Power quality data management and reporting methodologies

H. M. S. Chandana Herath

University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE
This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Power Quality Data Management and Reporting Methodologies

A thesis submitted in fulfilment of the requirements for the award of the degree of

Doctor of Philosophy

from

University of Wollongong

by

H M S Chandana Herath
B.Eng., M.Eng., MIEAust

School of Electrical, Computer and Telecommunications Engineering

2008
To my parents, wife Nimali,
and
son Tharindu
Declaration

Apart from the assistance stated in the acknowledgments and where reference is made in the text this thesis represents the original work of the author. The studies presented here have not been submitted for qualification at any other academic institution.

H.M.S. Chandana Herath
School of Electrical, Computer & Telecommunications Engineering
University of Wollongong
Australia

August 2008
Acknowledgements

I am profoundly indebted to my supervisors, Professor Victor Gosbell and Associate Professor Sarath Perera, for their thorough guidance and help in every aspect of the study. Their dedication and unfailing interest were the main sources of inspiration for me to complete this study. Special thanks is given to Dr David Stirling for the invaluable discussions and support in the field of data mining that has been used to achieve some important goals of the project. I also would like to thank Dr Vic Smith, Dr Duane Robinson, Mr Sean Elphick, Dr Tim Browne, Mr John Braun, Ms Sankika Tennakoon, Ms Prabodha Paranavithana and all others of the Integral Energy Power Quality and Reliability Centre for their co-operation and support during the course of study. Thanks are also due to Ms Roslyn Causer-Temby and Ms Tracey O’Keefe for their support on various matters and thanks to all the other personnel of the School of Electrical, Computer and Telecommunications Engineering for their assistance. I also wish to express my gratitude for the generous financial support by the Australian Research Council Postgraduate Awards Scheme and the Integral Energy Power Quality and Reliability Centre.

My sincere thanks are also due to Dr Jean-Marrie Mathys for his valuable comments and Mr Steve McHardy of EnergyAustralia for his valuable support. I owe a deepest gratitude to my wife Nimali without whose tremendous moral support, this task would not have been possible. Finally, my son Tharindu, I cannot express how much your love means to me over the years that the time you have spend at Wollongong and I am proud to achieve this for all your hardships.
Abstract

Deregulation of the Australian electricity supply industry is being accompanied by state regulator requirements for explicit statements on quality of supply backed up with field survey results. The continuous monitoring and storage of every voltage waveform at a selection of key sites will add significant expenses to the associated costs in managing the electricity industry while demanding an enormous quantity of information to be processed. This thesis gives a less comprehensive approach which may be accepted as a standard and consistent method of characterising the supply using simple set of power quality indices. Also presented is a power quality data management and reporting methodology which will give useful feedback to end-users, allowing assessment of operability of equipment as well as to the regulators and utilities, for the comparison of competitive distributor performance. This is supported by a power quality surveys of selected sites within electricity utilities in Australia.

The thesis gives a method of analysis that can be used to conveniently convert the collected raw data into useful knowledge, covering various types of power quality disturbances i.e. continuous or variation type and discrete or event type. Literature suggests that there has been many studies undertaken on continuous disturbance characterisation and related indices. Comprehensive standards have been developed specifying objectives to be met with standard limits for all continuous disturbance types. However, there are no generally acceptable methods for characterisation of discrete disturbances and limits are not well defined in international standards. A generalised method is proposed in this thesis to characterise discrete disturbances
which is essentially based on a Disturbance Severity Indicator (DSI) proportional to the customer complaint rate. Scaled versions of the CBEMA and ITIC curves have been used to give an approximation to customer complaints.

The power quality reporting methodology suggested in this thesis is a consistent approach for power quality data analysis; categorised in to Short term, Medium term and Long term reporting, giving summary indices for each individual disturbance type and a single Unified Power Quality Index (UPQI) for each site and the utility. This approach would give an assessment of power quality rapidly, by means of representative numbers without overlooking important details. These indices, which are the result of characterisation and extraction from a large volume of power quality data, are easy to assess and representative of the actual impact of the disturbances they characterise. A novel methodology is also given to define discrete disturbance limits based on statistical information collected from large scale power quality surveys performed around the world.

Further, Multivariable Linear Regression (MVLR) has been used as a tool to identify hidden patterns and relationships within a large quantity of power quality data in an Australian monitoring campaign. For this, a factor analysis model has been developed using MVLR and complemented with Data Mining techniques; this model reveals the good and bad factors that influence utility power quality. Finally, the power quality data management guidelines and reporting methodologies developed have been applied to representative sites of several Australian utilities, to illustrate their ability to rank sites for power quality improvements and to rank utilities for power quality benchmarking.
Publications arising from the research work of this thesis

V.J. Gosbell, H.M.S.C. Herath, B.S.P. Perera and D.A. Robinson “Sources of Error

Table of contents

Acknowledgements ...iv
Abstract ..v
Publications arising from the research work of this thesisvii
Table of contents ..ix
List of figures ...xiii
List of tables ...xiv
List of abbreviations ...xv

Chapter 1 ..1
Introduction ...1
 1.1 **POWER QUALITY MONITORING IN DISTRIBUTION SYSTEMS**1
 1.2 **MOTIVATION** ..2
 1.3 **HYPOTHESIS OF THE THESIS** ...5
 1.4 **ORGANISATION OF THE THESIS** ...7

Chapter 2 ..9
Literature Review on Power Quality Monitoring and Reporting9
 2.1 **INTRODUCTION** ...9
 2.2 **PREVIOUS PQ MONITORING PROGRAMMES** ..10
 2.3 **POWER QUALITY STANDARDS** ...12
 2.3.1 **Introduction** ..12
 2.3.2 **IEC Standards on Electromagnetic Compatibility (EMC)**13
 2.3.3 **IEC Standard/ Technical Report Structure** ...15
 2.3.4 **EN 50160 (CENELEC) Standard** ...15
 2.3.5 **IEEE Standard 1159** ...16
 2.3.6 **Voltage Tolerance Curves** ..17
 2.4 **POWER QUALITY SURVEYING METHODOLOGIES**19
 2.4.1 **Site Selection** ..20
 2.4.2 **Survey duration** ...21
 2.4.3 **Measurement methods** ..22
 2.5 **POWER QUALITY REPORTING METHODOLOGIES**23
 2.5.1 **Overview** ..23
 2.5.2 **Present PQ reporting practices** ..24
 Continuous disturbances limits ...34
 Discrete disturbance limits ...37
 2.6 **CONCLUSION** ..39
Table of contents

Chapter 3

Power Quality (PQ) Data Management and Reporting .. 41

3.1 **PQ DATA MANAGEMENT – A NEW STRUCTURED APPROACH** 41

3.2 **POWER QUALITY DISTURBANCE CHARACTERISATION** 45

3.3 **CONTINUOUS DISTURBANCE CHARACTERISATION** 46

3.3.1 **Steady state voltage (voltage level)** .. 47

3.3.2 **Unbalance** ... 48

3.3.3 **Flicker** ... 48

3.3.4 **Harmonics** .. 49

3.4 **DISCRETE DISTURBANCE CHARACTERISATION** 49

3.4.1 **Voltage sags** .. 50

3.4.2 **Voltage swells** ... 51

3.4.3 **Oscillatory transients** .. 51

3.4.4 **Impulsive transients** ... 51

3.5 **A NEW GENERALISED METHOD OF CHARACTERISATION OF DISCRETE DISTURBANCES** ... 52

3.5.1 **Overview** .. 52

3.5.2 **Disturbance Severity Indicator (DSI)** .. 54

3.5.3 **Transition Region** .. 58

3.5.4 **Illustrative Example** ... 60

3.6 **CONCLUSION** .. 64

Chapter 4

Medium Term Reporting ... 66

4.1 **INTRODUCTION** .. 66

4.2 **MEDIUM TERM REPORTING REQUIREMENTS** 67

4.2.1 **Overview** .. 67

4.2.2 **Site Reporting** .. 69

4.3 **POWER QUALITY ANALYSIS TRIANGLE (PQAT)** 71

4.3.1 **Overview** .. 71

4.3.2 **Time compression** .. 73

4.3.3 **Space compression** ... 74

4.3.4 **Normalisation and consolidation** ... 74

4.4 **UNIFIED POWER QUALITY INDEX (UPQI)** 75

4.4.1 **Overview** .. 75

4.4.2 **Methodology** .. 76

4.4.3 **Application Example** .. 81

4.5 **BENCHMARKING PQ PERFORMANCE OF UTILITIES** 84

4.5.1 **Introduction** .. 84

4.5.2 **Benchmarking Utilities for a single disturbance impact** 85

4.5.3 **Benchmarking Utilities for Overall PQ Condition** 93

4.6 **CONCLUSION** .. 101

Chapter 5

Long Term Reporting ... 104

5.1 **INTRODUCTION** .. 104

5.2 **LIMITING VALUES FOR PQ DISTURBANCES** 105

5.2.1 **Overview** .. 105
Table of contents

5.2.2 New proposal for discrete disturbance limits .. 106
5.2.3 Application example ... 114
5.3 CONCLUSION ... 116

Chapter 6 ... 118

Factor Analysis .. 118

6.1 INTRODUCTION .. 118
6.2 MULTI VARIABLE LINEAR REGRESSION (MVLR) 120
 6.2.1 Factor Analysis of Australian Utility Power Quality Data 121
 6.2.2 Relationships of Factors on Individual Disturbance Indices 123
 6.2.3 Factor Analytic Models for Overall PQ Indices using MVLR 131
6.3 DATA MINING (DM) .. 133
 6.3.1 Factor Analytic Models for Overall PQ Indices using Data Mining 134
6.4 COMPARISON OF RESULTS OF TWO INDEPENDENT METHODS 137
 6.4.1 Comparison of Results for UPQIAverage ... 138
6.5 CONCLUSION ... 141

Chapter 7 ... 144

Conclusions ... 144

7.1 CONCLUSIONS AND RECOMMENDATIONS ... 144
7.2 RECOMMENDATIONS FOR FURTHER RESEARCH 148

References ... 151

Appendix A ... A1

A2. DEFINITIONS OF VOLTAGE UNBALANCE .. A2
A3. VOLTAGE FLICKER .. A3
A4. VOLTAGE HARMONICS ... A4
A5. FACTOR ANALYSIS –
 DISCUSSION ON THE AVAILABLE SURVEY DATA A6
 A5.1 Site Selection ... A6
 A5.2 Defining Categorical Variables .. A7
A6 MULTIVARIABLE LINEAR REGRESSION (MVLR) .. A8
A6.1 MVLR ANALYSIS EXAMPLES (THEORETICAL) A8
A6.2 MVLR ANALYSIS EXAMPLES (APPLICATIONS) A10
 MVLR ANALYSIS ON VOLTAGE UNBALANCE FOR ALL SITES A10
 MVLR ANALYSIS ON UPQIAVERAGE FOR ALL SITES A11
A7. UNSUPERVISED CLUSTERING USING MML [94] A13
A8. SOURCES OF ERRORS IN UNBALANCE MEASUREMENTS A16
 A8.1 Instantaneous unbalance .. A16
 A8.2 Time varying unbalance ... A21
A9 RPM INDEX .. A25

Appendix B ... B1

B1. DETAILS OF MAJOR POWER QUALITY SURVEYS B1
 B1.1 EPRI DPQ Project .. B1
B1.2	NPL survey ... B1
B1.3	CEA survey .. B2
B1.4	Australian National Power Quality Benchmark Survey B3
B1.5	Long Term National Power Quality Survey (LTNPQS) in Australia B3
B1.6	Pan European LPQI Power Quality Survey .. B4
B2.	IEC STANDARDS/TECHNICAL REPORTS STRUCTURE ... B5
B3.	SUMMARY OF COMPARISON OF EXISTING HARMONIC INDICES (CIGRE C4.07) B7
B4.	SUMMARY OF COMPARISON OF HARMONIC VOLTAGE OBJECTIVES BETWEEN DIFFERENT STANDARDS AND GUIDELINES (CIGRE C4.07) B8
B5.	SUMMARY OF COMPARISON OF INDIVIDUAL HARMONIC VOLTAGE BETWEEN DIFFERENT STANDARDS AND GUIDELINES (CIGRE C4.07) B9
B6.	SUMMARY OF COMPARISON OF EXISTING FLICKER INDICES (CIGRE C4.07) B10
B7.	SUMMARY OF COMPARISON OF FLICKER OBJECTIVES BETWEEN DIFFERENT STANDARDS AND GUIDELINES (CIGRE C4.07) B11
B8.	SUMMARY OF COMPARISON OF EXISTING UNBALANCE INDICES (CIGRE C4.07) B12
B9.	SUMMARY OF COMPARISON OF UNBALANCE OBJECTIVES BETWEEN DIFFERENT STANDARDS AND GUIDELINES (CIGRE C4.07) B13
List of figures

Figure 2.1. The compatibility level defined for LV and MV networks ... 14
Figure 2.2. CBEMA Curve .. 18
Figure 2.3. ITIC Curve ... 19
Figure 2.4 CBEMA/ITIC magnitude duration scatter plot ... 24
Fig. 2.5 Sag and interruption rate by month and magnitude histogram, treated by sampling weights, a PQ survey 24 utilities in USA .. 25
Fig. 2.6 Sag and interruptions below 90 and 70% voltage per site per year, treated by sampling weights, a PQ survey 24 utilities in USA .. 26
Fig. 2.6 EPRI 3D Histogram for voltage sag magnitude/duration/event count .. 26
Figure 2.8 Histogram of CP95 value for voltage THD .. 26
Figure 2.9 Individual harmonics and SATHD values at monitoring sites in USA 27
Figure 2.10 Eskom voltage sag characterisation chart ... 38
Figure 2.11 Chilean standard sag charts ... 39
Figure 3.1 PQ data management and reporting structure ... 42
Figure 3.2 CBEMA and ITIC curve fittings for different discrete disturbances 53
Figure 3.3 Voltage sag contours ... 56
Figure 3.4 Voltage swell contours ... 56
Figure 3.5 Oscillatory transient contours ... 57
Figure 3.6 Impulsive transient contours ... 58
Figure 3.7. ITIC overlays of transient data for each site .. 62
Figure 3.8. A comparison between different transient index characterisations for sites 63
Figure 4.1 Analysis structure for medium term reporting ... 67
Figure 4.2 Power Quality Analysis Triangle (PQAT) .. 71
Figure 4.3 Consolidated Indices for Individual Disturbances for all 10 Sites .. 82
Figure 4.4. Comparison of rankings using scatter graph using two approaches 83
Figure 4.5 Flow chart of voltage sag reporting concepts ... 86
Figure 4.6(a) Distributor 1 (D1) sags overlaid on CBEMA curve .. 90
Figure 4.6(b) Distributor 2 (D2) sags overlaid on CBEMA curve .. 90
Figure 4.6(c) Distributor 3 (D3) sags overlaid on CBEMA curve .. 90
Figure 4.7 Overall reporting (Network Level) .. 91
Figure 4.8 Overall reporting (Utility Level) ... 92
Figure 4.9 Graphical representation of UPQI-U for Voltage & Unbalance ... 95
Figure 4.10 Normalised and Consolidated Indices for Individual Disturbances for 18 Sites of 3 Electricity Distributors ... 98
Figure 4.11 Overall reporting (Regulator focussed UPQI-S) ... 99
Figure 4.12 Overall reporting (Regulator focussed UPQI-S) ... 100
Figure 4.13 Overall reporting (Regulator focussed UPQI-U) ... 101
Figure 4.14 Overall reporting (Regulator focussed UPQI-U) ... 101
Figure 5.1 Analysis structure for long term reporting .. 104
Figure 5.2 UNIPED DISDIP survey sag distribution chart with sag contours 108
Figure 5.3 Voltage swell windows ... 111
Figure 5.4 Oscillatory transient windows .. 112
Figure 5.5 Impulsive transient windows .. 114
Figure 5.6 Distributor “A” sags overlaid on the CBEMA together with contours 115
Figure 5.7 Distributor “B” sags overlaid on the CBEMA together with contours 115
Figure 5.8 Single site index with limits for voltage sags .. 116
Figure 6.1 MVLRA Analysis of Voltage Unbalance .. 125
Figure 6.2 MVLRA Analysis of Voltage Harmonics .. 127
Figure 6.3 MVLRA Analysis of Steady State Voltage .. 129
Figure 6.4 MVLRA Analysis of UPQI_average .. 132
Figure A6.1 MVLRA Analysis of Voltage Unbalance – Option 2 .. 139
Figure A6.2 MVLRA Analysis of UPQI_average – Option 2 ... 141
Figure A8.1 VUF calculated by different algorithms .. 142
Figure A8.2 VUF calculated by different algorithms .. 144
List of tables

Table 2.1 Chilean sags/swells characterisation method .. 39
Table 3.1 One month transients survey data of four sites .. 61
Table 4.1 Example power quality indices .. 77
Table 4.2 Example for UPQI-c and UPQI-d .. 80
Table 4.3 Site ranking based on different algorithms of PQ indices .. 83
Table 4.4 Site sag data of three Australian distributors .. 92
Table 4.5 Site details of three distribution utilities ... 99
Table 5.1 UNIPEDE DISDIP Survey Voltage Sag Incidence U/G Networks – 95% Percentile 107
Table 5.2 UNIPEDE DISDIP Survey Voltage Sag Incidence Mix Networks – 95% Percentile 108
Table 5.3 UNIPEDE DISDIP Survey Distribution Chart in Window Format (95% CP Statistics of Nine European Countries) ... 109
Table 5.4 Voltage swell limits .. 112
Table 5.5 Impulsive transient limits ... 114
Table 5.6 Oscillatory transient limits ... 114
Table 6.1 Monitored PQ data used for the analysis (Normalised Indices) 122
Table 6.2 MVLR Analysis on Voltage Unbalance (Excluding Remote Sites) 125
Table 6.3 Factors contributing to Voltage Unbalance .. 126
Table 6.4 MVLR Analysis on Voltage Harmonics ... 128
Table 6.5 Factors contributing to Voltage Harmonics .. 128
Table 6.6 MVLR Analysis on Steady State Voltage ... 130
Table 6.7 Factors contributing to Steady State Voltage .. 130
Table 6.8 MVLR Analysis on UPQIAverage excluding Remote sites .. 132
Table 6.9 Factors contributing to UPQIAverage .. 132
Table 6.10 Factor analytic model for UPQIAverage ... 135
Table 6.11 Data Mining Model with Most Significance .. 137
Table 6.12 MVLR Model for UPQIAverage with RMS Error Variable ... 140
Table 6.13 Data Mining Model for UPQIAverage with Missing Values 140
Table A3.1 Compatibility levels for P_{st} and P_{lt} in LV / MV power systems A3
Table A4.1 Compatibility levels for harmonic voltages (in % of the nominal voltage) in LV and MV power systems .. A4
Table A4.2 Indicative values of planning levels for harmonic voltages (in % of the nominal voltage) in MV, HV and EHV power systems A3
Table A6.1 MVLR Analysis on Voltage Unbalance (Including Remote Sites) A10
Table A6.2 MVLR Analysis on UPQIAverage including Remote Sites A11
Table A8.1 Calculated unbalance versus zero sequence phase angle ... A17
Table A8.2 Phase angle deviation .. A18
Table A8.3 VUF with balanced harmonics ... A20
List of abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AS/NZS</td>
<td>Australian/ New Zealand Standards</td>
</tr>
<tr>
<td>ANPQBS</td>
<td>Australian National Power Quality Benchmark Survey</td>
</tr>
<tr>
<td>CBEMA</td>
<td>Computer Business Equipment Manufacturers Association</td>
</tr>
<tr>
<td>CEA</td>
<td>Canadian Electricity Association</td>
</tr>
<tr>
<td>CENELEC</td>
<td>European Committee for Electrotechnical Standardisation</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>DSI</td>
<td>Disturbance Severity Indicator</td>
</tr>
<tr>
<td>EHV</td>
<td>Extra high voltage</td>
</tr>
<tr>
<td>EPRI</td>
<td>Electric Power Research Institute</td>
</tr>
<tr>
<td>ESKOM</td>
<td>South African Electricity Supply Company</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>HV</td>
<td>High voltage</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEE</td>
<td>Institution of Electrical Engineers, UK</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institution of Electrical and Electronic Engineers, USA</td>
</tr>
<tr>
<td>ITIC</td>
<td>Information Technology Industry Council</td>
</tr>
<tr>
<td>LTNPQS</td>
<td>Long Term National Power Quality Survey</td>
</tr>
<tr>
<td>LV</td>
<td>Low voltage</td>
</tr>
<tr>
<td>MML</td>
<td>Minimum Message Length</td>
</tr>
<tr>
<td>MV</td>
<td>Medium voltage</td>
</tr>
<tr>
<td>MVLR</td>
<td>Multivariable Linear Regression</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electricity Manufacturers Association, USA</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>P_{st}</td>
<td>Short term flicker severity index</td>
</tr>
<tr>
<td>P_{lt}</td>
<td>Long term flicker severity index</td>
</tr>
<tr>
<td>PQAT</td>
<td>Power Quality Analysis Triangle</td>
</tr>
<tr>
<td>RPM</td>
<td>Reliable Power Meters</td>
</tr>
<tr>
<td>UPQI</td>
<td>Unified Power Quality Index</td>
</tr>
<tr>
<td>V</td>
<td>Voltage (V)</td>
</tr>
<tr>
<td>VUF</td>
<td>Voltage Unbalance Factor</td>
</tr>
<tr>
<td>V_{THD}</td>
<td>Voltage Total Harmonic Distortion</td>
</tr>
</tbody>
</table>