Q fever cholecystitis in an unvaccinated butcher diagnosed by gallbladder polymerase chain reaction

Mel Figtree
St. George Hospital

Spiros Miyakis
St. George Hospital, smiyakis@uow.edu.au

John Stenos
Australian Rickettsial Reference Laboratory, Geelong

Stephen Graves
Australian Rickettsial Reference Laboratory, Geelong

Susan Botham
South Eastern Sydney And Illawarra Health

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/medpapers

Part of the Medicine and Health Sciences Commons

Citation
Figtree, Mel; Miyakis, Spiros; Stenos, John; Graves, Stephen; Botham, Susan; Ferson, Mark; and Krilis, Steven, 2010, Q fever cholecystitis in an unvaccinated butcher diagnosed by gallbladder polymerase chain reaction, 421-423.
https://ro.uow.edu.au/medpapers/562

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Q fever cholecystitis in an unvaccinated butcher diagnosed by gallbladder polymerase chain reaction

Abstract
Acalculous cholecystitis has been described in association with Q fever. We describe the first known case of Q fever cholecystitis diagnosed by polymerase chain reaction on gallbladder tissue. The presence of Coxiella burnetii genome in the diseased gallbladder tissue argues for direct involvement of the organism in the pathogenesis of Q fever cholecystitis.

Keywords
Q fever, Polymerase chain reaction, Cholecystitis

Disciplines
Medicine and Health Sciences

Publication Details

Authors
Mel Figtree, Spiros Miyakis, John Stenos, Stephen Graves, Susan Botham, Mark Ferson, and Steven Krilis

This journal article is available at Research Online: https://ro.uow.edu.au/medpapers/562
Q Fever Cholecystitis in an Unvaccinated Butcher Diagnosed by Gallbladder Polymerase Chain Reaction

Mel Figtree,1 Spiros Miyakis,1 John Stenos,2 Stephen Graves,2 Susan Botham,3 Mark Ferson,3 and Steven Krilis1

Abstract

Acalculous cholecystitis has been described in association with Q fever. We describe the first known case of Q fever cholecystitis diagnosed by polymerase chain reaction on gallbladder tissue. The presence of Coxiella burnetii genome in the diseased gallbladder tissue argues for direct involvement of the organism in the pathogenesis of Q fever cholecystitis.

Key Words: Q fever—Polymerase chain reaction—Cholecystitis.

This is the first known report of Q fever cholecystitis diagnosed by polymerase chain reaction (PCR) on the surgically removed gall bladder. A 38-year-old man was admitted to a Sydney teaching hospital with a 6-day history of fever, lethargy, myalgia, headache, and vomiting. He had worked for 6 months as a meat packer at a wholesale butcher. Workplace investigation revealed that his job entailed cutting frozen carcasses of cattle, sheep, and pigs with a high-speed saw, a process that generates spray, despite which no personal precautions against aerosol exposure were utilized. There was no history of Q fever vaccination. On examination the patient was febrile to 39.9°C, and had severe headache with mild photophobia and nonspecific abdominal tenderness.

Transaminases were raised with alanine aminotransferase 148 U/L (<45 U/L) and aspartate aminotransferase 150 U/L (<45 U/L). Alkaline phosphatase, gammaglutamyl transferase, and bilirubin were normal. C reactive protein was raised at 76 mg/L (<3 mg/L), and leucocyte count was 6.23 × 10^9/L (3.50–11.00 × 10^9/L) with a lymphopenia of 0.8 × 10^9/L (1.5–4.0 × 10^9/L). Cultures from blood, urine, and cerebrospinal fluid (CSF) were sterile. A presumptive diagnosis of Q fever was made on day 3, and the patient was commenced on doxycycline.

The patient’s condition initially improved. However, on day 6 he developed severe right upper quadrant abdominal pain and fever to 38.5°C. Transaminases increased (alanine aminotransferase 325 U/L and aspartate aminotransferase 349 U/L), with evidence of cholestasis: bilirubin 61 μmol/L (0–25 μmol/L), alkaline phosphatase 287 U/L (38–126 U/L), and gammaglutamyl transferase 222 U/L (0–50 U/L). Abdominal ultrasonography revealed hepatomegaly and acalculous cholecystitis with a thickened edematous gallbladder measuring 11 mm (see Fig. 1). Intravenous ampicillin, gentamicin, and metronidazole were commenced, and the patient underwent urgent laparoscopic cholecystectomy given concern for possible gangrenous gallbladder. Histopathology showed acute cholecystitis with a diffuse infiltrate of lymphocytes, plasma cells, and occasional neutrophils. The patient defervesced postoperatively and was discharged 5 days after operation. Q fever was diagnosed by positive PCR from gallbladder tissue. Initial screening PCR assay using a Com1–gene target was positive, and this was confirmed with a second PCR assay targeting the IS1111, a sequence in the Coxilella burnetii genome. Serological testing showed a rise in complement fixation titer from <8 to >256 after 11 days. PCR on blood from admission and day 6 were subsequently tested, and C. burnetii genome was detected on both assays.

Q fever is a zoonosis caused by C. burnetii. Q fever has a worldwide distribution, with the exception of New Zealand. The majority of human infections are acquired by inhalation of small particle droplets from urine, feces, milk, or bodily fluid from cattle, sheep, goats, or native animals. C. burnetii causes an initial bacteremia with widespread tissue seeding and consequently has a diverse range of clinical manifestations.
Despite early medical management with doxycycline, patients specific treatment and reducing the likelihood of operation. Q fever cholecystitis, facilitating earlier implementation of molecular techniques may allow a more rapid diagnosis of sensitivity of 59% on serum (Turra et al. 2006). Sensitivity is (IS1111) have been shown in an outbreak setting to have a genome in this patient, together with the clinical presentation, acute cholecystitis, and seroconversion, suggests that C. burnetii may be directly involved in the pathogenesis of cholecystitis.

Molecular techniques are evolving as useful tools to make an early diagnosis of Q fever. New techniques utilizing htpAB-associated repetitive element of C. burnetii genome (IS1111) have been shown in an outbreak setting to have a sensitivity of 59% on serum (Turra et al. 2006). Sensitivity is highest in early infection, before immunoglobulin M rise. Molecular techniques may allow a more rapid diagnosis of Q fever cholecystitis, facilitating earlier implementation of specific treatment and reducing the likelihood of operation. Despite early medical management with doxycycline, patients may still develop complications such as secondary bacterial infection, abscess formation, and perforation necessitating surgical intervention.

The annual incidence of Q fever cases notified in Australia has decreased from 5.0 per 100,000 in 1993, to 2.2 cases per 100,000 persons in 2004 (Brotherton et al. 2007). This reduction has been attributed to implementation between 2001 and 2004 of the National Q Fever Management Program, which targeted abattoir workers, those contracted to abattoirs, sheep shearers, and sheep, dairy, and cattle farmers and their employees. The patient described in this case would have not been identified as part of the program but was in a high-risk occupational group for which immunization is recommended. Australian guidelines recommend Q fever vaccine for abattoir workers, farmers, stockyard workers, shearers, animal transporters, others exposed to cattle, sheep, goats, and kangaroos or their products, and veterinarians and laboratory staff handling C. burnetii specimens. In this instance, a recommendation was made to the employer by Work Cover New South Wales that employees working in the meat-packing industry with negative Q fever serology be vaccinated and personal protective equipment (goggles, mask, gown, and gloves) be worn when operating the band saw.

Ongoing vigilance is required to prevent Q fever in high-risk groups. Of concern is the high proportion of Q fever cases occurring in groups with no recognized risk factors. Of the 15 described cases of Q fever–associated cholecystitis, only 4 had documented animal exposure. The proportion of Australian Q fever cases in people with no direct animal contact may increase during drought, as the subsequent dusty conditions enhance dissemination of this organism.

Acknowledgment

Phill Cantrell, Senior Project Officer, Hazard Management Group, WorkCover, New South Wales, Australia.

Disclosure Statement

No competing financial interests exist.

References


Address correspondence to:
Mel Figtree
Department of Immunology, Allergy, and Infectious Disease
St. George Hospital
1st Floor, 2 South Street
Kogarah
Sydney 2217
New South Wales
Australia
E-mail: melfigtree@yahoo.com.au