A study of the fabrication and characterisation of high temperature superconductor YBa2Cu3O7 thin films

Aihua Li

University of Wollongong, aihua@uow.edu.au

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
A STUDY OF THE FABRICATION AND CHARACTERISATION OF HIGH TEMPERATURE SUPERCONDUCTOR YBa$_2$Cu$_3$O$_7$ THIN FILMS

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

AIHUA LI, M. Sc.

The Institute for Superconducting and Electronic Materials, Faculty of Engineering

March 2006
DECLARATION

I, Aihua Li, declare that this thesis submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, at the Institute for Superconducting and Electronic Materials, the Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Aihua Li

31 March 2006
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and gratitude to my supervisors, Professor H.K. Liu and Dr. M. Ionescu for their invaluable guidance, constant encouragement and support throughout the course of this thesis work.

Thanks are due to Prof. D.L. Shi and Dr. Y.L. Xu, Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, USA, Dr. H.B. Yao and Prof. Z.H. Han, Applied Superconductivity Research Center, Tsinghua University, Beijing, China, Dr. Y.L. Zhang and Prof. X. Yao, Department of Physics, State Key Laboratory for Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China, and Drs. J. Lian and L.M. Wang, Dept. of Nuclear Engineering and Radiological Science, University of Michigan, USA, for their help and cooperation on the studies of Y123 films using the sol-gel method.

Special thanks are also due to Drs. J. Horvat and M.J. Qin for their contribution to PPMS and MPMS measurements as well as useful discussions.

Thanks are also due to Mr. N. Mackie, Mr. R. Kinnell, Mr. G. Tillman, and other staff members in the Faculty of Engineering for their assistance in the use of facilities, equipments, and instruments. Sincere thanks are also due to Dr. T. Silver for reading
Acknowledgements

and correcting the English in manuscripts of journal papers and in the final version of this thesis.

I would also like to express my gratitude to Prof. S.X. Dou, Drs. G. A. Alvarez, D.Q. Shi, A. Pan, F. Gao, K. Kostantinov, Z.X. Cheng, and S.H. Zhou, and to Mr. Y. Zhao and Q.W. Yao for valuable assistance with experiments and helpful discussions.

Thanks are also due to the University of Wollongong for providing an Australian Postgraduate Award.
ABSTRACT

Thin films of the high temperature superconductor (HTS) YBa$_2$Cu$_3$O$_7$ (Y123) are of great potential in a wide range of applications, including low-loss microwave cavities and filters, bolometers, various superconducting terminal devices, flux transformers, and dc and rf superconducting quantum interference devices (SQUIDs). They also have the potential to give insight into the fundamental mechanisms governing high temperature superconductivity. Y123 coated conductors, the so-called second generation superconducting tapes, which are based on Y123 thin film technology, also have great applications in carrying large superconducting currents. However, some important challenges or fundamental problems hindering their practical applications need to be solved scientifically. These include: finding the most effective and economic approaches to enhance the superconducting critical current density in high magnetic fields; reducing the fabrication cost with high reproducibility; arriving at a profound understanding of the relationship between microstructure and superconducting performance, etc. The work described in this thesis deals with these challenges, with an emphasis on fundamental studies on supercurrent enhancement through nanotechnology and nanoengineering using advanced thin film fabrication methods, including pulsed laser deposition and spin coating, and on the relationship between microstructure and supercurrent performance.

An overview of the research on HTS thin films in the period from 2000 to the end of 2005 is given in Chapter I. Attention was paid to both Y123 films and coated conductors fabricated using both PLD and chemical methods, on both single crystal and metallic substrates. The related electrical and magnetic properties are also reviewed.
In the first part of the thesis work, Y123 thin films with and without Ag nanoparticle inclusions were grown by pulsed laser deposition (PLD) on YSZ (100), SrTiO$_3$ (100), and LaAlO$_3$ (100) single crystal substrates. A discontinuous layer of Ag nanodots was deposited on the substrates prior to the deposition of Y123 films. The Y123 films grown on such surfaces modified with Ag nanodots were extensively characterised by atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM), AC susceptibility and DC magnetisation. The effects of the density of Ag nanodots, which was controlled by the numbers of PLD shots, on the microstructures and resultant critical current density J_c have been studied systematically. Results showed that under fixed physical deposition conditions J_c increased monotonically with the number of Ag shots, n, for films grown on both STO and LAO substrates. At 77 K, the J_c increased from 10^6 to 3.2×10^6 A/cm2 for LAO and from 8×10^5 to 3.5×10^6 A/cm2 for STO as n increased from 0 to 150. At 5 K, the J_c was enhanced by approximately four times at both low and high fields. These values obtained due to nano-Ag inclusions are comparable to the best results achieved by other prestigious research groups around the world. However, for films grown on YSZ substrate, J_c increased from 2×10^5 to 2×10^6 A/cm2 as Ag shots increased from 0 to 30, and decreased to 9×10^5 for $n \geq 60$. Detailed microstructure investigations indicated that the crystallinity and ab alignment gradually improved as the number of Ag-nano-dots increased.

In the second part of the thesis work, YBa$_2$Cu$_3$O$_y$ films were grown on single crystalline YSZ, SrTiO$_3$, and MgO, and on polycrystalline Ag substrates using non-fluorine sol-gel and spin coating methods. The effects of heat treatment conditions on the phase
evolution and microstructures were investigated using optical microscopy, X-ray
diffraction, and atomic force microscopy. A detailed study was performed on the phase
formation, degree of grain orientation, formation of cracks, and surface morphologies. It
was found that sintering temperature and roughness of substrate surfaces are two key
factors in controlling crack morphologies. With several important advantages, including
precursor solution stability, improved film density, and elimination of HF during
processing, high-quality YBCO films have been achieved on single crystal substrates
with transport critical current densities up to \(10^6\) A/cm\(^2\). An extensive study was carried
out on the alteration of precursor solution stoichiometry and its effects on
superconducting properties. Fluorine-free sol-gel–derived films on the LAO substrate
exhibited epitaxial growth with excellent in- and out-of-plane texture. Experimental
details are given on the sol-gel synthesis chemistry and XRD and TEM characterization
of the YBCO thin films.

The phase evolution of YBCO films prepared by the fluorine-free sol-gel method was
also systematically investigated using in-situ high temperature optical microscope
observations and X-ray diffraction. The conversion sequences and the final resultant
products have been determined for barium, copper and yttrium containing precursors,
respectively. It was found that those conversions are strongly dependent on the
experimental conditions such as water partial pressure. The formation of YBCO starts at
a temperature of around 710 °C and lasts up to 800 °C over about 15 min. Depending on
the barium containing phases and experimental conditions. It is suggested that a- and c-
axis YBCO grains are governed by different reactions.
CONTENTS

DECLARATION...I

ACKNOWLEDGEMENTS...II

ABSTRACT...IV

CONTENTS..VII

Chapter I. Literature review..1

I.1. Introduction..1

I.2. The structural and physical parameters of YBa$_2$Cu$_3$O$_{7-x}$......................2

I.3. Thin film growth techniques..6

I.3.1. Chemical deposition...7

I.3.1.1. Metalorganic chemical vapor deposition (MOCVD).................7

I.3.1.2. MOD-Solution methods...8

I.3.1.3. Liquid phase epitaxy (LPE)..................................9

I.3.2. Physical methods..10

I.3.2.1. Magnetron Sputtering..10

I.3.2.2. Pulsed laser deposition (PLD)................................10

I.4. Substrate selection...12

I.4.1. Main requirement for the substrate................................12

I.4.2. Other requirements for the substrate............................14
I.4.3. Metallic substrates...17
 I.4.3.1. Textured Ag...17
 I.4.3.2. Textured nickel substrates..18
 I.4.3.3. Textured copper substrates.......................................19
I.5. Main results from the literature..21
 I.5.1. Fabrication of YBa$_2$Cu$_3$O$_{7-x}$ coated conductors.................21
 I.5.1.1 Protective layer...23
 I.5.1.2. Y123 thin films or coated conductors grown on various substrates with various buffer layers...24
 I.5.2. Y123 thin films grown on insulating single crystal substrates........30
 I.5.3. Y123 films with nanoparticle inclusions.........................38
 I.5.4. Flux pinning in Y123 films..38
 I.5.5. Vortex pinning by extended defects in YBCO thin films...........39

Chapter II. Fabrication and characterization of YBa$_2$Cu$_3$O$_{7-x}$ thin films grown on YSZ (100) single crystal substrate using the pulsed laser deposition...42
 II. 1. Introduction ...42
 II. 1. 1. Substrate selection..42
 II. 1. 2. Reported J_c values..43
 II. 2. Experimental...45
 II. 2. 1. Laser deposition system....................................45
 II. 2. 2. Characterisation methods...................................46
Contents

II. 2. 3. Study of deposition conditions...47
II. 2. 4. Surface morphology study by AFM..53
II. 2. 5. Surface morphology study by SEM..62
II. 2. 6. Characterization by X-ray diffraction......................................64
II. 3. Summary..65

Chapter III. Enhancement of critical current density in YBa$_2$Cu$_3$O$_{7-\delta}$ thin films grown by PLD on YSZ (100) substrates with surface modification by Ag nano-dots...68
III. 1. Introduction..68
III. 2. Experimental...74
 III. 2. 1. Deposition of Ag nano-dots with different densities..............74
 III. 2. 2. Deposition of Y123 film...74
III. 3. Results and Discussion...75
 III. 3. 1. Morphologies of Ag dots..76
 III. 3. 2. Characterisation of Y123 films...78
 III. 3. 2. 1. Morphologies studied by SEM......................................78
 III. 3. 2. 2. Morphologies studied by AFM.....................................81
 III. 3. 2. 3. Characterisation of YBCO/Ag films by X-ray diffraction....85
 III. 3. 2. 4. Critical current densities...88
III. 4. Conclusions..99
Chapter IV. Microstructure and enhancement of critical current density in YBa$_2$Cu$_3$O$_7$ thin films grown by pulsed laser deposition on SrTiO$_3$ (100) single crystal substrates modified by Ag nano-dots……100

IV. 1. Introduction..100
IV. 2. Experimental..100
IV. 3. Results and discussion..101
 IV. 3. 1. Morphologies studied by SEM...101
 IV. 3. 2. Morphologies studied by AFM...106
 IV. 3. 3. X-ray diffraction...112
 IV. 3. 4. Critical current density...115
IV. 1. 4. Conclusion..123

Chapter V. Effects of substrate surface modification using Ag nano-dots on the improvement of J_c and microstructures in YBa$_2$Cu$_3$O$_7$ thin films grown on LaAlO$_3$ (100) by pulsed laser deposition………………124

V. 1. Introduction..124
V. 2. Experimental..125
V. 3. Results and discussion..126
 V. 3. 1. Film surface morphologies studied by SEM...126
 V. 3. 2. Surface morphologies studied by AFM...132
 V. 3. 3. Phase purity studied by X-ray diffraction...138
 V. 3. 4. Critical current density and flux pinning...140
Chapter VI. Fabrication and characterization of YBa$_2$Cu$_3$O$_x$ thin film
grown by a fluorine-free sol–gel method ... 149

VI. 1. Microstructures and phase evolution in nanocrystalline YBaCu$_2$O$_y$ films grown
on various substrates via a non-fluorine sol-gel route 149

 VI. 1. 1. Introduction .. 149

 VI. 1. 2. Experimental .. 151

 VI. 1. 2. 1. Sol-gel solutions ... 151

 VI. 1. 2. 2. Substrates .. 151

 VI. 1. 2. 3. Film fabrication ... 151

 VI.1.2.4. Characterization ... 152

 VI. 1. 3. Results and discussion ... 154

 VI.1. 3. 1. DTA/TGA .. 154

 VI. 1. 3. 2. Films grown on polycrystalline Ag substrate 155

 VI. 1. 3. 3. Films grown on single crystal substrates 157

 VI. 1. 4. Summary .. 162

VI. 2. Optimizations of YBa$_2$Cu$_3$O$_x$ thin films grown using a fluorine-free sol–gel
approach .. 162

 VI. 2. 1. Introduction .. 162

 VI. 2. 2. Experimental ... 165

 VI. 2. 3. Results and discussion .. 167

 VI. 2. 3. 1. XRD Characterization ... 167

 VI. 2. 3. 2. Superconducting properties .. 170

 VI. 2. 3. 3. Film morphologies .. 170
Chapter VII. *In-situ* high temperature optical microscopy study of phase evolution in YBa$_2$Cu$_3$O$_7$ films prepared by a fluorine-free sol-gel route………178

VII. 1.1. Introduction………………………………………………………………….178
VII. 1.2. Experimental………………………………………………………………...179
VII. 1.3. Results and Discussion…………………………………………………………181
VII. 1. 4. Conclusions…………………………………………………………………193

Chapter VIII. Summary…………………………………………………………..194

REFERENCES………………………………………………………………………...199

PUBLICATIONS……………………………………………………………………214