2005

Regolith geochemical exploration in the Girilambone District of New South Wales

Benjamin R. Ackerman
University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
ABSTRACT

This study examines the distribution of geochemical elements in the surficial and regolith profile environments, about two copper sulfide deposits in the Girilambone district of New South Wales. Multi-element geochemical and mineralogical investigations of regolith, rock and mineralised samples from the Larsens East and Hartmans prospects of Girilambone North and the Tritton copper deposits, were conducted to determine the geochemical expression of mineralisation and mechanisms of geochemical dispersion within the regolith environment. Host metasedimentary units and intrusive mafic rocks can be discriminated geochemically at various levels within the regolith and primary environments, particularly on the basis of REE geochemistry and several other key elements, thus establishing a ‘background’ geochemical variance of non-mineralised lithologies. Geochemical data were examined within a regolith-landform context, following investigations of regolith architecture and development, which identified two prominent regolith-landform examples within an otherwise low-relief, erosional regime. At Girilambone North, weathering of greater intensity has developed a moderately ferruginised upper regolith and poorly developed ‘lateritic’ profile, resulting in preservation of surface regolith horizons, while within the Tritton study area, upper regolith horizons have been partially truncated by erosive stripping, with residual soils developed directly on weathered saprolite. Each instance forms an individual case from a geochemical exploration viewpoint, for which strategies for further exploration have been developed.

Primary Cu mineralisation within the Girilambone district occurs as massive pyrite-chalcopyrite mineralisation within a pyritic envelope. Mineralisation is generally associated with intense silicification and may be associated with mafic volcanism and characterised by anomalously higher occurrence of the elements Sb, As, Bi, Br, Cd, Co, Cu, Au, Fe, Pb, Mo, Ni, Se, Sr, S, Te, Sn, W and Zn. At Girilambone North, primary mineralisation occurs within and below the extent of regolith development, and secondary mineralisation has formed as laterally extensive secondary chalcocite, copper oxide and copper carbonate zones above the weathering front, which extends to approximately 90 m below the present land surface. Moderate surface ferruginisation has retained primary mineralised elements such as As, Bi, Ba, Co, Cu, Au, Hg, Mo, Ni, Ag, Te and Zn within the vicinity of primary mineralisation, while these elements are also enriched in soil geochemical analyses. Strong leaching due to acidic weathering solutions borne from oxidation of sulfide minerals, has formed a displaced geochemical
anomaly to the north of known mineralisation in saprolite and soil samples, while these same media did not necessarily display anomalism directly above mineralised zones. Geochemical dispersion has been predominantly by hydromorphic dispersion and migration of groundwaters through north-trending late-stage faults and structural zones. This study also examines the surface geochemical expression of mineralisation over the concealed Tritton Copper deposit in regolith (at the time of sampling) relatively undisturbed by prior mining activities. It is in effect a retrospective study granted that the position of sulfide mineralisation at depth has been well defined by exploration and resource delineation drilling. Subtle multi-element geochemical anomalism coincident in residual soil and saprolite sampling, from this study and re-analysis of previous geochemical exploration data, has been identified at the up-plunge and up-dip extensions of Tritton mineralisation. Geochemical dispersion about the Tritton copper deposit is almost entirely mechanical, and limited to residual soils and saprolite regolith materials at the up-plunge and up-dip extension of concealed mineralisation. Coarse-fraction residual soils show anomalous Sb, As, Cu, Au and lesser Bi, Cd, Mo and Zn in soil sampling traverses, and saprolite sampling displays a subtle multi-element As, Cu and Pb response. Erosive stripping of the upper regolith profile and relative resistance of host quartzite lithologies to weathering has resulted in geochemical anomalism of only limited extent at the surface level.

A multi-element analysis approach and sampling of common regolith materials is recommended for further geochemical investigations of the regolith. Subtle geochemical associations are best identified by multi-variate data analysis methods, which when viewed spatially in conjunction with other geochemical, geophysical or geological information forms an effective approach to regolith geochemical exploration.

The Girilambone district of New South Wales represents an area of relatively un-explored, yet potentially prospective, mineral wealth. Increased interest in the region has arisen from recent government research initiatives, renewed mining and exploration activities and rising commodity prices. The future of exploration for Girilambone-style mineralisation may depend heavily on regolith geochemical investigations, of which this study provides a timely account of two mineralised occurrences in the Girilambone district.

Keywords: geochemical dispersion; regolith geochemistry; mineral exploration; multi-variate data analysis.
CERTIFICATION

I, Benjamin R. Ackerman, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Earth and Environmental Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Benjamin R. Ackerman

16 February, 2005
ACKNOWLEDGMENTS

The Australian Institute of Nuclear Science and Engineering (AINSE) is thanked for funding in the form of two successive grants (01/031, 02/023), principally for chemical analysis by way of INAA on which much of these studies are based. The Society of Economic Geologists (SEG) is also acknowledged for awarding the Hugh E. McKinstry Student Research Grant in 2002 which provided further financial support for chemical analyses.

Nord Resources Limited and Tritton Resources Limited are thanked for allowing access to mine and exploration tenements, geological data and expertise during the course of this study. In particular, Mike Fogarty, former Exploration Manager of Nord Resources and Ben Thompson, Exploration Geologist, are thanked for their efforts and expertise. Thanks also to Mike and his lovely wife Anne Fogarty, who provided great hospitality and partner to a few wines over a meal during extended fieldwork stays.

From the University of Wollongong, I would like to thank the academic and technical staff who have provided assistance in many forms over the past few years. In particular, I extend my gratitude to Professor Allan Chivas, my PhD thesis supervisor, and Associate Professor Adrian Hutton, who assisted greatly in the conceptualisation and development of this study. Thanks also to Paul Carr, Chris Fergusson, Brian Jones and David Carrie, who have lent their assistance and expertise to various facets of this project. Fellow students, Kevin Pucillo, Paul Grevenitz are thanked for their tireless efforts in the field and Adam Switzer, for assistance in sedimentological matters. Peter Carolan, now of Wheaton River Minerals, is also thanked for assistance during field work.

Dr Graham Carr and Keith Scott of the CSIRO (Exploration and Mining) are thanked for providing the impetus for this project and allowing access to sample preparation facilities and scientific expertise within CSIRO. Keith, in particular, was instrumental in the initial stages of this project and supervised work conducted at CSIRO facilities. Thanks also to Geoff Hansen and Jeff Davis, formerly of the CSIRO sample preparation laboratories.
The CRC LEME is generally thanked for supplying in-kind support and access to short courses in regolith geochemistry. In particular, Dave Gibson, Colin Pain, Keith Scott and Ian Roach are acknowledged for their assistance.

Dr David Garnett and Helen Waldron, formerly of Becquerel Laboratories, are thanked for general discussions relating to chemical analyses, sample preparation and their assistance in seeking AINSE funding.

I would like to thank my parents, Bob and June, who have supported me in my plight to become a Doctor. And to my siblings Thembi and Andrew, who have stood by my decisions to pursue my academic interests, thanks for your support, and in the case of the former, providing timely editorial assistance. Thanks to my friends and family who have periodically removed me from my studies and kept me reasonably sane throughout the process, especially Alice Riva, who has put up with a few years of grumpy Ben whilst I honed the finer points of regolith geochemistry and mineral exploration.
TABLE OF CONTENTS

VOLUME 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Units, Symbols, Acronyms and Abbreviations</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER ONE - INTRODUCTION: REGOLITH GEOCHEMISTRY AND MINERAL EXPLORATION

1.1 Introduction | 1 |
1.2 Status of the Australian Mineral Exploration Industry | 5 |
1.3 Regolith Research in Australia | 6 |
1.4 Studies of the Regolith Profile | 6 |
1.5 Advances in Geochemical Exploration | 7 |
1.6 Girilambone District - An area of known mineral wealth and future prosperity | 9 |
1.7 Scientific Objectives | 10 |
1.8 Thesis Outline | 11 |

CHAPTER TWO - REGOLITH GEOCHEMISTRY, MINERAL EXPLORATION AND DATA ANALYSIS: A LITERATURE REVIEW

2.1 Regolith Nomenclature | 15 |
2.2 Regolith Formation and Landscape Evolution | 20 |
2.2.1 Physical controls of regolith formation | 21 |
2.2.2 Chemical processes of regolith formation | 22 |
2.2.3 Mineral weathering | 24 |
2.2.4 Element mobility in the regolith | 26 |
2.2.5 Rock weathering | 27 |
2.2.6 Rare earth element geochemistry - a special case of trace element mobility | 29 |
2.3 Regolith Geochemistry and Mineral Exploration | 31 |
2.3.1 Geochemical dispersion mechanisms | 31 |
2.3.2 Gossans and ironstones in geochemical exploration | 33 |
2.3.3 Geochemical exploration models | 35 |
2.3.4 Regolith materials and geochemical exploration | 37 |
2.3.5 Aeolian material and mineral exploration | 39 |
2.4 Regolith-Landform Mapping: A tool for mineral exploration | 43 |
4.3.3 Regional investigations 108
4.4 Structural Mapping 108
4.5 Regolith-Landform Mapping 108
4.6 Sample Preparation 110
 4.6.1 Soil samples 111
 4.6.2 Drill chips 112
 4.6.3 Drill core 113
4.7 Mineralogical Determination 113
 4.7.1 X-Ray diffraction 113
 4.7.2 Petrographic analysis 114
4.8 Particle Size Analysis 114
4.9 Incorporating Data into GIS Frameworks 114
4.10 Analytical Precision and Data Integrity 114
4.11 Data Analysis, Interpretation and Presentation 115
 4.11.1 Detection limits and missing data 116
 4.11.2 Preliminary data analysis 116
 4.11.3 Exploratory data analysis and modelled investigations of multivariate data 117

CHAPTER FIVE - GIRILAMBONE NORTH COPPER DEPOSITS

5.1 Introduction 121
5.2 Surface Geochemical Investigations - Re-analysis of historic exploration data 122
 5.2.1 RAB-drilling geochemical sampling 122
 5.2.1.1 Data analysis 124
 5.2.1.2 Summary 124
 5.2.2 Vacuum-drilling geochemical sampling 125
 5.2.2.1 Data analysis 128
 5.2.2.2 Summary 130
 5.2.3 Soil geochemical sampling 131
 5.2.3.1 Data analysis 138
 5.2.3.2 Summary 142
 5.2.4 Summary of surface geochemical investigations 144
5.3 Larsens East Section 22550N Profile 146
 5.3.1 Description of profile - weathered zones 147
 5.3.2 Description of profile - mineralogy 148
 5.3.3 Description of profile - ore zones 150
 5.3.4 Larsens East profile - geochemistry 152
 5.3.4.1 Data analysis 163
 5.3.5 Summary of Larsens East profile studies 171
5.4 Hartmans Long-Section Profile

5.4.1 Description of profile - weathered zones
5.4.2 Description of profile - mineralogy
5.4.3 Description of profile - ore zones
5.4.4 Hartmans long-section profile - geochemistry
 5.4.4.1 Data analysis
5.4.5 Summary of Hartmans profile studies

CHAPTER SIX - TRITTON COPPER DEPOSIT

6.1 Introduction
6.2 Regolith-Landform Setting
 6.2.1 Regolith-landform mapping
 6.2.2 Soil trench profiles
 6.2.3 Regolith and landform development
 6.2.4 Summary of regolith-landform investigations
6.3 Surface Geochemical Investigations
 6.3.1 RAB-drilling geochemical sampling
 6.3.1.1 Data analysis
 6.3.1.2 Summary
 6.3.2 Vacuum-drilling geochemical sampling
 6.3.2.1 Data analysis
 6.3.2.2 Summary
 6.3.3 Soil geochemical sampling
 6.3.3.1 Soil geochemical data set distributions
 6.3.3.2 Soil sampling traverse geochemical profiles
 6.3.3.3 Summary and discussion of soil geochemical studies
 6.3.4 Summary of surface geochemical studies
6.4 Tritton Drill Hole Sampling
 6.4.1 Mineralogical Analysis
 6.4.2 Geochemical analysis
 6.4.2.1 Summary
 6.4.3 Lithogeochemical classification of Tritton lithologies
 6.4.4 Summary of Tritton drilling investigations

CHAPTER SEVEN - DISCUSSION

7.1 Introduction
7.2 Lithogeochemical Variation of Girilambone Lithologies: Identifying 'background' geochemical variance
 7.2.1 Quartz- and chlorite-rich metasedimentary lithologies
CHAPTER EIGHT - CONCLUSIONS

8.1 Conclusions

References
LIST OF TABLES

Chapter 2
Table 2.1 Element mobilities in the weathering profile, after Butt et al. (2000). 27
Table 2.2 Comparison of mature and immature gossans from volcanogenic base metal deposits of the Lachlan Fold Belt, New South Wales. All data in ppm unless otherwise indicated. Adapted from Scott et al. (2001). 35
Table 2.3 Summary table of regolith materials and their use as sampling media in geochemical exploration. Compiled from Butt & Zeegers (1992) and Butt et al. (2000). 38
Table 2.4 Likely contaminants from selected steel materials commonly used in sample preparation of rock and regolith materials. Contaminant contributions are in parts per million unless otherwise indicated. 54

Chapter 3
Table 3.1 Leachable ore reserves (proved and probable) prior to commencement of mining, Girilambone North mine. Adapted from Fogarty (1998a). 80
Table 3.2 Estimated resources and approximate metal content of the Tritton mineral deposit. Modified from Tritton Resources Limited (Tritton Resources Limited, 2003). 81

Chapter 4
Table 4.1 The three phases of experimental design and implementation undertaken in this study. 92
Table 4.2 Research funding received for various aspects of the present program of study. 93
Table 4.3 Surface geochemical programs conducted at Girilambone North. 94
Table 4.4 Hartmans and Larsens East drilling, Girilambone North. 98
Table 4.5 Surface geochemical programs conducted at Tritton. 99
Table 4.6 Soil geochemical surveys conducted at Tritton.
Table 4.7 Drilling programs conducted at Tritton.
Table 4.8 Girilambone North drilling samples.
Table 4.9 Tritton drilling sampled drill holes.

Chapter 5
Table 5.1 Significant bivariate correlations (r^2 values), vacuum-drilling geochemical data set, Girilambone North (n=709, $a=0.01$, $r=0.09$).
Table 5.2 Eigenvalues of the correlations matrix, vacuum-drilling sampling, Girilambone North.
Table 5.3 Variable loadings of rotated principal components, vacuum-drilling sampling, Girilambone North.
Table 5.4 Moderate to strong bivariate correlations (r^2 values) of selected element pairs, Regoleach soil geochemical data set (n=503).
Table 5.5 Eigenvalues of the correlations matrix, soil (Regoleach) sampling, Girilambone North.
Table 5.6 Variable loadings on the rotated principal components, soil (Regoleach) sampling, Girilambone North.
Table 5.7 Summary table of surface geochemical exploration media multi-element geochemical signatures associated with mineralisation, Girilambone North. Localised mineralised signatures indicated by an asterix *.
Table 5.8 Major, minor and trace mineralogical phases identified by XRD, Larsens East weathered profile, section 22550N.
Table 5.9 Strong positive bivariate correlations (r^2 values) of Larsens East geochemical analyses. Correlations derived from all Larsens East drilling data sets (n=35; INAA, Nord data, ICP-AES, denoted by *) and for INAA and Nord data only (n=91).
Table 5.10 Eigenvalues of the correlations matrix, Larsens East profile geochemical sampling, Girilambone North. Input data includes INAA and Cu only from Nord data set (n=91).
Table 5.11 Variable loadings on the rotated principal components, Larsens East profile geochemical sampling, Girilambone North. Input data includes INAA and Cu only from Nord data set (n=91).
Table 5.12 Eigenvalues of the three-cluster solution discriminant function, Larsens East RC drill chip sampling program.
Table 5.13 Canonical factor loadings of the three-cluster solution discriminant function, Larsens East RC drill chip program.
Table 5.14 Major, minor and trace mineralogical phases identified by XRD, Hartmans long-section.

Table 5.15 Significant strong bivariate correlations (r^2 values) of the Hartmans long-section profile geochemical data set.

Table 5.16 Eigenvalues of the correlations matrix, Hartmans long-section profile geochemical sampling program, Girilambone North. Input data includes INAA and Cu only from Nord data set (n=195).

Table 5.17 Variable loadings on the rotated principal components, Hartmans long-section profile geochemical sampling program, Girilambone North. Input data includes INAA and Cu only from Nord data set (n=195).

Table 5.18 Eigenvalues of the three-cluster solution discriminant function, Hartmans long-section RC drill chip sampling program.

Table 5.19 Canonical factor loadings of the three-cluster solution discriminant function, Hartmans long-section RC drill chip program

Chapter 6

Table 6.1 Descriptive characteristics of Tritton Profile A.

Table 6.2 Summary of particle size distributions, Tritton Profile A.

Table 6.3 Descriptive characteristics of Tritton Profile B.

Table 6.4 Summary of particle size distributions, Tritton Profile A.

Table 6.5 Significant bivariate correlation of the whole RAB-drilling geochemical data set (excluding As response; n=898, a=0.01, r=0.1).

Table 6.6 Elemental association of Cu response with analyte elements of the RAB-drilling geochemical data set for background, above background and anomalous Cu response.

Table 6.7 Eigenvalues of the correlations matrix, RAB-drilling geochemical sampling, Tritton study area.

Table 6.8 Variable loadings of the rotated principal components, RAB-drilling geochemical sampling, Tritton study area.

Table 6.9 Significant bivariate correlations (r^2 values) of the vacuum-drilling geochemical data set, Tritton study area.

Table 6.10 Increasing bivariate correlations (r^2 values) of Cu with other analyte elements with increasing Cu response, vacuum-drilling geochemical sampling, Tritton study area.

Table 6.11 Eigenvalues of the correlations matrix, vacuum-drilling geochemical sampling, Tritton study area.
Table 6.12 Variable loadings of the rotated principal components, vacuum-drilling geochemical sampling, Tritton study area.

Table 6.13 Analysis methods and sampling media of soil sampling programs this and previous studies, Tritton study area.

Table 6.14 Non-random data series of Tritton soil geochemical data sets.

Table 6.15 Significant bivariate correlations (r^2 values) of the INAA coarse-fraction soil sampling data set.

Table 6.16 Significant bivariate correlations (r^2 values) of the fine-fraction INAA data set of the current study.

Table 6.17 Significant bivariate correlations (r^2 values) of Nord soil sampling for Lines 1 and 2, Tritton study area.

Table 6.18 Significant bivariate correlations (r^2 values) of DeepLeach 11 data set, previous soil geochemical sampling, Tritton study area.

Table 6.19 Significant bivariate correlations (r^2 values) of the Regoleach soil geochemical data set, previous soil sampling, Tritton study area.

Table 6.20 XRD summary results of Tritton drill core samples showing major, minor and trace mineral occurrence.

Table 6.21 Discriminant analysis eigenvalues and their relative contribution to REE based lithological classification, Tritton drilling samples.

Table 6.22 Standardised coefficients of the REE lithological classification discriminant function, Tritton drilling samples.

Table 6.23 Summary of chondrite-normalised REE geochemical data, Tritton drilling samples.

Chapter 7

Table 7.1 Range of elemental contents in metasedimentary lithologies of the Tritton (and Girilambone district) study compiled from geochemical analyses of the current study. Elemental abundances are in ppm unless otherwise indicated.

Table 7.2 Geochemical characteristics of Girilambone-style sulfide mineralisation with reference to Girilambone North and Tritton mineral deposits (samples from this study only). Chalcocite mineralisation incorporated in determination of elemental ranges for Girilambone North deposits. Measurement units are in ppm unless otherwise indicated.

Table 7.3 Geochemistry of the weathered ore zones of the Larsens East and Hartmans prospects, including carbonate, oxide and 'limonite' ore zones. For the Larsens East deposit, samples denoted with * indicate geochemical data derived from only one sample, while samples with **, denote geochemical data derived from 68 samples. All measurements are in ppm unless otherwise indicated.
Table 7.4 Summary of geochemical characteristics observed for Girilambone regolith profiles.

Table 7.5 Bivariate correlations (r² values) of Fe with other analyte elements within the Larsens East (n=73) and Hartmans (n=182) regolith profiles. Bold type indicates significant bivariate correlations (α=0.01). Asterix denotes samples analysed by ICP-MS/AES methods (n=17).

Table 7.6 Sequence of adsorption pH for selected metals to goethite. After Thornber (1992) as quoted by Taylor & Eggleton (2001).

Table 7.7 Summary table of anomalous geochemical responses identified in the Girilambone district study areas of the present study.

LIST OF FIGURES

Chapter 2

Figure 2.1 Generalised zones of the weathering profile. Schematic diagram of weathering profile after Butt et al. (2000).

Figure 2.2 Schematic diagram showing the overprinting of regolith (weathered rock) units on typical stratigraphic units of the Girilambone district (after Pain et al., 2001). Regolith units labelled in bold.

Figure 2.3 Schematic diagram showing the decrease in extent of geochemical dispersion at the watertable in a weathering profile with a falling watertable. Watertable and extent of geochemical dispersion of ore elements indicated at times 1, 2 and 3. After Taylor & Eggleton (2001).

Figure 2.4 Goldich sequence of relative mineral stability in the weathering environment, after Ollier & Pain (1996).

Figure 2.5 Common weathering pathways of Al-rich and Fe-rich primary rock-forming minerals in the regolith environment. After Taylor & Eggleton (2001).

Figure 2.6 Occurrence and types of ironstone and gossan in the weathering environment. After Taylor & Eggleton (2001).

Figure 2.7 The relationship between mapable regolith–landform regimes and geochemical models. Model codes refer to presence of lateritic regolith: A preserved; B partially truncated; C absent. Surface: 0 outcrop; 1 residual soil; 2 semi-residual soil; 3 transported overburden. After Butt and Zeegers (1992).

Figure 2.8 Dust entrainment pathways of the Australian continent. After Hesse & McTainsh (2003).

Figure 2.9 Typical range of analytical detection limits for acid digestion based techniques ICP-AES, flame AAS (FAAS), GFAAS and ICP-MS, after Hall (1996).

Chapter 3

Figure 3.1 Location of the Girilambone district, New South Wales.
Figure 3.2 Geology of central New South Wales showing the location of the Girilambone Zone (GZ) in relation to other components of the Tasman Fold Belt system. After Fergusson et al. (2005).

Figure 3.3 Regional geology of the Girilambone district showing mineralised occurrences and current exploration and mining tenements (after Fogarty (1998a)). Inset A depicts the location of open pit workings of the Girilambone and Girilambone North mines, and the major northeast trending structures joining these areas (after Tritton Resources Limited (2003)).

Figure 3.4 Stratigraphic relationships of rock units about the Girilambone district. Modified after Fogarty (1998a) and Shields (1996).

Figure 3.5 Structural elements of the Hartmans open pit, Girilambone North. After Fergusson et al. (2005).

Figure 3.6 Schematic cross section of the Tritton Copper Deposit, looking NE. (1) and (2) refer to base of complete oxidation and top of un-weathered rock respectively.

Chapter 4

Figure 4.1 Girilambone North site features including drill hole collar positions and open pit outlines. Sampling programs of the current study are indicated (AMG coordinates).

Figure 4.2 Site features of the Tritton study area including drill hole collar positions, surface projection of ore body and other site features (AMG coordinates).

Figure 4.3 RAB-drilling sampling programs, Girilambone North study area (AMG coordinates).

Figure 4.4 Vacuum-drilling program, Girilambone North study area (AMG coordinates).

Figure 4.5 Soil sampling programs, Girilambone North (AMG coordinates).

Figure 4.6 RAB-drilling sampling program, Tritton study area (AMG coordinates).

Figure 4.7 Vacuum-drilling sampling, Tritton study area (AMG coordinates).

Figure 4.8 Soil sampling, Tritton study area. Sampling from the current study and Nord exploration program indicated (AMG coordinates).

Figure 4.9 Larsens East section 22550N, Girilambone North. Orientation study and additional sampling indicated. All measurements are in metres.

Figure 4.10 Collar position of Hartmans long-section in plan view, Girilambone North (AMG coordinates).

Figure 4.11 Hartmans long-section, Girilambone North. All measurements are in metres.

Figure 4.12 Sampled drill hole collar locations, Tritton study area (AMG coordinates).
Chapter 5

Figure 5.1 Zones of anomalous and elevated geochemical response, RAB-drilling geochemical sampling program, Girilambone North (AMG coordinates).

Figure 5.2 Plot of first two principal components, PCA on vacuum-drilling geochemical data set, Girilambone North. Geochemical associations indicated by coloured ellipses.

Figure 5.3 Zones of anomalous and elevated geochemical response, vacuum-drilling geochemical sampling program, Girilambone North (AMG coordinates).

Figure 5.4 Soil sampling lines AB and CD traversing the Larsens East prospect. Extent of mine workings indicated by open-cut pit outline (AMG coordinates).

Figure 5.5 Soil geochemical of selected elements determined by Regoleach (except Total Cu) along a traverse across the northern extent of the Larsens East prospect (Transect AB of Figure 5.4). Zone of mineralisation indicated by red dashed polygon.

Figure 5.6 Soil geochemical response of selected elements determined by Regoleach (except Total Cu) along a traverse across the southern extent of the Larsens East prospect (Transect CD of Figure 5.4). Zone of mineralisation indicated by red dashed polygon.

Figure 5.7 Dendrogram of Q-mode hierarchical cluster analysis solution showing three prominent elemental associations, soil (Regoleach) geochemical sampling, Girilambone North.

Figure 5.8 Plot of first two principal components, PCA on soil (Regoleach) geochemical data set, Girilambone North. Strong positive geochemical associations are indicated by colour ellipses for PC1 (blue) and PC2 (red).

Figure 5.9 Zones of anomalous and elevated geochemical response, Regoleach and ‘total Cu’ soil sampling programs, Girilambone North.

Figure 5.10 Anomalous Cu zones identified from RAB-drilling, vacuum-drilling and soil sampling programs, Girilambone North study area. Mineralisation exists within a north-west trending corridor (shown by green dashed lines) of anomalous geochemical response (AMG coordinates).

Figure 5.11 Sampling locations and features of the Larsens East section 22550N profile in cross section. Truncated drill hole labels indicated, prefix ‘LERC’ excluded. Indicated depths (y-axis) are in RL units (masl).

Figure 5.12 Weathering zones of the Larsens East weathered profile, section 22550N.

Figure 5.13 XRD analysis sample locations, Larsens East profile. Labels represent truncated sample identification numbers (i.e. excluding ‘BRA’ prefix).

Figure 5.14 Ore zones of the Larsens East profile.
Figure 5.15 Three dimensional plot of rotated principal components (PC1, PC3 and PC4) derived from PCA of Larsens East profile geochemical samples.

Figure 5.16 Plot of the canonical variance (Function 1 vs. Function 2) of three-cluster solution discriminant function. Ellipses group samples of quartz-rich (red), chlorite-rich (green) and sericite-rich (blue) lithologies. Overlapping ellipses depict areas of mixed mineral assemblage.

Figure 5.17 Dendrogram depicting hierarchical cluster analysis solution of unweathered samples by lithotype, Larsens East RC drill chip sampling program. Two clusters were identified which generally categorise quartz-rich (red) and chlorite-rich (green) lithologies. Mineralised samples are indicated in bold type.

Figure 5.18 Chondrite-normalised REE pattern of Larsens East profile samples relative to PAAS. The majority of non-mineralised samples display a REE pattern similar to that of PAAS, the range of which is shown by pink polygon. Samples BRA0348 and BRA0349 display significant LREE depletion relative to PAAS.

Figure 5.19 Geochemical characteristics of the Larsens East profile. Red-dashed lines indicate inferred zone boundaries.

Figure 5.20 Sampling locations and features of the Hartmans long-section profile in cross section. Truncated drill hole labels indicated, prefix ‘HARC’ excluded. Indicated depths (y-axis) are in RL units (masl).

Figure 5.21 Weathering zones of the Hartmans long-section profile.

Figure 5.22 Sample locations for XRD analysis, Hartmans long-section profile. Labels represent truncated sample identification numbers (i.e. excluding ‘BRA’ prefix).

Figure 5.23 Occurrence of selected geological features of the Hartmans long-section profile, including ferruginous minerals, native copper, quartzite and gossan textured zones.

Figure 5.24 Ore zones of the Hartmans long-section profile.

Figure 5.25 Three dimensional plot of rotated principal components derived from PCA of Hartmans long-section profile geochemical sampling program. Splines accentuate cluster membership of which three distinct clusters were recognised.

Figure 5.26 Plot of the canonical variance (function 1 vs. function 2) of the three-cluster solution discriminant function, Hartmans long-section RC drill chip sampling program. Clusters approximate chlorite-rich, quartz-rich and ferruginous lithologies. Un-mineralised samples only analysed (n=110).

Figure 5.27 Ore and weathered zones of the Hartmans long-section profile.

Figure 5.28 Summary of geochemical enrichment and depletion zones of the Hartmans long-section profile.
Chapter 6

Figure 6.1 Regolith-landform map of the Tritton study area. Regolith-landform unit codes are consistent with Pain et al. (1991; in press). The locations of soil profile inspection trenches are indicated.

Figure 6.2 Photo of Tritton Profile A showing transported (upper profile) and residual components of the soil profile. The quartz gravel layer occurs at approximately 0.5 m depth.

Figure 6.3 Soil texture ternary plots of Tritton Profiles A and B. Upper soil profile samples (<0.5 m depth) indicated by red crosses and lower profile samples (>0.5 m depth) by black plus signs. Soil texture classifications shown in the uppermost ternary plot and overlain on ternary plots of Profiles A and B are those of United States Department of Agriculture.

Figure 6.4 Photo of Tritton Profile B showing mainly transported material to a depth of 0.7 m. Minor quartz gravels and lithic fragments are dispersed through the profile, although no prominent quartz gravel layer was observed.

Figure 6.5 Plot of particle size distribution of upper profile (0-0.5 m) and lower profile (>0.5 m depth) of Tritton soil Profile B. Averaged results indicate a tri-modal distribution for upper profile samples with a prominent ‘aeolian peak’ about 65 mm. Samples obtained from the lower profile display a bi-modal distribution with only limited contribution from material within the expected particle size range of aeolian material.

Figure 6.6 Oblique schematic model of the Tritton study area regolith-landform setting. Text codes refer to regolith-landform unit mapping codes of the Tritton regolith-landform map.

Figure 6.7 Plot of first two principal components, PCA on RAB-drilling geochemical data set, Tritton study area.

Figure 6.8 Plot of the first two rotated principal components, PCA on vacuum-drilling geochemical data set, Tritton study area.

Figure 6.9 Interpolated surface derived by simple probability kriging of the principal component scores, vacuum-drilling geochemical data set for PC1 (a) and PC2 (b). Higher PC1 scores indicates areas of greater mafic response. Higher PC2 scores indicate areas of greater mineralised response.

Figure 6.10 Vacuum-drilling geochemical sampling lines traversing the southern PC2 anomaly zone and the up-dip and up-plunge extensions of Tritton mineralisation, Tritton study area.

Figure 6.11 Stacked geochemical line profiles of Tritton study area vacuum-drilling geochemical sampling lines 29400N (A-B), 29600N (C-D) and 29800N (E-F) for the elements As, Cu, Au and Pb. Topographic height (RL) at each sampling location is indicated and distance along the sampling traverse is indicated by local grid East coordinates (m).
Figure 6.12 Typical geochemical response profiles observed from analysis of soil geochemical data, Tritton study area. Geochemical response profiles are plotted against traverse distance (from the westernmost extent) and represent a peaked response (a), u-shaped response (b) and ‘noisy’ n-shaped response (c). Topographic relief across sampling traverse is indicated (d).

Figure 6.13 Topographic relief along the 29200N soil sampling traverse, Tritton study area. The start of the sampling traverse (0 m) represents the western extent of sampling.

Figure 6.14 Topographic relief along the 29300N soil sampling traverse, Tritton study area. The start of the sampling traverse (0 m) represents the western extent of sampling.

Figure 6.15 Topographic relief along sampling Line 1 soil sampling traverse of the current study, Tritton study area. The start of the sampling traverse (0 m) represents the western extent of sampling. The limited extent of Nord soil sampling conducted in conjunction with the current study, is indicated.

Figure 6.16 Topographic relief along sampling Line 2 soil sampling traverse of the current study, Tritton study area. The start of the sampling traverse (0 m) represents the western extent of sampling. The limited extent of Nord soil sampling conducted in conjunction with the current study, is indicated.

Figure 6.17 Summary of Tritton soil sampling geochemical responses, overlain on Tritton 1:25 000 regolith-landform map of the current study.

Figure 6.18 Summary diagram of Tritton drill hole geochemistry.

Figure 6.19 Plot of the first two standardised discriminant functions of the REE lithogeochemical classification, Tritton drilling samples.

Figure 6.20 Chondrite-normalised REE patterns of Tritton drill hole samples relative to Post Archaean Average Shale (PAAS) of Taylor & McLennan (1985).

Figure 6.21 Plot showing the contribution of REE fractionation and total REE contents to classified groups of the Tritton drilling data set. Anomalous chlorite schist samples plot away from all other samples and show significantly increased LREE/HREE fractionation relative to other chloride-rich samples.

Chapter 7

Figure 7.1 Uniform geochemical variance of (unmineralised) quartz- and chlorite-rich metasedimentary samples of the Girilambone district. Minimum and maximum values are shown; all elements in ppm, except where otherwise indicated.

Figure 7.2 Chondrite-normalised multi-element geochemical patterns of Tritton mafic samples, which have been normalised against chondrite values of Wood (1979). At least two phases of magmatism are inferred (triangles and circles) which are indicative of relatively Th-rich and Cr- or Ni-rich phases, respectively.

Figure 7.3 Range of chemical composition in ppm of the Larsens East primary and secondary mineralised zones. The lower limits of response for selected (below detection) elements are represented as half of the detection limit.
Figure 7.4 Range of chemical composition in ppm of the Hartmans primary and secondary mineralised zones. The lower limits of response for selected (below detection) elements are represented as half of the detection limit.

Figure 7.5 Schematic diagram showing the process of relative surface enrichment in the upper regolith profile by retention of elements in resistate or stable minerals following reduction in profile volume due to weathering.

Figure 7.6 Schematic representation of strongly leached depletion zones formed from migration of acidic groundwaters in the vicinity of weathering sulfide mineralisation, in (a) plan and (b) cross-sectional (Figures not to scale).

Figure 7.7 Bivariate correlation coefficient plots (r2 values) for selected elements with mineral phases identified by XRD for Larsens East, Hartmans and Tritton profile samples. Mineralogical controls are considered irrespective of degree of weathering.

Figure 7.8 Lithological discrimination of Tritton drilling samples on the basis of Fe/Sc ratios. Quartz- and chlorite-rich samples approximate parent rock Fe/Sc ratio (approximately 2830).

Figure 7.9 Plot depicting the Fe/Sc ratio of regolith samples from the Girilambone North study area. The lower limit of the Fe/Sc ratio is shown as a red dashed line, which represents the approximate Fe/Sc ratio (approx. 2140) of parent rock material, above which Fe accumulation is indicated.

Figure 7.10 Schematic diagram depicting the formation of mechanically dispersed surficial geochemical signatures from a topographically higher point source. The geochemical signature decreases or is translocated down-slope from the point source.

Figure 7.11 Schematic diagram representing possible formation processes of ‘inverse topographic’ geochemical response identified from Regoleach soil surveys of the current study.

Figure 7.12 Anomaly widths of sub-surface geochemical response identified by shallow and deeper regolith sampling (drilling) for (a) regolith profiles with moderately ferruginised surface horizons; and (b) partially truncated regolith profile, with soils directly overlying upper saprolite horizons i.e. no appreciable ferruginised surface layers. Anomaly width of shallow and deeper drilling indicated for each level of sampling.

Figure 7.13 Geochemical dispersion patterns observed for the Girilambone North study area, in plan view.

Figure 7.14 Schematic model of Cu dispersion in the Hartmans mineralised system, displaying northerly migration of Cu. Strong depletion zones in the upper profile have leached Cu in close proximity to weathering sulfides (acid conditions), and redeposited it under the influence of decreasing pH groundwaters, moving away (northwards) from the primary mineralised zones. Upper ferruginous zones and soils exhibit subtle, multi-element anomalism in close proximity to primary mineralised zones.
Figure 7.15 Regolith zones developed in the western wall of Hartmans open-pit. The base of the open-pit (water level) is approximately 75 m below land surface at the southern end. White dashed lines indicate boundaries of ferruginous (A), kaolinitic (B), saprolite (non-ferruginous) (C) and saprock (D) weathering zones described in the text.

Figure 7.16 Schematic diagrams depicting the limited surface extent of Tritton surface geochemical signature at the up-plunge (a) and up-dip (b) extensions of upper zone mineralisation. The limited extent is due mainly to the depth of the mineralised bodies being below the influence of weathering, confined to a relatively weathering-resistant quartzite unit and lack of appreciable ferruginous surface layers.

Figure 7.17 Comparison of fine- and coarse-fraction soils on Line 29300N (INAA), traversing the Tritton copper deposit. Fine-fraction anomaly contrast improved by normalisation against Fe response.

Figure 7.18 Weathering zones intercepted by RAB drilling at 18-20m depth, Girilambone North area. Sample locations in highly weathered (HW) and moderately (MW) zones indicated. Inset A shows schematically the weathering zones intercepted by constant-depth sampling.

Figure 7.19 Box-plots showing depletion of elements observed in highly weathered (HW; n=71) and moderately weathered (MW; n=21) zones. Note that outliers beyond the 75th percentile have been removed.

Figure 7.20 Schematic model of the Girilambone district showing the regolith profile characteristics for a partially truncated residual profile (A), partially preserved regolith with ferruginous upper horizons (B) and areas of thick transported cover (C).
LIST OF UNITS, SYMBOLS, ACRONYMS AND ABBREVIATIONS

Units

- °C: temperature in degrees Celsius
- m: metre
- g: gram
- mm: millimetres; 10^{-3} m
- kg: kilogram; $g = 10^{-3}$ g
- µm: micrometres; 10^{-6} m
- t: tonnes; $t = 10^3$ kg
- oz: ounce (imperial); 1 oz = 28.350 g

Symbols

- Eh: electrical potential (millivolts)
- Kc: critical value of Kurtosis for attainment of a normal distribution
- n: number; population size
- pH: minus logarithm, base 10, of the hydronium ion (H⁺) concentration
- ppb: parts per billion (10^9)
- ppm: parts per million (10^6)
- RL: reduced level (metres above sea level)
- Sc: critical value of Skewness for attainment of a normal distribution
- r^2: Pearson correlation coefficient
- α: statistical confidence interval
- λ: Box-Cox transformation coefficient
- ρ: significant level of the correlation coefficient

Common Acronyms

- AINSE: Australian Institute of Nuclear Science and Engineering
- AMG: Australian Map Grid (co-ordinate system)
- ANSTO: Australian Nuclear Science and Technology Organisation
- ARC: Australian Research Council
- BDL: below detection limit (of chemical analysis instrumentation)
- CRC LEME 1: Cooperative Research Centre for Landscape Evolution and Mineral Exploration
- CRC LEME 2: Cooperative Research Centre for Landscape Environments and Mineral Exploration
- CSIRO: Commonwealth Scientific and Industrial Research Organisation
- DEM: Digital Elevation Model
- EUROLAT: European Network on Lateritic Weathering and Global Environment
- GIS: Geographical Information System
- HREE: Heavy Rare Earth Elements
- ICP-AES: Inductively Coupled Plasma Atomic Emission Spectrometry
- ICP-MS: Inductively Coupled Plasma Mass Spectrometry
Chemical Elements

<table>
<thead>
<tr>
<th>Chemical Symbol</th>
<th>Chemical Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Sb</td>
<td>Antimony</td>
</tr>
<tr>
<td>As</td>
<td>Arsenic</td>
</tr>
<tr>
<td>Ba</td>
<td>Barium</td>
</tr>
<tr>
<td>Bi</td>
<td>Bismuth</td>
</tr>
<tr>
<td>Br</td>
<td>Bromine</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>Ce</td>
<td>Cerium</td>
</tr>
<tr>
<td>Cs</td>
<td>Caesium</td>
</tr>
<tr>
<td>Cl</td>
<td>Chlorine</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>Co</td>
<td>Cobalt</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>Eu</td>
<td>Europium</td>
</tr>
<tr>
<td>Ga</td>
<td>Gallium</td>
</tr>
<tr>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>Hf</td>
<td>Hafnium</td>
</tr>
<tr>
<td>Ir</td>
<td>Iridium</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>La</td>
<td>Lanthanum</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
</tr>
<tr>
<td>Lu</td>
<td>Lutetium</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>Nb</td>
<td>Niobium</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>Rb</td>
<td>Rubidium</td>
</tr>
<tr>
<td>Sm</td>
<td>Samarium</td>
</tr>
<tr>
<td>Se</td>
<td>Selenium</td>
</tr>
<tr>
<td>Ag</td>
<td>Silver</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>Sr</td>
<td>Strontium</td>
</tr>
<tr>
<td>S</td>
<td>Sulfur</td>
</tr>
<tr>
<td>Ta</td>
<td>Tantalum</td>
</tr>
<tr>
<td>Te</td>
<td>Tellurium</td>
</tr>
<tr>
<td>Tb</td>
<td>Terbium</td>
</tr>
<tr>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>Tl</td>
<td>Thallium</td>
</tr>
<tr>
<td>Th</td>
<td>Thorium</td>
</tr>
<tr>
<td>Sn</td>
<td>Tin</td>
</tr>
<tr>
<td>U</td>
<td>Uranium</td>
</tr>
<tr>
<td>V</td>
<td>Vanadium</td>
</tr>
<tr>
<td>Yb</td>
<td>Ytterbium</td>
</tr>
<tr>
<td>Y</td>
<td>Yttrium</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
<tr>
<td>Zr</td>
<td>Zirconium</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

VOLUME 2

APPENDIX ONE - TRITTON SOIL SAMPLE PREPARATION ORIENTATION STUDY

A1.1 Introduction A1-1
A1.2 Aim of preliminary investigations A1-4
A1.3 Methods of study A1-4
A1.4 Results of soil sample preparation experiments A1-6
A1.5 Discussion A1-8
A1.6 Conclusion A1-12

APPENDIX TWO - ANALYTICAL METHODS AND DETECTION LIMITS

APPENDIX THREE - DRILL HOLE LOGS

A3.1 Introduction A3-1

APPENDIX FOUR - INAA DATA QUALITY CONTROL

A4.1 Introduction A4-1
A4.2 Analytical control samples A4-2
A4.3 Sampling and analytical variance A4-3
A4.4 Conclusions A4-5

APPENDIX FIVE - GEOCHEMICAL RESULTS: GIRILAMBONE NORTH

A5.1 Introduction A5-1
A5.2 RAB-drilling geochemical distribution maps A5-12
A5.3 Vacuum-drilling geochemical distribution maps A5-15
A5.4 Soil geochemical distribution maps A5-21
A5.5 Larsens East section 22550N profile geochemical distribution maps A5-31
A5.6 Hartmans long section profile geochemical distribution maps A5-6

APPENDIX SIX - GEOCHEMICAL RESULTS: TRITTON STUDY AREA

A6.1 Introduction A6-1
A6.2 RAB-drilling geochemical distribution maps A6-20
A6.3 Vacuum-drilling geochemical distribution maps A6-24
A6.4 Soil geochemical line profiles A6-29
A6.5 Geochemical depth profiles A6-52
APPENDIX SEVEN - LARSENS EAST SECTION 22550N ORIENTATION SURVEY
A7.1 Introduction A7-1
A7.2 Aims of orientation study A7-2
A7.3 Methods of study A7-3
A7.4 Multi-variate analysis A7-3
A7.5 Discussion of preliminary investigations A7-13
A7.6 Conclusion A7-15

APPENDIX EIGHT - TESTS FOR RANDOM DATA SERIES
A8.1 Introduction A8-1
A8.2 Aim A8-2
A8.3 Method A8-2
A8.4 Results of random data trials A8-4
A8.5 Discussion A8-4
A8.6 Conclusions A8-5

APPENDIX NINE - X-RAY DIFFRACTION RESULTS
A9.1 Introduction A9-1

APPENDIX TEN - PETROGRAPHIC RESULTS
A10.1 Introduction A10-1

APPENDIX ELEVEN - DATA CD