2006

Toughening polymer surfaces

Haider K. Ali

University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Toughening Polymer Surfaces

A thesis submitted in fulfilment of the requirements
for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

Haider K. Ali
MEngSt. (Auckland University)

School of Mechanical, Materials and Mechatronics Engineering
July 2006
DECLARATION

I, Haider K. Ali, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualification at any other academic institution.

Haider K. Ali

July 2006
ACKNOWLEDGMENTS

I would like to express my sincere thanks to my supervisor, Professor Hugh Brown for providing help and support during the course of my study. A grateful acknowledgment is also extended to SOLA Optics for sponsoring this project, and in particular to Dr. David Lewis for his technical input. In addition, I would like to thank the following people for their assistance and support over this work:

Prof. Michael West and his PhD students Bradley Glass and Bane Lake for their support with the FEMCAD software,

Dr. Peter Innis and Mr Avirs Dipers from the School of Science for their instruction regarding the use of Raman spectroscopy and the polariscope located in their department,

Ms Lorelle Pollard for her kindly administration support,

Dr. Chris Lukey, Dr. Wang Huillang, and Ms. Siu Wah Wai from the Polymer Group for their scientific involvement and advice,

Mr. Chandana Herath from the Electrical engineering for his PC support,

Mr. Ron Marshall with his staff at the UOW engineering workshop,

Mr. Greg Tilman and Mr. Bob Dejong for their technical contribution and support.

Also I would like to thank the librarian staff at the UOW general library for their genuine help and assistance.
ABSTRACT

The thermoset resin poly diglycol carbonate, commercially called CR-39 has excellent optical properties, is cheaper than other ophthalmic materials and is considered one of the best plastic materials for the industry. CR 39 is known to be a brittle, highly cross-linked polymer. Applying coating layers significantly affects the toughness of ophthalmic lenses; a crack will first start on the surface of the coating and propagate through to the lens. One procedure to stop cracking, although not favoured by the industry because of its cost and detrimental effect on the optical properties, is to place a thin, rubbery layer between the coating and CR-39 ophthalmic lens.

An alternative method to stop the cracking is to toughen the lens material itself by placing the upper and lower surfaces under compressive stress. Swelling the lens surface can generate compressive stress and generating a multi-composite stressed layer lens can significantly improve fracture toughness.

An axisymmetric model of the spherical lens was built and a static load was applied on the central region in order to analyse stress distribution on the surfaces of the lens. It was found that tensile stress dominates the lower surface when the load was applied on the top surface. A volumetric swelling was introduced into the axisymmetric model to generate compressive stress onto the swollen surface while the tensile stress region on the lower surface was moved towards the central region.
of the spherical lens. The volumetric swelling transferred the stress in the horizontal axis from the tension to the compression region.

More than one system has been designed to evaluate the best swelling agent; chloroform was the best solvent and a mixture of chloroform with acrylic acid (monomer) was found to be the best swelling agent for the CR-39 ophthalmic lens. Ultra Violet (UV) light initiated polymerisation was used to polymerise the monomer within the surface of CR-39 ophthalmic lens. The temperature during this process remained below the glass transition temperature (Tg) of CR-39 polymer.

Raman spectroscopy was used to examine the residual vinyl group in CR-39 polymer and monitor the diffusion process of the monomer in the CR-39 lens surface and the polymerisation process of the diffused monomer. The depth of this treatment was measured by using the mapping technique in Raman spectroscopy. The stress generated from swelling the lens surface was measured by photoelasticity. A 3-point bending device was developed and attached to a circular polariscope to measure the optical stress coefficient of CR-39 because it is a transparent material.

Fracture energy was evaluated using the static impact and dynamic tests and significant improvements from treating both upper and lower surfaces and applying a hard coating to the treated lenses were observed. Surface characterisation techniques were used to determine the effect of the treatment applied to the CR-39 ophthalmic lenses. Ultra-Micro Indentation System (UMIS) analysis measurements using Berkovich and spherical indenters showed a decrease in the elastic modulus. Dynamic Mechanical Analysis (DMA) measurements using the penetration and
single cantilever modes showed an increase in loss modulus and a decrease in storage modulus accompanied by a lower compression modulus for the treated surfaces. Atomic force microscopy (AFM) studies revealed that the treated surface of a CR-39 ophthalmic lens was smoother than an untreated surface.
TABLE OF CONTENTS

ACKNOWLEDGMENTS.. I

ABSTRACT... II

TABLE OF CONTENTS.. V

LIST OF FIGURES... IX

LIST OF TABLES.. XII

LIST OF PRINCIPAL SYMBOLS .. XIII

CHAPTER 1 .. 1

INTRODUCTION.. 1

1.1 BACKGROUND.. 1
1.2 THESIS STRUCTURE.. 5

CHAPTER 2 ... 8

LITERATURE REVIEW.. 8

2.1 FRACTURE... 8
2.1.1 Griffith theory.. 10
2.1.2 Linear elastic fracture... 12
2.1.3 Fracture in thermoset glassy polymers.. 13
 2.1.3.1 Crack propagation in glassy thermosets...................................... 13
2.1.4 Effect of network structure on fracture toughness.......................... 14
 2.1.4.1 Effect of cross-link density... 14
 2.1.4.2 Glass transition temperature of the matrix............................... 16
2.2 FRACTURE OF OPHTHALMIC LENSES.. 17
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Impact testing of ophthalmic lenses</td>
<td>18</td>
</tr>
<tr>
<td>2.2.2 Crack initiation of ophthalmic lenses</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3 The Effect of coating layers to the fracture toughness of ophthalmic lenses</td>
<td>23</td>
</tr>
<tr>
<td>2.2.4 Toughening CR-39 resin</td>
<td>25</td>
</tr>
<tr>
<td>2.2.4.1 Morphology and mechanical properties of interpenetrating polymer networks of CR-39 and poly(urethane)</td>
<td>28</td>
</tr>
<tr>
<td>2.2.5 Mechanical properties of CR-39 composites</td>
<td>30</td>
</tr>
<tr>
<td>2.2.5.1 Rigid thermoplastic toughening CR-39 polymer</td>
<td>30</td>
</tr>
<tr>
<td>2.2.5.2 Nano-sized silica particles toughening CR-39 polymer</td>
<td>32</td>
</tr>
<tr>
<td>2.2.6 High impact resistance for a new ophthalmic lens material</td>
<td>34</td>
</tr>
<tr>
<td>2.3 Applying a compressive stress into the surface and fracture</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1 Applying compressive stress into glass surface</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1.1 Effect of the ion exchange to the crack formation resistance</td>
<td>38</td>
</tr>
<tr>
<td>2.3.1.2 Ionic migration effects on the mechanical properties of glass surfaces</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2 Applying compressive stress into ceramic surface</td>
<td>43</td>
</tr>
<tr>
<td>2.3.3 The Generation of compressive stresses into the ceramic by the surface oxidation</td>
<td>44</td>
</tr>
<tr>
<td>2.3.4 The Generation of compressive stresses into the bioactive material</td>
<td>47</td>
</tr>
<tr>
<td>2.4 CR-39</td>
<td>48</td>
</tr>
<tr>
<td>2.4.1 Preparation of CR-39 monomer</td>
<td>49</td>
</tr>
<tr>
<td>2.4.1.1 Curing CR-39 resin</td>
<td>51</td>
</tr>
<tr>
<td>2.4.1.2 Conversion of C=C bond in CR-39</td>
<td>53</td>
</tr>
<tr>
<td>2.4.2 Physical and mechanical properties of CR-39</td>
<td>57</td>
</tr>
<tr>
<td>2.4.2.1 Mechanical properties of CR-39</td>
<td>58</td>
</tr>
<tr>
<td>2.4.2.2 Effect of annealing on CR-39</td>
<td>59</td>
</tr>
<tr>
<td>2.4.2.3 Stress-freezing in CR-39</td>
<td>60</td>
</tr>
<tr>
<td>2.4.2.4 Stress optical properties of Columbia resin, CR-39</td>
<td>61</td>
</tr>
<tr>
<td>2.4.3 Softening the CR-39 surface</td>
<td>64</td>
</tr>
<tr>
<td>2.4.4 Dynamic mechanical properties of homopolymers on CR-39</td>
<td>67</td>
</tr>
<tr>
<td>2.4.5 Indentation size effect of CR-39 polymer</td>
<td>73</td>
</tr>
<tr>
<td>2.4.6 Relaxation and recovery measurements of CR-39</td>
<td>74</td>
</tr>
<tr>
<td>2.5 Conclusions</td>
<td>77</td>
</tr>
</tbody>
</table>

CHAPTER 3

FINITE ELEMENT MODELLING

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 INTRODUCTION</td>
<td>79</td>
</tr>
<tr>
<td>3.2 OBJECTIVES</td>
<td>79</td>
</tr>
<tr>
<td>3.3 THEORETICAL CONSIDERATION FOR A VON MISES AND HYDROSTATIC STRESSES</td>
<td>80</td>
</tr>
<tr>
<td>3.4 MESH GENERATION</td>
<td>82</td>
</tr>
<tr>
<td>3.5 CONSTRAINTS AND LOADS APPLICATION ON THE TOP SURFACE OF THE LENS</td>
<td>84</td>
</tr>
<tr>
<td>3.5.1 Representation of the distribution of the von Mises and hydrostatic stress when applying a load to the top surface</td>
<td>88</td>
</tr>
<tr>
<td>3.6 APPLICATION OF REVERSED LOADS</td>
<td>90</td>
</tr>
<tr>
<td>3.6.1 Stress distribution with the load applied to the lower surface</td>
<td>91</td>
</tr>
<tr>
<td>3.7 STRESS ANALYSIS IN THE X-DIRECTION</td>
<td>91</td>
</tr>
<tr>
<td>3.7.1 Stress analysis of the lower surface when a load was applied to the upper surface</td>
<td>93</td>
</tr>
<tr>
<td>3.7.2 Stress analysis of the lower surface when a load was applied to the lower surface</td>
<td>94</td>
</tr>
<tr>
<td>3.7.3 Stress analysis of the upper surface when a load was applied to the upper and lower surfaces</td>
<td>94</td>
</tr>
</tbody>
</table>
Chapter 4

Polymerization Process Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>107</td>
</tr>
<tr>
<td>4.2 Method of swelling the ophthalmic lens surface</td>
<td>108</td>
</tr>
<tr>
<td>4.3 Experimental technique and samples preparation</td>
<td>110</td>
</tr>
<tr>
<td>4.4 Results and discussion</td>
<td>113</td>
</tr>
<tr>
<td>4.4.1 Determination of residual C=C in CR-39 ophthalmic lenses</td>
<td>114</td>
</tr>
<tr>
<td>4.4.2 Polymerisation of Acrylic Acid (AA) in a CR-39 ophthalmic lens</td>
<td>116</td>
</tr>
<tr>
<td>4.4.3 Analysing the polymerisation of styrene and vinyl acetate into CR-39 ophthalmic lens</td>
<td>120</td>
</tr>
<tr>
<td>4.4.4 Determination of the depth of the grafted layer into the CR-39 ophthalmic lens</td>
<td>122</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>125</td>
</tr>
</tbody>
</table>

Chapter 5

Mechanical Testing

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>127</td>
</tr>
<tr>
<td>5.2 Photoelasticity experiment</td>
<td>127</td>
</tr>
<tr>
<td>5.2.1 Sample preparation</td>
<td>129</td>
</tr>
<tr>
<td>5.2.2 Discussion of Residual Stress</td>
<td>132</td>
</tr>
<tr>
<td>5.2.2.1 Evaluation of residual stress</td>
<td>132</td>
</tr>
<tr>
<td>5.2.2.2 Stress optical coefficient measurement</td>
<td>134</td>
</tr>
<tr>
<td>5.2.2.3 Three point bending test load application</td>
<td>136</td>
</tr>
<tr>
<td>5.2.2.4 Measuring of residual stress and stress optical coefficient</td>
<td>139</td>
</tr>
<tr>
<td>5.3 Impact testing</td>
<td>141</td>
</tr>
<tr>
<td>5.3.1 The Safety Aspect of Lenses – An Introduction</td>
<td>141</td>
</tr>
<tr>
<td>5.3.2 Static load impact test</td>
<td>142</td>
</tr>
<tr>
<td>5.3.3 Dynamic load impact test</td>
<td>145</td>
</tr>
<tr>
<td>5.3.4 Test Results</td>
<td>148</td>
</tr>
<tr>
<td>5.3.4.1 Static load test</td>
<td>148</td>
</tr>
<tr>
<td>5.3.4.2 Dynamic load test</td>
<td>150</td>
</tr>
<tr>
<td>5.3.5 A Results of the Impact Tests</td>
<td>152</td>
</tr>
<tr>
<td>5.4 Conclusion</td>
<td>157</td>
</tr>
</tbody>
</table>
SURFACE CHARACTERIZATION

6.1 INDENTATION EXPERIMENTS (UMIS) .. 159
 6.1.2. Theoretical background .. 161
 6.1.2.1. Spherical indenter test .. 161
 6.1.2.2. Berkovich test .. 162
 6.1.3 Experimental preparation .. 164

6.2 SURFACE ROUGHNESS MEASUREMENTS (AFM) .. 165

6.3 DYNAMIC MECHANICAL ANALYSIS (DMA) .. 167
 6.3.1 Controlled force mode .. 168
 6.3.2 Multi frequency strain mode ... 168

6.4 RESULTS AND DISCUSSION ... 170
 6.4.1 Surface characterization .. 170
 6.4.1.1 Mechanical properties characterization .. 170
 6.4.1.2 Surface roughness characterization .. 178
 6.4.2 DMA results .. 183
 6.4.2.1 Penetration mode ... 183
 6.4.2.2 Single cantilever mode tests ... 185

6.5 CONCLUSION ... 190

CHAPTER 7 .. 191

DISCUSSION ... 191

7.1 SUMMARY OF KEY WORK AND RESULTS ... 191
7.2 CONCLUSION ... 200
7.3 SUGGESTIONS FOR RECOMMENDED FUTURE WORK 203

REFERENCES .. 205

APPENDIX A: FTIR SPECTRUM FOR AA POLYMERISATION PROCESS 1

APPENDIX B: RESULT OF DROP BALL TEST .. 2
LIST OF FIGURES

Figure 1.1. CR-39 lens and coating layers associated with their elastic modulus and thickness 4
Figure 2.1. An elliptical crack subjected to a uniform stress ... 9
Figure 2.2. Sharp crack in a thin plate ... 10
Figure 2.3. The FDA standard test for spectacle lenses.[11] ... 20
Figure 2.4. Static-load data for chem-tempered glass lenses versus lens thickness squared 23
Figure 2.5. Fracture energy for treated and untreated samples.[16] .. 25
Figure 2.6. Fracture toughness versus UA composition .. 27
Figure 2.7. Variation of stress intensity factor K_I of PU/CR-39 SIN as a function of TMP.[20] 29
Figure 2.8. Stress profiles in thermally and chemically tempered glass.[30] 38
Figure 2.9. Hardness as a function of tip penetration, obtained by nanoindentation, for glass samples submitted to ionic migration using silver films as electrodes[34] .. 42
Figure 2.10. SEM micrographs of Vickers indentation of a load of (a) un stressed monolithic sample and (b) composite stress layered sample[35] .. 44
Figure 2.11. Schematic diagram of test arrangement used for thermal-shock experiments[43] 45
Figure 2.12. Effect of thermal shock on the fracture strength of Si3N4 ceramics. Solid diamonds represent the AE2 specimens oxidized at the stated temperature, whereas the open and closed circles represent the AU and AE specimens quenched from the states temperature, respectively[43] 46
Figure 2.13. Curing time vs. residual amount of allyl groups, calculated residual amount of IPP, evolved amount of CO2, and inner temperature of lens during polymerization along a rising temperature curve.[49] .. 53
Figure 2.14. Conversion of C=C bond in CR-39 monomer at 75 °C (o) and 85 °C (●). [50] 55
Figure 2.15. Raman spectra of CR-39 monomer (1), cured CR-39 resin with IPP initiator (2), cured CR-39 resin with TBP initiator.[51] .. 56
Figure 2.16. stress-strain curve for CR-39 [53]. .. 59
Figure 2.17. stress-retardation curve for CR-39,[53] ... 62
Figure 2.18. Hardness of the laser treated CR-39 surface (HL) relative to that of the untreated one (HN) at different power densities and a constant beam residence time of the CO2 laser beam[57]. 66
Figure 2.19. Tan δ versus temperature curves for two 95% polymerised CR-39 samples.[58] 69
Figure 2.20. Loss modulus curves of the poly CR-39 cured at (a) 70 °C with 1.5% BPO and (b) 90 °C with 5% BPO.[58] .. 70
Figure 2.21. Plot of tan δ versus temperature of the samples of CR-39 cured to (a) 43%, (b) 50%, (c) 66%, (d) 87% conversion.[58] .. 71
Figure 2.22. Tan δ max versus 1/Mc for CR-39 polymerisation.[58] ... 72
Figure 2.23. Knoop microhardness as a function of the applied load[59] ... 74
Figure 2.24. Variation of L/A with time for indentations in Perspex (P) and CR-39 (C), while the load of 150 g was applied and after it had been removed. [66] 76
Figure 3.1. Stressed element for a homogeneous state of stress.[68] .. 82
Figure 3.2. QUAD8 element for mesh generation. .. 83
Figure 3.3. Standard mesh model in x and y directions and the horizontal depth (z-axis) in the rotation direction 83
Figure 3.4. Uniaxial tensile test for the CR39 .. 87
Figure 3.5. axisymmetric model with load applied from the top surface of the lens. 87
Figure 3.6. Representation of the von Mises stress values associated with the lens displacement 89
Figure 3.7. Representation of the hydrostatic stress values associated with the lens displacement 89
Figure 3.8. Reversed load applied to the lower surface of the lens ... 90
Figure 3.9. Representation of the von Mises stress distribution and displacement when a load is applied to the lower surface ... 92
Figure 3.10. Representation of the hydrostatic stress distribution and displacement when a load is applied to the lower surface ... 92
Figure 3.11. Stress in the x-direction for the lower surface .. 95
Figure 3.12. Stress in the x-direction for the upper surface .. 95
LIST OF FIGURES

Figure 3.13 Representation of the hydrostatic stress distribution for swelling the lower surface of the lens. ... 99
Figure 3.14. Representation of the hydrostatic stress distribution for swelling the lower surface of the lens and applying a load to the upper surface. ... 99
Figure 3.15. Representation of the hydrostatic stress distribution for increasing the swelling of the lower surface .. 100
Figure 3.16. Representation of the hydrostatic stress distribution for swelling both upper and lower surfaces. ... 101
Figure 3.17. Representation of the hydrostatic stress distribution for swelling of both upper and lower surfaces when a load was applied on upper surface. .. 101
Figure 3.18 The effect of volumetric swelling to stress in the x-direction on the lower surface. .. 103
Figure 3.19 Swelling effect on stress in the x-direction on the upper surface ... 104
Figure 4.1. Diethylene glycol bis-allyl carbonate (CR-39).[47] ... 109
Figure 4.2. Swelling CR-39 ophthalmic lens by diffuse the monomer into the surface ... 110
Figure 4.3. Schematic diagram of dispersive Raman spectroscopy ... 111
Figure 4.4. Raman spectrum for CR-39 monomer and CR-39 polymer ... 115
Figure 4.5. Raman spectrum for CR-39 monomer and polymer with scaling up the monomer spectrum. .. 115
Figure 4.6. Weight of 8 samples from treating the lens with acrylic acid and chloroform. ... 117
Figure 4.7. Raman spectroscopy for poly acrylic acid from (a) acrylic acid without photo-initiator, (b) acrylic acid with chloroform and photo-initiator. ... 119
Figure 4.8. Raman spectra for CR-39 ophthalmic lens (a), diffusion process of the swelling agent AA into the lens (b), polymerisation process (c). .. 119
Figure 4.9. Weight of 8 samples from treated by styrene and vinyl acetate ... 121
Figure 4.10. Raman spectrum for CR-39 ophthalmic lens (a), diffusion process of vinyl acetate and styrene (b), UV polymerisation process (c) .. 121
Figure 4.11. Mapping of cross section of CR-39 ophthalmic lens during the diffusion process of acrylic acid ... 123
Figure 4.12. Diminishing of C=C bond after diffuseing acrylic acid into CR-39 ophthalmic lens, (50µm steps). ... 124
Figure 4.13. Diminishing chloroform peak after exposing CR-39 ophthalmic lens to UV irradiation, (50µm steps). ... 124
Figure 5.1. Layout of a circular polariscope.[88] ... 128
Figure 5.2. Leitz Orthoplan polariscope used in the photoelasticity experiment ... 129
Figure 5.3. Thin section of CR-39 samples, (a) cylindrical cured resin sample mounting clippers holding different sections of CR-39 lenses having different treatment conditions, (b) 50 micron thickness thin section glued from one side with a glass slide. ... 131
Figure 5.4. untreated sample, no birefringence band was observed ... 133
Figure 5.5. Treated sample from the lower surface of the lens, birefringence bands were observed from the lower surface only ... 133
Figure 5.6. Treated sample from the both lower and upper surfaces of the lens, birefringence bands were observed in both surfaces. ... 134
Figure 5.7. Three point bending device for thin section of CR-39. ... 135
Figure 5.8. The movement direction of the moveable pin no load was applied no birefringence was observed. ... 137
Figure 5.9. Birefringence was observed at the first load applied to the thin section. ... 138
Figure 5.10. Interference of the birefringence bands under maximum applied load. ... 138
Figure 5.11. Optical creep when the sample was un loaded ... 139
Figure 5.12. Static impact test. .. 144
Figure 5.13. Steel ring lens mount. .. 144
Figure 5.14. Standard drop ball test instrument ... 147
Figure 5.15. Dynamic impact test instrument ... 147
Figure 5.16. Typical static load-displacement curves for untreated lenses. ... 149
Figure 5.17. Typical static load-displacement curves for treated lenses. ... 149
Figure 5.18. Dynamic impact curves for untreated lenses. ... 151
Figure 5.19. Dynamic impact curves for the treated lenses. ... 151
Figure 5.20. Static test results of average maximum load and fracture energy with their associated standard deviation of the presence of the treatment. ... 154
Figure 5.21. Dynamic load test results ... 155
Figure 5.22. Dynamic load test results for the (SR) coating ... 155
Figure 6.1. Schematic diagram of the basis of UMIS system. [96] 160
Figure 6.2. Schematic representation of AFM sensing system. [100] 167
Figure 6.3. Dynamic Mechanical Analysis (DMA) test ... 169
Figure 6.4. Load – displacement curves of hemispherical indentation test 173
 (L) Loading, (U) Partial unloading ... 173
Figure 6.5. Load – displacement curves of Berkovich indentation test 173
 (L) loading, (H) holding, (U) unloading ... 173
Figure 6.6. Elastic modulus and maximum penetration at the maximum of 50 mN load for the spherical indenter ... 176
Figure 6.7 E/H ratio for the CR-39 ophthalmic lens with different treatment and polystyrene using a spherical indenter .. 177
Figure 6.8 E/H ratio for the CR-39 ophthalmic lens with different treatment and polystyrene using a Berkovich indenter .. 177
Figure 6.9. 3-dimensional scanned image of the untreated sample 180
Figure 6.10 3-dimensional scanned image of the uncured sample (smoother surface than the untreated sample) ... 181
Figure 6.11. 3-dimensional scanned image of the uv treated sample (smoother surface than the uncured sample) ... 181
Figure 6.12. Depth histogram using a maximum cut-off filter 182
Figure 6.13. Loading – unloading static force versus displacement of untreated sample during the DMA penetration mode ... 187
Figure 6.14. Loading – unloading static force versus displacement of uv treated sample during the DMA penetration mode ... 187
Figure 6.15. Strain versus static force curve of the loading cycle of the DMA penetration mode for untreated sample ... 188
Figure 6.16. Strain versus static force curve of the loading cycle of the DMA penetration mode for uv treated sample ... 188
Figure 6.17. DMA test in the single cantilever configuration for the untreated sample 189
Figure 6.18. DMA test in the single cantilever configuration for the uv treated sample 189
List of Tables

Table 2.1 Effect of crosslink density on fracture energy. [7] ... 16
Table 2.2 Experimental and predicted impact results for plano lenses made from the different resins [12] ... 21
Table 2.3 Mechanical properties of the CR-39 polymer blends. [24] .. 32
Table 2.4 Mechanical and fracture properties of CR-39/silica nanocomposite. [25] 33
Table 2.5 Ophthalmic lens materials produced by 3EG and 4EG monomers [28] 35
Table 2.6 Residual stress for the samples submitted to ionic migration [34] 40
Table 2.7 Curing regimes and glass transition temperatures (Tg) in the multi-step polymerisation of CR-39 for different initiators. [51] .. 56
Table 2.8 Physical and mechanical properties of clear full cured CR-39 polymer [48]. 57
Table 4.1 Chemical structures of the monomers and photoinitiators used to swell CR-39 ophthalmic lens .. 113
Table 4.2 wave numbers of CR-39 bonds ... 114
Table 5.1 Mean fracture energy and fracture load with their standard deviations SRtreated: hard coat applied on both sides of the treated lenses, SR untreated: hard coat applied on both sides of the untreated lenses .. 154
Table 6.1 Modulus and surface hardness results using the spherical and Berkovich indentation tests. ... 172
Table 6.2 Roughness and depth values before and after the treatment of CR-39 ophthalmic lens. 180
Table 6.3 Summarizes the result obtained from DMA using the penetration and single cantilever modes. .. 186
LIST OF PRINCIPAL SYMBOLS

AA acrylic acid
BEE benzoin ethyl ether
BP benzophenone
ADC, CR-39 diethylene glycol bis allyl carbonate
DVB divinyl benzene
IPP diisopropyl peroxydicarbonate
MAA methacrylic acid
ST styrene
TBPB tert-butyl peroxybenzoate
TBP tetra-butyl peroxybenzoate
VA vinyl acetate
SR, HR scratch resistance coatings
AR anti reflective coatings
OPS oxide polishing solution
UMIS ultra-microindentation system
UV ultra-violet
AFM atomic force microscope
DMA dynamic mechanical analysis
FTIR fourier transform infrared spectroscopy
CSIRO Commonwealth Scientific and Industrial Research Organization
SOLA Scientific Optical Laboratories of Australia
USA United States of America

\[\sigma_x \] stress in x-direction
\[\sigma_{st} \] tensile stress in x-direction
\[\sigma_{xc} \] compressive stress in x-direction
\[P \] pressure load
\[p' \] distributed pressure
\[a \] distance of the applied pressure to the centre of the spherical deformable body
\[r \] radius of the deformable body
\[\rho_g \] grain density ratio
\[\rho_g^p \]
\[k_g \] bulk modulus
\[\theta \] expansion temperature
List of Principal Symbols

\(su_w \) saturation and the pressure stress in the wetting fluid
\(\varepsilon_g^{th} \) volumetric thermal strain
\(\alpha_g(\theta) \) thermal expansion coefficient for the solid matter

\(I_L \) laser intensity
\(\nu_o \) wave number of monochromatic beam radiation (from the laser light)
\(\nu_i \) wave number of \(i \)th vibrational mode
\(d\alpha \) change in polarizability
\(dQ \) change in the normal coordinate length of the vibration
\(T_g \) glass transition temperature
\(wt_s \) swollen weight
\(wt_{int.} \) initial weight

\(C_g \) stress-optical coefficient
\(\Delta n \) change in birefringence
\(R \) relative retardation
\((P - Q) \) principle stresses
\(\text{Stdve} \) standard deviation
\(\text{Br} \) Brewster

\(E \) elastic modulus
\(t \) thickness
\(E' \) composite modulus
\(D_i \) diameter of the indenter
\(D_m \) diameter of the residual impression
\(F \) applied force
\(A \) contact area
\(K_{ic} \) critical stress intensity factor or fracture toughness
\(G_c \) critical strain energy release rate or fracture energy
\(C \) crack length
\(E/H \) modulus to hardness ratio
\(\delta_e \) elastic displacement
\(\nu_m \) Poisson’s ratio for the indented material
\(\nu_i \) Poisson’s ratio for the indenter
\(E_m \) elastic modulus for the indented material
\(E_i \) elastic modulus for the indenter
\(h_{p_{max}} \) plastic penetration at maximum load
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d P}{d h}{f{\text{max}}}$</td>
<td>unloading slope at maximum load</td>
</tr>
<tr>
<td>F_{max}</td>
<td>maximum indentation load</td>
</tr>
<tr>
<td>H_b</td>
<td>hardness using Berkovich indenter</td>
</tr>
<tr>
<td>H_{sph}</td>
<td>hardness using the spherical indenter</td>
</tr>
<tr>
<td>E', E_{storage}</td>
<td>storage modulus</td>
</tr>
<tr>
<td>E'', E_{Loss}</td>
<td>loss modulus</td>
</tr>
<tr>
<td>E_{comp}</td>
<td>compression elastic modulus</td>
</tr>
<tr>
<td>E_{Sph}</td>
<td>elastic modulus measured by UMIS spherical indenter</td>
</tr>
<tr>
<td>RMS</td>
<td>roughness mean squared</td>
</tr>
</tbody>
</table>