Real-time FPGA realization of an UWB transceiver physical layer

Darryn W. Lowe
University of Wollongong

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
REAL-TIME FPGA REALIZATION OF
AN UWB TRANSCEIVER PHYSICAL LAYER

A thesis submitted in fulfilment of the
requirements for the award of the degree

MASTER OF ENGINEERING – RESEARCH

from

UNIVERSITY OF WOLLONGONG

by

Darryn W. Lowe, BEng (Hons 1)
School of Electrical, Computer and Telecommunications Engineering
2005
I, Darryn W. Lowe, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Master of Engineering – Research, in the School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged.

The document has not been submitted for qualifications at any other academic institution.

Darryn W. Lowe
14 November 2005
Contents

1 Introduction .. 1
 1.1 Design Methodology ... 3
 1.2 Contributions ... 5

2 A Novel UWB PHY ... 9
 2.1 MCIDS ... 10
 2.2 CCDM ... 13
 2.3 Specification .. 19
 2.3.1 Preamble .. 21
 2.3.2 SFD ... 22
 2.3.3 PHY Header Definition ... 22
 2.3.4 HCS ... 24
 2.3.5 Scrambling .. 24
 2.3.6 Symbol Mapping ... 25
 2.3.7 Prespreading ... 27
 2.3.8 CCDM .. 27
 2.3.9 Pilot Insertion .. 27
 2.3.10 MCIDS Spreading ... 29
 2.3.11 Spectral Mask .. 29

3 Transmitter ... 31
 3.1 Top-Level Architecture .. 31
3.2 Bus Interfacing .. 34
 3.2.1 Control Word 34
 3.2.2 Status Word 37
 3.2.3 Packet Buffer 38
3.3 Header Preparation 42
 3.3.1 Header Timing 43
 3.3.2 Header Check Sum 45
 3.3.3 Scrambler 45
3.4 Symbol Creation 46
 3.4.1 Symbol Buffer 47
 3.4.2 Constellation Mapping 55
3.5 CCDM .. 59
 3.5.1 Spreading Architecture 62
 3.5.2 Control 66
 3.5.3 Separating I/Q Components 71
3.6 MCIDS ... 71
 3.6.1 Buffering 72
 3.6.2 Pilot Insertion 76
 3.6.3 Preamble Generation 77
 3.6.4 Interleaving 79
 3.6.5 Spreading 83
 3.6.6 Transmitted Signal 83

4 Receiver ... 87
 4.1 MCIDS Despreading 89
 4.1.1 MCIDS RAKE 91
 4.1.2 Frame Detection 105
 4.1.3 Equalization 111
 4.1.4 Automatic Gain Control 115
 4.1.5 DetectSFD 117
4.2 CCDM Demodulation 119
 4.2.1 Removing Pilots 119
 4.2.2 Buffering 121
 4.2.3 Despreading 122
4.3 Constellation Demapping 130
 4.3.1 I/Q Buffer 130
 4.3.2 Demapping 134
4.4 Header Processing 138
 4.4.1 Data Rate Management 138
 4.4.2 Descrambling 138
 4.4.3 Header Validation 139
4.5 Bus .. 139
 4.5.1 Packet Buffer 140
 4.5.2 Control Registers 141

5 Analysis .. 145

5.1 Test Environment 145
 5.1.1 RF Front-end Models 145
 5.1.2 Channel Models 148
 5.1.3 MAC Models 150
5.2 Performance .. 155
 5.2.1 AWGN .. 155
 5.2.2 Multipath Channel 157
5.3 Sensitivity to Word Length 163
5.4 Complexity ... 164
 5.4.1 Device Selection 164
 5.4.2 Synthesis Results 165

6 Conclusions .. 167

A Transmitter Models 171
B Receiver Models

C Parametrization Scripts
 C.1 Constants 209
 C.1.1 Global Constants 209
 C.1.2 Parameters 211
 C.2 ROMs 214
 C.2.1 Transmitter CCDM Codeset ROM 214
 C.2.2 Receiver CCDM Codeset ROM 215
 C.2.3 Receiver MCIDS Codeset ROM 215
 C.2.4 Receiver Synchronization Codeset ROM ... 216
 C.2.5 Receiver RAKE Correlator Interleaver ... 216

D Simulation 219
 D.1 Functional Blocks 219
 D.1.1 CRC 219
 D.1.2 Scrambler 220
 D.1.3 Constellation Mapping 220
 D.1.4 CCDM 223
 D.1.5 Pilots 225
 D.1.6 Preamble 226
 D.1.7 MCIDS 226
 D.2 Simulation Framework 230
 D.2.1 Top-Level Simulation 230
 D.2.2 End-to-End Link Model 231
 D.2.3 Packet Constructor 232
 D.2.4 Transmitter Baseband Model 233
 D.2.5 Multipath Channel Model 233
 D.2.6 Receiver Front-end Model 235
 D.2.7 Receiver Baseband Model 236
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Example of an MCIDS Spread Signal for $M = N = 4$</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Example of MCIDS Despreading for $M = 4$</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Preamble Sequence</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>SFD Sequence</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>PHY Header Definition</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Data Rate Mappings for PHY Header</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Initial Values for PRBS</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Normalization Constants for Symbol Constellations</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Prespread Codes</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>Transceiver Spectral Mask</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Example of Buffer Signal Mask Generation</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Derivation of Header Control Signal Constants</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>Data Bits for Modulation Types</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Relationship between Symbol Density and FIFO Reads</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Constellation Mapping for BPSK & QPSK</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>Construction of Out_{Code}</td>
<td>69</td>
</tr>
<tr>
<td>3.7</td>
<td>Calculation of MCIDS Buffer Read Address</td>
<td>76</td>
</tr>
<tr>
<td>3.8</td>
<td>BPSK Modulation of Preamble Bits</td>
<td>78</td>
</tr>
<tr>
<td>4.1</td>
<td>Adder Coefficient Modification for RAKE Finger Correlator</td>
<td>98</td>
</tr>
<tr>
<td>4.2</td>
<td>MCIDS Code ROM</td>
<td>104</td>
</tr>
<tr>
<td>4.3</td>
<td>Synchronization Constants for RAKE Finger Correlators</td>
<td>107</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Transceiver Development Methodology .. 3
2.1 Transceiver Block Diagram ... 10
2.2 Example of CCDM Sequence Set for L=28 and K=2 17
2.3 PHY Frame Format ... 20
2.4 Example of Spreading Process for PHY Header 21
2.5 Bits-to-Symbol Mappings for BPSK, QPSK, 16-QAM and 64-QAM 26
2.6 Codeset Definitions for CCDM and MCIDS 28
2.7 Insertion of Pilots ... 29
2.8 FCC Emissions Limit on UWB and Transceiver Spectral Mask 30
3.1 Tx Overall Timing .. 33
3.2 Transmitter Scrambler & HCS Timing .. 42
3.3 Tx Map ... 48
3.4 Timing of **Tx-Map-Buffer-Group**A.22 Block 51
3.5 FIFO Refilling .. 52
3.6 Counter Synchronization ... 57
3.7 Impact of Pre-spreading on Symbol Timing 58
3.8 Timing of Transmitter’s CCDM Spreading 61
3.9 Architecture of CCDM Spreading .. 64
3.10 Tx CCDM Spreader Timing – Load Cycle 68
3.11 Tx CCDM Spreader Timing – Write Cycle 70
3.12 Tx MCIDS Buffer Addressing ... 73
5.6 Receiver State Machine ... 154
5.7 Theoretical BER vs. $\frac{E_b}{N_0}$ in AWGN. 156
5.8 Simulated BER vs. $\frac{E_b}{N_0}$ in AWGN. 157
5.9 Simulated BER vs. $\frac{E_b}{N_0}$ in CM1. 158
5.10 Simulated BER vs. $\frac{E_b}{N_0}$ in CM2. 159
5.11 Simulated BER vs. $\frac{E_b}{N_0}$ in CM3. 160
5.12 Simulated BER vs. $\frac{E_b}{N_0}$ in CM4. 161
5.13 Simulated BER vs. $\frac{E_b}{N_0}$ for QPSK in all channels. 162
5.14 Simulated PER vs. ADC Bit Width. 163
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to Digital Convertor</td>
</tr>
<tr>
<td>AGC</td>
<td>Automatic Gain Control</td>
</tr>
<tr>
<td>ASR</td>
<td>Addressable Shift Register</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>CCDM</td>
<td>Complementary Code Division Multiplexing</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Convertor</td>
</tr>
<tr>
<td>DSSS</td>
<td>Direct Sequence Spread Spectrum</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>FCS</td>
<td>Frame Check Sequence</td>
</tr>
<tr>
<td>FIFO</td>
<td>First-In First-Out</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>HCS</td>
<td>Header Check Sequence</td>
</tr>
<tr>
<td>I</td>
<td>In-Phase</td>
</tr>
<tr>
<td>ISI</td>
<td>Inter-Symbol Interference</td>
</tr>
<tr>
<td>LNA</td>
<td>Low Noise Amplifier</td>
</tr>
<tr>
<td>LOS</td>
<td>Line Of Sight</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>LUT</td>
<td>Look Up Table</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
</tr>
<tr>
<td>MCIDS</td>
<td>Multicode Interleaved Direct Sequence</td>
</tr>
<tr>
<td>MPDU</td>
<td>MAC Protocol Data Unit</td>
</tr>
<tr>
<td>MRC</td>
<td>Maximal Ratio Combining</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>NLOS</td>
<td>Non-Line Of Sight</td>
</tr>
<tr>
<td>OPB</td>
<td>On-chip Peripheral Bus</td>
</tr>
<tr>
<td>PAR</td>
<td>Place and Route</td>
</tr>
<tr>
<td>PER</td>
<td>Packet Error Rate</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical Layer</td>
</tr>
<tr>
<td>PRBS</td>
<td>Pseudo-Random Binary Sequence</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectral Density</td>
</tr>
<tr>
<td>Q</td>
<td>Quadrature</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
<tr>
<td>RTL</td>
<td>Register Transfer Level</td>
</tr>
<tr>
<td>S-V</td>
<td>Saleh-Valenzuela</td>
</tr>
<tr>
<td>SFD</td>
<td>Start Frame Delimiter</td>
</tr>
<tr>
<td>SIFS</td>
<td>Short Inter-Frame Spacing</td>
</tr>
<tr>
<td>TDM</td>
<td>Time Division Multiplex</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra-WideBand</td>
</tr>
</tbody>
</table>
Abstract

An original ultra-wideband (UWB) physical layer (PHY) specification is developed and implemented in digital logic. The novelty of this UWB PHY is based on a combination of complementary code division multiplexing (CCDM), which yields a low-interference signal with a variable process gain, and multicode interleaved direct sequence (MCIDS) spreading, which provides an additional fixed process gain as well as multipath robustness. To operate at the high sample rates needed for UWB, the digital logic, realized in a Virtex-II field programmable gate array (FPGA), has a highly-pipelined architecture for real-time signal processing. In addition, the gate count is minimized by avoiding the use of explicit buffer memory wherever possible. The performance of the transceiver is analyzed under a variety of UWB channels and impairments. It is concluded that the proposed UWB PHY offers robust performance in real-world environments and that it is viable for use in future communication systems.
Acknowledgements

Cry havoc! And let slip the dogs of war.

Thanks to my supervisor, my family and my friends.