Characteristics of urbanization that influence bird communities in suburban remnant vegetation

Patricia Ruth Hodgson
University of Wollongong
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Characteristics of urbanization that influence bird communities in suburban remnant vegetation

A thesis submitted in fulfilment of the requirements for
the award of the degree of Doctor of Philosophy

From

University of Wollongong

By

Patricia Ruth Hodgson
Bachelor of Science in Environmental Biology
Bachelor of Science (Honours) in Biological and Biomedical Sciences
I, Patricia Ruth Hodgson, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Patricia Ruth Hodgson

31st August 2005
Table of Contents

Table of Contents 3
List of Tables 5
List of Figures 6
Abstract 7
Acknowledgements 10

Chapter 1

General introduction 11

1.1 Habitat components of the fragmented landscape 11
1.2 Species responses to small effective remnant area and the matrix 13
1.3 Population linkages in fragmented landscapes 15
1.4 Species movement and the influence of the edge environment 18
1.5 The urban landscape as a fragmented environment for birds 19
1.6 Definitions 28
1.7 Thesis aims and outline 29
1.8 Study region 31

Chapter 2

Changes in bird communities of remnant bushland in response to suburban housing density and remnant size in an urbanized landscape 32

2.1 Introduction 32
2.2 Methods 36
2.3 Results 41
2.4 Discussion 50
Table of Contents (continued)

Chapter 3

Compositional differences in bird communities of remnant bushland in response to vegetation type and remnant size in an urbanized landscape 55

3.1 Introduction 55
3.2 Methods 59
3.3 Results 64
3.4 Discussion 71

Chapter 4

A comparison of foraging behaviour of small, urban-sensitive insectivores in continuous woodland and woodland remnants in a suburban landscape 76

4.1 Introduction 76
4.2 Methods 80
4.3 Results 85
4.4 Discussion 103

Chapter 5

Avian movement across abrupt ecological edges: differential responses to housing density in a suburban matrix 109

5.1 Introduction 109
5.2 Methods 112
5.3 Results 117
5.4 Discussion 126

Chapter 6

General discussion 133

Manuscripts arising from thesis 152

References 153
List of Tables

Table 1: Distribution of remnants according to surrounding housing density and remnant size 37
Table 2: Habitat preferences of guilds comprised of species occurring in at least 20% of sites 47
Table 3: Distribution of remnants across factors of size and vegetation type 60
Table 4: Remnant size preferences of bird species in remnants of moist forest vegetation 68
Table 5: Remnant size preferences of bird species in remnants of woodland vegetation 70
Table 6: Standard multiple regression models of vegetation structure with species richness and bird density 70
Table 7: Structural differences between remnants and continuous vegetation 86
Table 8: Number of bird records and total observation time for target species 87
Table 9: Species occurrence at remnant sites and continuous vegetation 88
Table 10: Comparison of prey attack rates in remnant sites and continuous vegetation 92
Table 11: Comparison of proportions of crossings between guilds at edges of high-density and low-density housing 119
Table 12: Comparison of proportions of crossings across edges of high-density and low-density housing within guilds 119
Table 13: Comparison of individual species frequency at edges of high-density and low-density housing 120
Table 14a: Regression model showing best fit of birds tolerant of high-density housing with matrix characteristics 125
Table 14b: Regression model showing best fit of birds tolerant of low-density housing with matrix characteristics 125
List of Figures

Figure 1: Presence of birds at sites according to housing density and remnant size 42

Figure 2: Non-metric multi-dimensional scaling plots of remnant bird communities (n = 34) showing response to matrix housing density and the association between bird guilds and matrix housing density 44

Figure 3: Presence of birds at sites according to vegetation type 64

Figure 4: Non-metric multi-dimensional scaling plot of remnant bird communities (n = 39) showing response to vegetation type and remnant size 66

Figure 5: Non-metric multi-dimensional scaling plot of bird communities in moist forest remnants (n = 16) showing response to remnant size 66

Figure 6: Non-metric multi-dimensional scaling plot of bird communities in woodland remnants (n = 23) showing response to remnant size 67

Figure 7: Non-metric multi-dimensional scaling plot of differences in vegetation structure between remnants 85

Figure 8: White-browed scrubwren foraging behavior 90

Figure 9: Eastern yellow robin foraging behavior 93

Figure 10: Brown thornbill foraging behavior 96

Figure 11: Striated thornbill foraging behavior 98

Figure 12: Grey fantail foraging behavior 101

Figure 13: Proportion of observations in which birds crossed the edge and differences between edge types 121

Figure 14: Diagrammatic representation of low-density housing with remnants, and high-density housing with greenwebs 142
Abstract

In many landscapes subject to fragmentation, particularly through the process of urbanization, small remnants of original native vegetation surrounded by a highly modified matrix are often the only suitable habitat for most native species. Management of these small remnants may be the most feasible option for the conservation of regional avian biodiversity and urban-sensitive species. Remnant native vegetation may improve the complexity of urban vegetation, or provide regular habitat or stepping-stones for dispersal in an inhospitable matrix. External factors in the surrounding matrix, or internal constraints related to the size of the remnant may influence bird communities within remnant vegetation. Determining the relative influence between these factors should assist management of conditions that will help to retain urban-sensitive species.

On the Central Coast of New South Wales, Australia, bird communities in remnant vegetation were surveyed to investigate the influence of internal and external factors on composition. The effect of housing density and vegetation type was investigated in relation to remnant size. The foraging behaviour of five insectivorous species (present in low numbers) in remnants surrounded by high-density housing was examined in relation to the vegetation structure. Bird movements across habitat edges were investigated at the interface between remnant vegetation and suburban housing. The proportion of crossings by guilds and individual species were compared between edges of high- and low-density housing.

Bird communities of remnant vegetation were significantly influenced by the surrounding housing density. There was no interaction between remnant size and
surrounding housing density, suggesting external factors were having a greater influence than internal factors. Community composition changed in response to surrounding housing density. Introduced species, granivores and medium nectarivores occurred more often in remnants surrounded by high-density housing. These communities resembled those commonly described for the urban matrix itself. Small insectivores and nectarivores occurred more often in remnants surrounded by low-density housing, giving these communities a closer resemblance to those often described in undisturbed vegetation. It appears that remnants surrounded by low-density housing can support several bird species dependent on native habitat.

The composition of bird communities in remnant vegetation was significantly influenced by vegetation type when remnants were larger than 80 ha. In remnants smaller than 35 ha bird communities were not influenced by vegetation type, suggesting they are influenced more by external factors. Bird density and species richness were influenced by vegetation structure and were positively associated with high-shrub cover. Increasing the cover of high shrubs may be one way to improve bird diversity within remnants smaller than 35 ha. Retaining larger remnants (> 80 ha) that provide resistance to characteristics of the surrounding suburban matrix is likely to be an important way of maintaining urban-sensitive species and bird assemblages specific to particular vegetation types, over the majority of the suburban landscape.

The foraging behavior of small insectivorous birds in remnants surrounded by high-density housing was not adversely affected by urbanization. Canopy- and shrub-foragers showed minimal behavioural changes. Species classified as feeding on or near the ground tended to forage at lower heights in remnants compared with those in
continuous vegetation. These changes were partially explained by structural differences between vegetation in remnants and continuous sites. The rate at which birds attacked prey items was significantly higher in continuous habitat for only two species. Overall, it appears that remnants have potential value as habitat and foraging sources in a suburban landscape. Despite this, small insectivores are still sensitive to urbanization, suggesting that other factors, probably associated with the matrix, are important.

Behavioural responses to edges adjoining the two densities of housing matrix differed significantly among feeding guilds. Guilds of omnivores and nectarivores were significantly more likely than insectivores to penetrate edges adjoining high-density housing. Analysis of individual species revealed several consistent trends. Nectarivorous species appeared more likely to cross at edges of high-density housing, while insectivores were more likely to cross at edges of low-density housing. Regression models suggest these trends were influenced by characteristics within the matrix, principally the proportion of housing and shrub and canopy vegetation. Importantly, by crossing at these habitat edges many species demonstrated, that with appropriate management of the housing matrix, they have the potential for dispersal necessary for the maintenance of meta-populations.

Overall this thesis suggests that characteristics of the surrounding matrix influence both the internal remnant quality and the ability of birds to disperse among remnant vegetation. Therefore management of the matrix is likely to play a pivotal role if small remnants are to function as a habitat network and promote the avian diversity of suburban landscapes.
Acknowledgements

I would like to thank the following people for their invaluable support and assistance, especially my supervisors for their guidance, enthusiasm and sense of humour.

Kris French Supervisor
Richard Major Supervisor
David Tierney Industry partner/Wyong shire council
Greg Gowing Australian museum
Janet Patterson Wyong shire council
Julie Craft Wyong shire council
Rachel Lonie Gosford city council
Alan Morris Central Coast Bird Club

Private land owners in the Wyong and Gosford areas

Family and Friends:

Greg Nolan
Ann Hodgson
Col Hodgson
Kathryn Hodgson
Ann Brindle
Veronica Silberschneider
Cherie Parmenter
Kathryn Cornell
Members of the ‘French Lab’

Financial support was provided through an Australian Postgraduate Award (Industry) Scholarship at the University of Wollongong, with industry funding generously provided by Wyong Shire Council.