Area level socioeconomic disadvantage and diabetes control in the SIMLR Study cohort: Implications for health service planning

Andrew D. Bonney
University of Wollongong, abonney@uow.edu.au

Darren J. Mayne
University of Wollongong, dmayne@uow.edu.au

Peter Caputi
University of Wollongong, pcaputi@uow.edu.au

Kathryn M. Weston
University of Wollongong, kathw@uow.edu.au

Christopher A. Magee
University of Wollongong, cmagee@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/ihmri

Part of the Medicine and Health Sciences Commons

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Area level socioeconomic disadvantage and diabetes control in the SIMLR Study cohort: Implications for health service planning

Abstract

Disciplines
Medicine and Health Sciences

Publication Details

Authors
Andrew D. Bonney, Darren J. Mayne, Peter Caputi, Kathryn M. Weston, Christopher A. Magee, and Abhijeet Ghosh

This conference paper is available at Research Online: https://ro.uow.edu.au/ihmri/530
Area level socioeconomic disadvantage and diabetes control in the SIMLR Study cohort: Implications for health service planning

Author(s)
Andrew Bonney*, Darren Mayne, Peter Caputi, Kathryn Weston, Christopher Magee, Abhijeet Ghosh

Organisation
University of Wollongong, Illawarra-Shoalhaven Medicare Local, Illawarra Health and Medical Research Institute

Aims & rationale
Diabetes is a major population health problem which disproportionately affects those with greatest socioeconomic disadvantage. Australia lacks a systematic regional approach to identifying those at highest risk of diabetes complications. This paper reports analyses from the SIMLR Cohort Study quantifying diabetes control by area-level disadvantage and discusses health planning implications.

Methods
The SIMLR Cohort Study is a retrospective-prospective study of health risk indicators in the Illawarra-Shoalhaven region. A sample of diabetic residents' mean updated HbA1c during 2010-13 was extracted from the dataset and matched to socioeconomic data from the 2011 Census using geocoding. Relative risks for HbA1c categories based on the UKPDS were calculated by area-level socioeconomic disadvantage quintiles.

Findings
Data for 37,214 persons were analysed. Adjusted odds of poorer glycaemic control were significantly lower for females compared to males [Odds Ratio (OR): 0.85, 95% Confidence Interval (CI): 0.81-0.88]. By age category, odds for poorer control were highest for persons aged 50-54 years. The odds of poorer glycaemic control increased significantly with greater disadvantage: Q1 (most disadvantaged) vs Q5 (most advantaged) OR 1.62 (CI:1.52,1.73) and Q2 vs Q5 OR 1.39 (CI:1.30,1.49) and Q3 vs Q5 OR 1.32 (CI:1.23,1.41)

Relevance to policy, research and/or practice needs
Diabetes complication rates are associated with poorer control. Disadvantage-related complication risk (and costs) can be quantified and mapped when clinical data are linked to area-level socioeconomic indices. These data can inform the location and quantum of resource targeting by health-planners, facilitating cost-efficient improvements in outcomes in high risk patients, reduced hospitalisations and improved equity.