Fig. 3 shows the variation of pore water pressure of both vwp for the duration of the CRTM (mid 2004 to Feb 2010) and this shows the deeper vwp has reached 60kPa on 5 occasions (the first closely spaced dual occurrence is considered here as one) and this also includes the Feb 2010 (current) occurrence. Two other events in early 2005 and early 2006 also show the pore water pressure rising very close to the 60kPa threshold. This indicates that the occurrence is effectively an annual event even with the pumps operating. This highlights two important points; firstly that the dewatering of this site, and the pumps in particular, are actively maintaining this road alignment, and most importantly perhaps from an asset management perspective, pump failure would leave the road exposed to a higher risk of failure for a longer period of time.

These two important points have resulted in the 2006 upgrades to the pumping system at this site, and a current investigation into an alternative gravity driven draining systems at this site.

3 Dell Landslide Near Clifton Springs – City of Greater Geelong

The Dell at Clifton Springs is a natural amphitheatre that has developed in 20m - 30m high coastal cliff on the northern side of the Bellarine Peninsula, south east of Geelong on the southern shoreline of Corio Bay (Figure 4). The area was a mineral springs and health spa in the late 1800’s to early 1900’s and the site currently provides beach access to Corio Bay. The amphitheatre is approximately 150 wide and extends over 100m inland from the coast. The amphitheatre itself is a landslide complex, the base of which extends below sea level and short distance out into the bay.

The Dell is underlain by highly weathered Tertiary Volcanic tuffs and basalts with interbedded sands and these are overlain by the Moorabool Viaduct sands and clays. The landslides on site have resulted in a deep colluvium profile developing within the amphitheatre. Accordingly, the hydrogeology at the site is also complex and perched water levels exist within the sequence. The large basal translational slide category landslide complex is, based on visual observations, assessed to be many tens of thousands of years old, i.e, of Quaternary age.

A significant regional rainfall event occurred on the 23rd and 24th of April 2001 when 109mm and 50mm fell respectively. This event is considered to be the initiating trigger of a large, basal
Figure 4. Oblique aerial photo of the Dell at Clifton Springs. Viewed from the north, above Corio Bay looking down onto the northern side of the Bellarine Peninsula, south of Geelong.

Deep seated slide re-activation movement at the site. For periods between 24 and 48 hours, these averaged hourly rainfall totals represent a 100 year Average Recurrence Interval (ARI) for the area (average annual rain ~ 540mm). Following this event, significant and widespread development of tension cracks was observed within the amphitheatre and across the steeper cliffs surrounding the site. However, the tension cracks were observed in November 2001. So there is already a suggestion of a time lag between the initiating event and movement on site.

A geotechnical investigation of the site was initiated by the City of Greater Geelong and an intensive monitoring program was commenced by the third author of this paper. In a preliminary risk assessment of the site and due to ongoing movement and concerns for public safety, the site was closed to the public in July 2002. A web-based continuous real-time monitoring station was installed at this site in collaboration between the City of Greater Geelong and the Faculty of Engineering at the University of Wollongong (UoW) in mid 2005. Utilising this CRTM station and in combination with site remedial works (excavation of unconsolidated embankment material), the site was re-opened to the public in December 2008.

As part of a Coffey Geotechnical Landslide Risk Assessment of the site (which included the first and third author) during 2005, an Inventory of 20 subsidiary landslide events was compiled of this landslide complex within the amphitheater. The main basal translational style slide which occupies the floor and lower side slopes of the amphitheatre has a volume of approximately 80,000m3. One of the other identified landslides (Slide 15) is known as the Moonah landslide. This feature is situated in the center of the rear main scarp of the main basal feature. It is a discrete block of material with an additional volume (to that of the main basal slide mentioned above) of approximately 8,000m3. The movement discussed below relates to the Moonah landslide area.

There is a considerable volume of investigation material available for this site. The authors have selected one borehole inclinometer profile (BH Inc 50) and one composite graph of monitoring data to present issues relevant to this discussion. Figure 5 shows the inclinometer profiles for Borehole 50. This inclinometer profile extends to 20.5m depth with clearly evident block style displacement of the Moonah landslide at 11.5-12m depth. The displacement shown at 11m depth in Figure 5 is displayed with respect to time in Figure 6 (the upper two plots, cumulative and rate of displacement). The lower plot in Fig. 6 is a rainfall histogram that extends back to early 2001 and shows the April 2001 event mentioned above that is regarded as the trigger for the late 2001 re-activation of sliding at this site. As noted above, this event has been assessed as
Figure 5. Moonah Tree landslide area Borehole 50 A and B axis Inclinometer cumulative displacement profiles. Inclinometer base reading at 20.5m. The profiles display a block style of displacement with shearing at 11.5 – 12m depth, displacement is shown in mm.

a 100 year ARI event. Interestingly, another similar magnitude event also occurred in late January and early February 2005 (Miner, 2005). The second plot up in Figure 6 contains cumulative rainfall curves for 60 and 90 day rolling periods and the heights the 60 and 90 day curves reach exceed the levels reached elsewhere along this graph period.

As part of the investigation of this site, numerous ground water boreholes have been drilled with open stand pipes installed subsequently monitored for standing water levels. Periodically monitored standing water levels are shown in the 4th plot up from the base of Figure 6 and immediately below this is a binary (on/off) plot of pump activity. Early pump tests demonstrated that pumping would result in drawdowns of at least the perched water levels and this can be

Figure 6. Periodic and continuous monitoring data Jan 2001 to Dec 2006 showing rainfall, Pumping activity, ground water levels, subsurface cumulative and rate of inclinometer displacement and surface extensometer displacement.
seen in Figure 6. However, the capacity of the pumping is clearly overwhelmed with the February 2005 event as the water levels in BH4 rise for several months soon after the event.

As noted above, the periodically monitored subsurface shear displacement at 11 m depth in BH50 (Fig. 5) is shown in the Y axis 5 and its rate of displacement (mm/day) is shown in Y axis 6. This curve incorporates data collected during more than a dozen site monitoring visits over three years. It clearly displays two periods of movement, several mm’s in early to mid 2004 and a prominent episode of acceleration of up to 0.6 mm/day in June 2005. This period of acceleration has been attributed to the February 2005 rainfall event and clearly demonstrates the lag effect at this site between the timing of the ‘triggering rainfall event’ and movement. The lag period seems to be approximately 3 months. This is considered to be the result of water collecting in the subsurface profile within the catchment recharge area and then the elevated piezometric front travelling downslope to the site.

Eighteen months of CRTM In Place Inclinometer data is also shown in Figure 6 in Y axes 5 and 6. The two spikes in the IPI data represent manual intervention to remove the IPI string and record manual inclinometer profiles. However, the data in between these two spikes does also show some minor cumulative displacement in line with that movement shown for BH 50.

In summary, the reported movement at this site in 2001 has been attributed to the April 2001 rainfall event which has been assessed as a 100 year ARI event. In this event the main valley floor translational landslide, with a volume of approximately 80,000 m3 was anecdotaly reported to have moved approximately 0.2 m, although this movement was observed in November 2001. In 2005, a similar magnitude 100 year ARI event also affected the site. Despite the pumping operations being partially overwhelmed at the time of the 2005 event, groundwater pressures were reduced enough to limit site movement to only 10 mm. This was in spite of the fact that the two triggering events were of the same magnitude. However, like the 2001 event, this occurred after the rainfall event. With the benefit of the monitoring, the lag on this occasion was approximately 3 months.

This is a complex landslide suite with many smaller contributing zones of movement. Some of these zones have specific instrumentation installed to monitor movement in those areas. Smaller magnitudes of movement, of different volumes of material have been recorded across the site in response to smaller rainfall events and/or pore water pressure fluctuations and management of the landslide complex is enhanced by the ongoing use of the CRTM system.

4 TAROONA LANDSLIDE, HOBART – MINERAL RESOURCES TASMANIA

The Taroona landslide is located in the suburb of Taroona approximately 10 km south of the City of Hobart in Tasmania, Australia. The site is situated on east facing slopes above the Derwent Channel – an important seaway leading to the City and port of Hobart. The upper east-facing hillslopes contain numerous incised watercourses. These slopes are traversed by the Channel Highway as shown in Fig. 7. In addition to the Channel Highway, the site contains both a Primary and High School and dense residential development with the associated infrastructure (Figure 8).

Topographic, geological and geomorphological observations and evidence show that the Taroona landslide area is situated in Tertiary-age clay-rich sediments overlain by a complex Quaternary alluvial and colluvial fan deposit as shown in Figure 7 The upper solid (green) line on the center left of Figure 7 outlines the approximate upslope extent of the alluvial fan deposits and the dashed white line and three arrows indicate the extent and direction of movement of the landslide as it is currently understood. The northern margin of the landslide is highlighted by a prominent watercourse (Fig. 8). To the north of the alluvial fan and landslide area, the incised channels extend down to the ocean front and there is no alluvial fan accumulation below the Channel Highway.

Geomorphic and geological evidence suggest the landslide is old and pre-dates 1946 aerial photography and it is most likely to be almost as old as the alluvial fan itself. Roach and Gibbons (2003) explain that the Derwent Channel evolution extends back at least to the early Tertiary period. Seismic investigation of the sea floor sediments in the Derwent Channel show the Pleistocene and Holocene sediments extend out into the channel slopes. As the channel is approximately 35 – 40 m deep offshore at Taroona, the channel would have been completely
exposed during glacial lowstands on the many occasions this has occurred throughout the Quaternary. Submarine instability and faults have been identified in the seismic interpretations of the channel deposits.

The first reports of ground movement in the area by local residents resulted in surveys by the Tasmanian Department of Mines (DoM) in the mid 1970’s (i.e., Stephenson, 1975). A survey of domestic residential damage was undertaken by Knight in 1977. Extensive reporting of road damage and subsequent damage survey work was undertaken by the Department of Transport in 1977 and between 1988 to 1995. Inclinometer monitoring of the site, by the DoM commenced in 1991 and this continues to this day by Mineral Resources Tasmania (MRT). A continuous real-time monitoring system was installed in the head area of the site in 2008 in collaboration between MRT and the UoW and funded through the Natural Disaster Mitigation Program.

In 1988 test pitting of the road revealed that a total of approximately 600mm vertical displacement had occurred where the head scarp crosses the Channel Highway. Survey comparisons between 1977 and 1988 revealed that a 100m long stretch of the highway had moved downslope approximately 130mm.

From 1991 onwards many investigation boreholes have been drilled on the site and numerous inclinometer casings have been installed, as shown in Figure 8. Figure 9 shows cumulative displacement plots for two important locations on the landslide, boreholes I92-14 and I99-1. Borehole I92-14 is located in the pavement of the Channel Highway in the head area of the landslide immediately above the Taroona Primary School. This borehole was drilled to 15.6m and has an inclinometer casing installed to 14.5m. This inclinometer profile displays prominent block style displacement with shearing at 8.5m depth. Borehole I99-1 is located just to the south of the centre of the landslide and was drilled to 70.7m depth and has an inclinometer casing installed to 67.5m. This inclinometer profile shows prominent block style displacement with shearing over several meters, centered at 53.5m depth (~23m below sea level).

On the basis of the borehole and inclinometer results combined with all the surface mapping activities to date (Latinovic et al, 2001, Coffey 2002) including the authors of this paper, conservative volume estimates suggest the on shore section of the Taroona landslide is in excess of 2.5 million m3 and possibly up to 6.5 million m3, whilst it is certain that this feature extends a considerable distance off shore. This could easily place the landslide volume in excess of 10 million m3.

Coffey Geotechnical completed a Landslide Risk Assessment project for this site in 2002. This project produced a comprehensive map of the site which clearly attests to the complex yet subtle nature of movement across this site. This subtlety makes the landslide extremely challenging to understand and even more difficult to map. As a consequence, no outlines of the
landslide extent are included in this paper other than as shown in Figure 7. Coffeys have suggested a possible southern extent of the landslide which may be possible (dotted line to south in Figure 7). Substantive additional site monitoring and investigation has been undertaken on site since the Coffeys work in 2002 (much of it MRT and the authors of this paper) yet the extent of landsliding on site is little improved today. The inclinometer monitoring has been extended and comprehensively reviewed. Total inclinometer history resultant displacement vectors are shown in Figure 7, and some of this information is shown graphically in Figure 10. Figure 10 shows a period of accelerated movement during 1996, which corresponds to higher 30 and 90 day cumulative rainfall totals in 1996. Figure 10 also shows the near constant average rate of ~ 5mm per year displacement in many of the inclinometers – although this is more variable at any given time.
Regarding frequency of occurrence of landslide movement across the site, this 2.5 million m3 landslide, has an average annual ‘extremely slow’ (Cruden and Varnes 1996) creep style of displacement of ~ 5mm per year. On an inter-decadal type of recurrence (greater than 10 year return period) accelerated movements (i.e. 1996 event where >15mm per year) of the ‘very slow’ category could be expected. Then, extrapolating this quantitative experience on the basis of judgment, a 1 in 100 type of triggering rainfall event may lead to landslide displacements of up to a decimeter and possibly up to a meter across the site. Further, if a seismic trigger or other event exceeding a Probable Maximum Precipitation type event was to occur at say, a 1 in 10,000 or even much smaller exceedance probability event a failure on site could result in significantly accelerated rates of movement across the site. Some of the smaller coastal sized landslides and or man-made batters and structures may have higher frequencies of failure and move at faster velocities.

5 SUMMARY AND CONCLUSIONS

At a 720,000m3 translational landslide in NSW, an engineered dewatering pump system has been in place for 30 years and no significant road disruptions due to landsliding at this site has occurred in this time. Continuous monitoring at this site demonstrates that pore water pressure rising to a threshold where sub millimeter subsurface shear displacement is initiated occurs effectively on an annual basis, with the mechanical pumps operating. Whilst disruptive road failures have not occurred in over 30 years at this site, it is clear they may at some stage in the future due to an extreme rainfall event and or associated with failure of the pump dewatering system. Consequently, the pump system has been substantially upgraded and alternative drainage remedial measures are being investigated.

In 2001, complex reactivation of a landslide in a coastal amphitheatre near Geelong in Victoria initiating in excess of 200 mm of movement was attributed to a 100 year ARI regional rainfall event. A further 100 year ARI event again impacted the site during early 2005 (4 years after the previous event) but subsurface movement of only approximately 10mm was recorded across the site due in some part to remedial pumping activities. Current monitoring in this complex system strongly suggests a time lag delay (of about 3 months) after a significant triggering rainfall event before deep seated movement is seen at the site.

A complex translational slide category landslide in the suburb of Taroona in the city of Hobart, Tasmania, with a volume of approximately 2.5 million m3 has an average annual ‘extremely slow’ or creep velocity of displacement of ~ 5mm per year. On an inter-decadal type of
ly slow’ or creep velocity of displacement of ~ 5mm per year. On an inter-decadal type of recurrence (greater than 10 year return period) accelerated movements (>15mm per year) of the ‘very slow’ category could be expected. These rates of displacement have been determined on site by direct measurement of instrumentation. This experience has been extended on the basis of judgment to larger magnitudes of displacement with attendant changes in recurrence intervals.

As this paper highlights, landslide frequency is challenging to assess. When it is being considered it must be done in tandem with the recognition of the landslide type, volume and magnitudes of displacement. Landslide frequency assessments must also recognize anthropogenic factors such as remedial measures (i.e. subsurface drainage and or retaining structures) and their reliability as this may have significant effects on the frequency of landsliding at any site. Periodic and or continuous monitoring will certainly be of significant benefit in this regard, but it will only provide an aid to sound scientific and engineering based decision making.

6 ACKNOWLEDGEMENTS

The authors take this opportunity to acknowledge the industry partners involved in this research. The NSW Roads and Traffic Authority, the City of Greater Geelong and Mineral Resources Tasmania. Their collaboration in this research and permission to publish the information in this paper is greatly appreciated.

REFERENCES