2003

Structure/function studies of the alpha-crystallin small heat-shock chaperone proteins

T. M. Treweek

University of Wollongong, treweek@uow.edu.au

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Structure/function studies of the α-crystallin small heat-shock chaperone proteins

Teresa Mary Treweek, B. Med Chem (Hons)

Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

Department of Chemistry and Department of Biological Sciences

University of Wollongong
Wollongong, AUSTRALIA

December, 2003
Declaration of authenticity

This thesis is submitted in accordance with the regulations of the University of Wollongong in fulfilment of the degree of Doctor of Philosophy. It does not include any material previously published by another person except where due reference is made in the text. The experimental work described in this thesis is original and has not been submitted for a degree to any other University.

Teresa Mary Treweek.
Acknowledgements

Firstly, I would like to sincerely thank my supervisors, John Carver and Mark Walker for all their guidance, wisdom and for their belief in me. I would also like to thank Agata Rekas for her help, particularly with the NMR data and for all the handy little tips she has shared with me along the way.

To my friends – Tam and Glen, Kath and Brian, Lisa and Shannon, Nat and Mick, Christine, Rachel, Elise, Amie, Martina, Fi, Coley and everyone else in the Walker and Carver Labs. I have been very priveledged to have such an amazing support network and to have spent so much time with brilliant, fun people who made it feel as though most of the time I wasn’t doing work at all.

I would like to thank my family for their unwavering support and confidence in my ability to achieve. Jack and Judy, Mum and Tony, Chris and Vanessa, Nardi, Al and Mike. Thank you for being there for me always.

Last, but certainly not least, I would like to thank my immediate and irreplaceable family. Ian, you have been my rock. You know that I am a very different person thanks to you and that without you, none of this would have been possible. I will always love you. Marcus, I am so proud of you. You are a wonderful son who has been very understanding of my need to focus on this thesis. I love you very much and appreciate that I am a very lucky Mum.
Table of Contents

Declaration of authenticity .. i
List of abbreviations used ... xii
List of Publications ... xiv
Abstract ... xv

Chapter 1
Introduction ... 1
 1.2 Protein folding in the cell ... 1
 1.2 The Molten Globule (MG) state ... 4
 1.3 Molecular chaperones ... 6
 1.4 The heat shock response ... 8
 1.5 Classification of heat shock proteins .. 9
 1.6 Small heat shock proteins (sHps) ... 13
 1.7 α-Crystallin in the vertebrate lens .. 14
 1.8 α-Crystallin outside the lens .. 15
 1.9.1 Primary Structure and Sequence Homology .. 16
 1.9.2 Secondary and tertiary structure ... 17
 1.9.3 Quaternary structure .. 18
 1.9.3.1 Theoretical Models .. 18
 1.9.3.2 Direct visualisation ... 20
 1.9.4 The dynamic nature of α-crystallin aggregates ... 22
 1.10 Chaperone activity of α-crystallin ... 25
 1.10.1 Assessment of chaperone activity .. 25
 1.10.2 Effect of temperature on chaperone activity .. 28
 1.10.3 The role of sHsps in the refolding of denatured proteins 31
 1.11 Structural features of α-crystallin important for chaperone activity 32
 1.11.1 N-terminal and central regions ... 32
 1.11.2 C-terminal region .. 36
 1.11.2 The I-X-I motif ... 38
 1.11.3 C-terminal extension .. 39
 1.12 Molecular chaperones and their role in human health and disease............. 42
 1.13 Small heat shock proteins and their role in human health and disease........... 43
 1.14 Potential therapeutic applications of heat shock proteins 46

Chapter 2
Materials and Methods .. 50
 2.1 General Materials ... 50
 2.2 General Methods .. 51
 2.2.1 Preparation of electrocompetent E. coli BL21(DE3) cells 51
 2.2.2 Electrotransformation of E. coli BL21(DE3) ... 51
 2.2.3 Preparation of bacterial stocks .. 52
 2.3 Expression and Purification of human α-crystallins ... 52
 2.3.1 Expression .. 52
 2.3.2 Purification .. 54
 2.3.2.1 Cell lysis .. 54
 2.3.2.2 Anion-exchange chromatography ... 55
 2.3.2.3 Size-exclusion chromatography ... 56
 2.3.2.4 Concentration and dialysis of protein ... 56
 2.4 Uniform ^{15}N-labelling of proteins ... 57
 2.4.1 Bacterial growth curves in minimal media ... 58
2.5 Site-directed mutagenesis ... 59
2.4.2 Design of Mutagenic Primers .. 61
2.5.2 Mutagenic Reactions ... 62
2.5.3 Digestion of mutagenic products ... 63
2.5.4 Transformation into XL1-Blue Supercompetent Cells 64
2.6 DNA sequence analysis ... 65
2.6.1 DNA sequencing gel electrophoresis ... 68
2.7 Other Molecular Techniques ... 69
2.7.1 Plasmid DNA extraction and purification 69
2.7.2 Restriction Enzyme digestion ... 70
2.7.3 Agarose gel electrophoresis ... 70
2.8 Protein Characterisation ... 71
2.8.1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS- PAGE) ... 71
2.8.2 Native Gel Electrophoresis ... 72
2.8.3 Chaperone assays ... 72
2.8.3.1 Heat-stress assays ... 72
2.8.3.2 Reduction stress assays ... 73
2.8.4 Intrinsic tryptophan fluorescence studies 74
2.8.5 Thermostability studies ... 75
2.8.6 Circular Dichroism (CD) spectroscopy .. 75
2.8.7 Size exclusion HPLC ... 76
2.8.7 Nuclear Magnetic Resonance (NMR) Spectroscopy 77
2.8.7.1 1H NMR spectroscopy of recombinant human α-crystallins 77
2.8.7.2 1H-15N HSQC, HSQC-TOCSY, 15N NOE, T$_1$ and T$_2$ 15N NMR spectroscopy of 15N-labelled wildtype and mutant recombinant human α-crystallins ... 78
2.8.7.3 1H-15N HSQC NMR spectroscopy of wildtype 15N-labelled αA-crystallin and its interaction with α-lactalbumin under reduction stress........ 79
2.8.7.4 NMR spectroscopy of wildtype 15N-labelled αA- and αB-crystallin with increasing temperature .. 80
2.8.7.5 Real-time 1H NMR spectroscopy of the interaction between R120G αB-crystallin and reduced bovine α-lactalbumin 80
2.8.7.6 2D 1H NMR spectroscopy of R120G αB-crystallin 81
2.8.7.7 NMR Data Processing and Analysis .. 81
2.8.8 Electrospray Ionisation Mass Spectrometry (ESI-MS) and Nanoscale Electrospray Ionisation Mass Spectrometry (NanoESI-MS) 82

Chapter 3
Expression and purification of recombinant human α-crystallins 83
3.1 Expression vectors for human α-crystallins 83
3.2 Expression of recombinant human α-crystallins in E. coli BL21 and BL21(DE3) ... 86
3.3 Purification of recombinant human α-crystallins 90
3.3.1 Cell lysis ... 90
3.3.2 Anion-exchange chromatography .. 91
3.3.3 Size-exclusion chromatography ... 92

Chapter 4
Uniform 15N-labelling of recombinant human α-crystallins 97
4.1 Uniform 15N-labelling of human α-crystallins 97
Chapter 5
Site-directed mutagenesis of recombinant human \(\alpha\)-crystallins109
5.1 Generation of mutants ...112
5.2 Targets for site-directed mutagenesis ...112
5.3 Design of mutagenic primers ...114
5.4 Site-directed mutagenesis procedure ...116
5.5 Selection of mutants for DNA sequence analysis116
5.6 Expression of mutant proteins ...117
5.7 Purification of mutant proteins ...119

Chapter 6
Characterisation of recombinant human wildtype and mutant123
\(\alpha\)-crystallins ...123
6.1 UV-VIS Spectroscopy ...123
6.2 Electrospray ionisation mass spectrometry (ESI-MS)123
6.3 Intrinsic tryptophan fluorescence spectroscopy126
6.4 Circular Dichroism (CD) spectroscopy ..129
6.5 Thermostability studies ..135
6.6 Chaperone assays ...141
 6.6.1 Heat stress assays ..141
 6.6.2 Reduction stress assays ..148
6.7 Size exclusion HPLC ...157

Chapter 7
Nuclear Magnetic Resonance (NMR) spectroscopic studies of recombinant
human \(\alpha\)-crystallins ..168
7.1 \(^1\)H-\(^{15}\)N NMR of wildtype recombinant human \(\alpha\)A- and \(\alpha\)B-
crystallin ..168
7.2 \(^1\)H-\(^{15}\)N HSQC NMR spectroscopy of wildtype \(^{15}\)N-labelled \(\alpha\)A-
crystallin and its interaction with \(\alpha\)-lactalbumin under reduction stress180
7.3 \(^1\)H-\(^{15}\)N HSQC NMR spectroscopy of \(^{15}\)N-labelled mutants of \(\alpha\)B-
crystallin ..188
7.4 NMR spectroscopy of wildtype \(^{15}\)N-labelled \(\alpha\)A- and \(\alpha\)B-crystallin
 with increasing temperature ...196

Chapter 8
Further structural characterisation of the R120G mutant of human210
\(\alpha\)B-crystallin ..210
8.1 \(^1\)H NMR Spectroscopy of R120G \(\alpha\)B-crystallin with time211
8.2 Mass spectrometry of R120G \(\alpha\)B-crystallin ...216
8.3 Analysis of R120G \(\alpha\)B-crystallin aggregates by light scattering and
 size exclusion chromatography (SEC) ...218
8.4 Real-time \(^1\)H NMR spectroscopy of the interaction between R120G
 \(\alpha\)B-crystallin and reduced bovine \(\alpha\)-lactalbumin221

Chapter 9
Conclusions and future directions ...244
Appendix ..243
List of Figures

Chapter 1: Introduction

Figure 1.1: A schematic representation of structural changes in the molten globule (MG) state, compared to the native state...5

Figure 1.2: Stages of protein folding/unfolding...6

Figure 1.3: Proposed quaternary structure of α-crystallin.................................19

Figure 1.4: Three-dimensional image reconstruction of the annular arrangement of αB-crystallin oligomers...21

Figure 1.5: Graphical representation of the putative mechanism by which sHsps function...24

Figure 1.6: C-terminal extensions of human αA- and αB-crystallin........40

Chapter 2: Materials and Methods

Figure 2.1: Overall mutagenic scheme...60-61

Figure 2.2: Approximate positions of DNA sequencing primers.....................66

Chapter 3: Expression and purification of recombinant human α-crystallins

Figure 3.1: Plasmid maps and restriction digest ...84-85

Figure 3.2 Growth curves..88

Figure 3.3 SDS-PAGE gels of protein expression..89

Figure 3.4: ESI-MS of R120G αB-crystallin..90

Figure 3.5 DEAE chromatograms of wildtype αA-crystallin and wildtype αB-crystallin...92

Figure 3.6 S-300 size-exclusion chromatograms of wildtype αA-crystallin and wildtype αB-crystallin...93

Figure 3.7: SDS-PAGE of purification process..94

Figure 3.8: ESI-MS and nanoESI-MS of wildtype αA-crystallin and αB-crystallin...96
Chapter 4: Uniform 15N-labelling of recombinant human α-crystallins

Figure 4.1: Bacterial growth curves in M9 minimal media.................................98
Figure 4.2: ESI-MS of 15N-αA-crystallin and 15N-αB-crystallin.........................99
Figure 4.3: Near-UV and Far-UV CD spectra of wildtype and 15N-labelled αA- and αB-crystallin...103
Figure 4.4: Intrinsic tryptophan fluorescence spectra of wildtype and 15N-labelled αA- and αB-crystallin...104
Figure 4.5: ESI-MS of 15N-labelled I159/161A and 15N-labelled K175L αB-crystallin.................................107

Chapter 5: Site-directed mutagenesis of recombinant human α-crystallins

Figure 5.1: Sequence alignment of some major sHsps.................................110-111
Figure 5.2: DNA sequence analysis of αA-crystallin and αB-crystallin mutants......118
Figure 5.3: Native gel electrophoresis of wildtype and I159/161A αB-crystallin......119
Figure 5.4: S-300 chromatogram of S172L αA-crystallin.................................121
Figure 5.5: SDS-PAGE gel of S172L αA-crystallin.................................122

Chapter 6: Characterisation of recombinant human wildtype and mutant α-crystallins

Figure 6.1: Representative ESI-MS of purified recombinant human proteins......124-125
Figure 6.2: Intrinsic tryptophan fluorescence spectra of wildtype and mutant αB-crystallin proteins...127
Figure 6.3: Intrinsic tryptophan fluorescence spectra of wildtype and T168L mutant αA-crystallin proteins...129
Figure 6.4: Near-UV and Far-UV CD spectra of αB-crystallin wildtype and mutant proteins...132
Figure 6.5: Near-UV and Far-UV CD spectra of αA-crystallin wildtype and T168L mutant proteins...134
Figure 6.6: Thermostability of αB-crystallin wildtype and mutant proteins......139
Figure 6.7: Thermostability of bovine β_{1}-crystallin.................................140
Chapter 7: Nuclear Magnetic Resonance (NMR) spectroscopic studies of recombinant human α-crystallins

Figure 7.1: HSQC spectrum of 15N-labelled αA-crystallin……………………………………..169

Figure 7.2: 15N-decoupled WATERGATE TOCSY and WET NOESY spectra of 15N-labelled αA-crystallin………………………………………………………………..171

Figure 7.3: HSQC spectrum of 15N-labelled αB-crystallin………………………………………………172

Figure 7.4: 15N-decoupled WATERGATE TOCSY and WET NOESY spectra of 15N-labelled αB-crystallin……………………………………………………………………174

Figure 7.5: Representative graph of the exponential decay of peak integral with T_1 relaxation time…………………………………………………………………………………176

Figure 7.6: 15N T_1 and T_2 analyses of 15N wildtype αA-crystallin…………………………..179

Figure 7.7: 15N NOE values of 15N wildtype αA-crystallin……………………………………………180

Figure 7.8: Native PAGE of HMW complex between αA-crystallin and reduced α-lactalbumin………………………………………………………………………………181

Figure 7.9: HSQC spectrum of 15N-labelled αA-crystallin with α-lactalbumin under reduction stress……………………………………………………………………………182

Figure 7.10: 15N T_1 and T_2 values for 15N wildtype αA-crystallin with α-lactalbumin under reduction stress……………………………………………………………………184

Figure 7.11: 15N NOE values of 15N wildtype αA-crystallin with α-lactalbumin under reduction stress………………………………………………………………………………185
Chapter 8: Further structural characterisation of the R120G mutant of human αB-crystallin

Figure 8.1: 1D 1H NMR spectrum of R120G αB-crystallin with time..................212
Figure 8.2: 2D 1H NMR TOCSY spectra of R120G αB-crystallin with time......213-215
Figure 8.3: ESI-MS of R120G αB-crystallin over time.................................217
Figure 8.4: SDS-PAGE gel of R120G αB-crystallin......................................218
Figure 8.5: Light scattering data of R120G αB-crystallin..............................219
Figure 8.6: Size-exclusion chromatography of R120G αB-crystallin with time......220
Figure 8.7: Real-time 1D 1H NMR spectra of reduced apo α-lactalbumin with time at pH 6.5 ...222-223

Figure 8.8: First-order decay plots of reduced apo α-lactalbumin at pH 6.5...224-225

Figure 8.9: Real-time 1D 1H NMR spectra of reduced apo α-lactalbumin with time at pH 7.0 ...226-227

Figure 8.10: First-order decay plots of reduced apo α-lactalbumin at pH 7.0 ...228-229

Figure 8.11: SDS-PAGE analysis of real-time NMR samples ..232

Chapter 9: Conclusions and future directions
List of Tables

Chapter 1: Introduction

Table 1.1: Diseases involving incorrect protein folding……………………………………………………3

Table 1.2: Cellular stressors that induce heat shock genes and over-expression of heat shock proteins………9

Chapter 2: Materials and Methods

Table 2.1: DNA sequencing primers used for sequencing of pET23d(+)αA-crystallin and pET24d(+)αB-crystallin…………………………………………………………………………………………………65

Chapter 3: Expression and Purification of recombinant human α-crystallins

Chapter 4: Uniform 15N-labelling of recombinant human α-crystallins

Table 4.1: Amount of 15N incorporated into uniformly labelled αA-crystallin and αB-crystallin as shown by ESI-MS……………………………………………………………………………………………………101

Chapter 5: Site-directed mutagenesis of recombinant human α-crystallins

Table 5.1: Forward and reverse mutagenic primer sequences………………………………………115

Chapter 6: Characterisation of recombinant human wildtype and mutant α-crystallins

Table 6.1: Molecular masses of recombinant proteins following expression and purification as determined by ESI-MS……………………………………………………………………………………………………124

Table 6.2: Summary of intrinsic tryptophan fluorescence data for wildtype and mutant αB-crystallin proteins………………………………………………………………………………………………………..126

Table 6.3: Summary of approximate masses of wildtype and mutant αA- and αB-crystallin complexes as determined by size-exclusion HPLC…………………………………………………………164

Chapter 7: Nuclear Magnetic Resonance (NMR) spectroscopic studies of recombinant human α-crystallins

Table 7.1: 15N chemical shifts for residues of 15N-labelled αA-crystallin………………170

Table 7.2: 15N chemical shifts for residues of 15N-labelled αB-crystallin………………173

Chapter 8: Further structural characterisation of the R120G mutant of human αB-crystallin

Chapter 9: Conclusions and future directions
List of abbreviations used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>ampicillin</td>
</tr>
<tr>
<td>A</td>
<td>amps</td>
</tr>
<tr>
<td>APS</td>
<td>ammonium persulfate</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>D<sub>2</sub>O</td>
<td>deuterated water</td>
</tr>
<tr>
<td>DEAE</td>
<td>diethylaminoethyl</td>
</tr>
<tr>
<td>dH<sub>2</sub>O</td>
<td>distilled water</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase I</td>
<td>deoxyribonuclease I</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol (Cleland’s reagent)</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionisation</td>
</tr>
<tr>
<td>FD</td>
<td>Faraday</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g</td>
<td>relative centrifugal force 9.8m/s<sup>2</sup></td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HMW</td>
<td>high molecular weight</td>
</tr>
<tr>
<td>HSQC</td>
<td>Hetero-nuclear single-quantum coherence</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-1-thio-β-D-galactopyranoside</td>
</tr>
<tr>
<td>Km</td>
<td>kanamycin</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>Lys</td>
<td>lysine</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>μL</td>
<td>microlitre</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>μM</td>
<td>micromolar</td>
</tr>
<tr>
<td>m/z</td>
<td>mass/charge ratio</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>Nuclear Overhauser Effect</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser Effect Spectroscopy</td>
</tr>
<tr>
<td>Ω</td>
<td>ohm</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PEI</td>
<td>polyethyleneimine</td>
</tr>
<tr>
<td>pI</td>
<td>isoelectric point</td>
</tr>
<tr>
<td>pmol</td>
<td>picomole</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethylsulfonyl fluoride</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>Q-Tof</td>
<td>quadrupole orthogonal acceleration time-of-flight</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SEC</td>
<td>size-exclusion chromatography</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetra-methylethlenediamine</td>
</tr>
<tr>
<td>TOCSY</td>
<td>total correlation spectroscopy</td>
</tr>
<tr>
<td>Tris</td>
<td>trisaminomethane</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>WET</td>
<td>water suppression enhanced through T_1 effects</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-β-galactopyranoside</td>
</tr>
</tbody>
</table>
List of Publications

Abstract

α-Crystallin is a member of the small heat shock protein (sHsp) family which exists as a multimer of αA- and αB-crystallin subunits in the ratio of 3:1 in the lens, where it was first identified. It is an intracellular molecular chaperone, capable of interacting with a multitude of target proteins to prevent their aggregation and precipitation. Initially considered to be solely a lens protein, individual αA- and αB-crystallin proteins have since been found in other organs with αB-crystallin in particular appearing to play a role in many neurodegenerative disorders (e.g. Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob diseases). Due to the dynamic nature of α-crystallin oligomers and the propensity for subunit exchange, crystallisation of the protein has been impossible. As a result, the mechanisms by which α-crystallin functions remain elusive, as does a complete picture of the chaperone’s quaternary structure.

In this study, recombinant human αA- and αB-crystallin were expressed and purified using conventional methods (Horwitz, J., Huang, Q-L., Ding, L. and Bova, M. P. (1998) Methods in Enzymology 290:363-383). A series of mutants of αA- and αB-crystallin were also constructed, with mutation sites concentrated in the C-terminal region of the protein and in particular the solvent-exposed and flexible C-terminal extension. This extension, which comprises 10 and 12 amino acids in human αA- and αB-crystallin, respectively, behaves in a similar manner to an unstructured peptide in solution. Previous NMR spectroscopic studies have indicated that it serves a crucial role in binding target proteins.

C-Terminal extension mutants K175L, K174A/K175A, E164A/E165A, I159A/I161A and R163STOP (αB-crystallin) and S172L, T168L and R163STOP mutants
(αA-crystallin) were produced and purified in the same manner as for the wildtype proteins. The expected masses of mutants were confirmed by electrospray mass spectrometry (ESI-MS). Complete purification, however, of S172L and R163STOP αA-crystallin was not achieved due to decreased aggregate size and excessive hydrophobicity, respectively. Purified wildtype and mutant proteins were structurally and functionally characterised using a variety of spectroscopic techniques. These included chaperone assays under both reduction and heat stress with insulin and βL-crystallin as target proteins, respectively, intrinsic tryptophan fluorescence spectroscopy, far- and near-UV circular dichroism (CD) spectroscopy, thermostability studies, size-exclusion high-performance liquid chromatography (HPLC), mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. Many of the αB-crystallin mutants purified successfully and provided insight into specific amino acid residues that are important for the chaperone action of the protein. These include the “I-X-I motif” at the C-terminal end of the protein which is highly conserved throughout sHsps and is thought to be critical for oligomeric assembly. Mutation of both isoleucine residues in the αB-crystallin I-X-I motif to alanine resulted in a protein which formed larger oligomeric complexes than the wildtype protein. Truncation of the C-terminal extension of αB-crystallin resulted in a protein with severely impaired chaperone ability, increased tendency to aggregate and disrupted secondary, tertiary and quaternary structures. These results suggest that the polar and flexible C-terminal extension is also necessary for uniform oligomeric assembly as well as for the solubility of α-crystallin as a whole. Chaperone and thermostability studies on the double glutamic acid mutant (E164A/E165A) showed that these highly charged residues are critical to the solubility of αB-crystallin at higher temperature. Consistent with this, ion-pairs and the formation of salt bridges between charged amino acids on the surfaces of thermophilic proteins are
thought to be responsible for their increased thermostability. Recombinant human αA- and αB-crystallin were uniformly 15N-labelled for the purposes of 2D Nuclear Magnetic Resonance spectroscopy (NMR) studies. Measurement of 15N relaxation time constants (T_1 and T_2) and 15N Nuclear Overhauser Effects (NOEs) for both wildtype proteins and the K175L and I159/I161A mutants of αB-crystallin have provided detailed information on the relative flexibilities of residues in the protein's C-terminal extension. Substitution of a leucine residue for the C-terminal lysine (K175) increased extreme C-terminal mobility and substitution of the isoleucine pair of the I-X-I motif with alanine residues led to a disruption of flexibility throughout the C-terminal extension. 15N T_1 and T_2 and 15N NOE values were also determined for 15N-labelled αA-crystallin in the presence of reduced α-lactalbumin in order to gain information on changes in the flexibility of the C-terminal extension upon chaperone interaction with a stressed target protein. Upon formation of a chaperone-target protein complex, the flexibilities of C-terminal residues of αA-crystallin were equalised across the extension indicating that the entire extension was involved in interaction with the target protein to some extent.

The R120G αB-crystallin mutant, which is associated with desmin-related myopathy and cataract in humans was also expressed and purified for the purposes of further structural characterisation. Previous studies on this mutant have provided some ambiguous results with regard to its chaperone ability and general structural stability. It was found that in addition to being intrinsically unstable and susceptible to unfolding, R120G αB-crystallin underwent C-terminal proteolysis with time. Furthermore, R120G αB-crystallin exhibited marked substrate specificity and in fact, acted as an “anti-chaperone” in the presence of reduced α-lactalbumin. Under these conditions, R120G αB-crystallin promoted the aggregation of the molten globule state of α-lactalbumin and co-precipitated with it out of solution. This study, therefore provided several
insights into structural and functional aspects of α-crystallin small heat shock chaperone proteins.