Temperature and frequency dependent giant magnetodielectric coupling in DyMn0.33Fe0.67O3

Fang Hong
University of Wollongong, fh640@uowmail.edu.au

Zhenxiang Cheng
University of Wollongong, cheng@uow.edu.au

Xiaolin Wang
University of Wollongong, xiaolin@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers
Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation

Hong, Fang; Cheng, Zhenxiang; and Wang, Xiaolin, "Temperature and frequency dependent giant magnetodielectric coupling in DyMn0.33Fe0.67O3" (2012). *Australian Institute for Innovative Materials - Papers*. 499.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Temperature and frequency dependent giant magnetodielectric coupling in DyMn0.33Fe0.67O3

Abstract
Perovskite DyMn0.33Fe0.67O3 experiences a paramagnetism-antiferromagnetism transition at 450K and spin reorientation at 290 K. Magnetodielectric properties were studied around the spin reorientation transition. Both giant positive and giant negative magnetodielectric coupling (MDC) were observed near room temperature. The MDC shows strong temperature and frequency dependence, and the sign changes from positive to negative when magnetic state transits from a canted antiferromagnetic state to a collinear antiferromagnetic state. Possible mechanisms are proposed based on the Maxwell-Wagner model, phase transition, the magnetoresistance effect, and spin-phonon coupling.

Keywords
dependent, frequency, temperature, coupling, magnetodielectric, giant, dymn0, 67o3, 33fe0

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/499
Temperature and frequency dependent giant magnetodielectric coupling in DyMn0.33Fe0.67O3
Fang Hong, Zhenxiang Cheng, and Xiaolin Wang

Citation: J. Appl. Phys. 112, 013920 (2012); doi: 10.1063/1.4736543
View online: http://dx.doi.org/10.1063/1.4736543
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v112/i1
Published by the American Institute of Physics.

Related Articles
Enhanced magneto-impedance in Fe73.5Cu1Nb3Si13.5B9 ribbons from laminating with magnetostrictive terfenol-D alloy plate
Extensive study of giant magnetoresistance properties in half-metallic Co2(Fe,Mn)Si-based devices
Anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures
AIP Advances 2, 042171 (2012)
Angular-dependences of giant in-plane and interlayer magnetoresistances in Bi2Te3 bulk single crystals
Magnetic field-dependent effective microwave properties of microwire-epoxy composites

Additional Information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors

ADVERTISEMENT
Temperature and frequency dependent giant magnetodielectric coupling in DyMn$_{0.33}$Fe$_{0.67}$O$_3$

Fang Hong, Zhenxiang Cheng, and Xiaolin Wang

Institute for Superconducting and Electronic Materials, University of Wollongong, Australia

(Received 14 February 2012; accepted 9 June 2012; published online 12 July 2012)

Perovskite DyMn$_{0.33}$Fe$_{0.67}$O$_3$ experiences a paramagnetism-antiferromagnetism transition at 450 K and spin reorientation at 290 K. Magnetodielectric properties were studied around the spin reorientation transition. Both giant positive and giant negative magnetodielectric coupling (MDC) were observed near room temperature. The MDC shows strong temperature and frequency dependence, and the sign changes from positive to negative when magnetic state transits from a canted antiferromagnetic state to a collinear antiferromagnetic state. Possible mechanisms are proposed based on the Maxwell-Wagner model, phase transition, the magnetoresistance effect, and spin-phonon coupling. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736543]

I. INTRODUCTION

Dielectric materials are common materials which have wide applications in energy storage, electronic switches, sensors, and actuators. To develop next generation multifunctional devices, effective control of more degrees of freedom beyond electric charge should be given a priority. Considerable work has been done to control the dielectric property by magnetic fields, the so-called magnetodielectric coupling (MDC) effect. Most MDC effects appear around the magnetic phase transition temperature, at which dielectric abnormality can be observed and modified by external magnetic fields. These effects are notably found in some manganites. In BiMnO$_3$, the dielectric constant is suppressed around 100 K, where ferromagnetic (FM) ordering occurs and a giant negative MDC effect could be induced. For spin frustrated perovskite TbMnO$_3$ (Pbnm space group), an obvious peak in the temperature dependence of the c-axis dielectric constant is found at 27 K, where the sinusoidal antiferromagnetic (AFM) magnetic modulation wave vector is locked at a constant value. Magnetic field can shift the dielectric peak slightly around 27 K and induce an extra dielectric peak at lower temperature. In metastable orthorhombic HoMnO$_3$ and YMnO$_3$, the MDC effect occurs below their incommensurate AFM transition temperature of 42 K. Apart from these manganites, the MDC effect can be found in other systems, such as SeCuO$_3$, TeCuO$_3$, MnCr$_2$O$_4$ (Ref. 9) (M = Mn, Co, and Ni), and Bi$_2$Mn$_{43}$Ni$_{12}$O$_{60}$, although their MDC values are very small. Colossal magneto-resistance (MR) materials, such as EuNbO$_2$N (Ref. 11) and H$_2$Cr$_2$S$_4$, also show significant magnetodielectric response at low temperature. To achieve practical applications, it would be ideal to find materials with MDC effects near room temperature. In addition, the MDC effect should be strong. Here, we present both giant positive and giant negative MDC in perovskite DyMn$_{0.33}$Fe$_{0.67}$O$_3$ near room temperature, 290 K, at which spin reorientation occurs.

II. EXPERIMENT

Polycrystalline sample of DyMn$_{0.33}$Fe$_{0.67}$O$_3$ was made by the traditional solid state reaction method with Dy$_2$O$_3$ (99.9%), MnCO$_3$ (99.9%), and Fe$_2$O$_3$ (99.9%) powder bought from Sigma-Aldrich. Stoichiometric amounts of raw oxide powder were weighed carefully and mixed in an agate mortar, followed by pressing into pellets 15 mm in diameter at 20 MPa. Samples were calcined at 950 °C for 10 h and sintered at 1440 °C for 6 h. The crystal structure of the sample was examined by x-ray diffraction (XRD, Model: GBC MMA), using Cu Kα radiation at λ = 1.54056 Å. The Rietveld refinement calculations were conducted via FULLPROF software. The magnetic measurements were carried out using a 14 T physical properties measurement system (PPMS), equipped with a vibrating sample magnetometer (VSM), in magnetic fields up to 5 T, over a wide temperature range from 5 to 340 K in standard mode, and from 310 K to 750 K in oven mode. Pt electrodes were deposited on both sides of the thin pellet by magnetic scattering coating for dielectric measurement. An Agilent 4294 A impedance analyser was employed for dielectric property measurements, scanning from 1 kHz to 1 MHz, while the temperature and applied magnetic fields were controlled by PPMS. A room temperature resistance measurement was carried out with a multimeter, and it showed resistivity of ~107 Ω cm.

III. RESULTS AND DISCUSSION

Figure 1 shows the x-ray powder diffraction pattern and Rietveld refinement results at room temperature. All diffraction peaks can be assigned to the single phase orthorhombic structure with space group Pnma, and no detectable impurity phase is present. The quality of refinement is determined by refinement parameter $R_p = 10.2\%$ and variance $\chi^2 = 1.9$. The calculated lattice parameters are $a = 5.6237(10)$ Å, $b = 7.5602(13)$ Å, and $c = 5.2912(9)$ Å.

The temperature dependence of the magnetic moment of DyMn$_{0.33}$Fe$_{0.67}$O$_3$ is shown in Figure 2(a). There are two transitions that can be clearly identified. One is the transition from paramagnetism (PM) to canted AFM, with a weak...
To investigate coupling between the magnetic field and the dielectric property, dielectric constants and loss were collected in different magnetic fields at 310 K, 285 K, and 250 K, respectively, as shown in Figures 3(a), 3(b), and 3(c). Obvious up/down shifts in the dielectric constant can be observed in the frequency dependence of the dielectric constants when measurements were carried out in various magnetic fields, indicating the occurrence of magnetodielectric coupling. The strength of magnetodielectric coupling is determined by the MDC constant in the form of \((\sigma H - \sigma_{H=0})/\sigma_{H=0}\) which is calculated and given in Figures 4(a)–4(c). It is clear that the MDC is extremely significant, especially in high magnetic field. At 310 K, we found a positive MDC constant as large as 53% (0.53) around \(2 \times 10^4\) Hz. At the low frequency range, the MDC constant approaches zero when the frequency decreases, indicating that mobile charge does not contribute to the MDC effect too much. Just below the spin reorientation temperature, at 285 K, an opposite MDC effect occurs, giving a large value of ~35% around \(1 \times 10^4\) Hz. The MDC constant also approaches zero when the frequency is close to 0 Hz, confirming the negligible effect of mobile charge on MDC. Maximum MDC can be observed at the conductivity cut-off frequency 1/RC (where R and C are the resistance and capacitance of the equal circle, respectively). When the temperature cools down from the spin reorientation temperature, this negative MDC effect becomes much stronger, reaching ~70% around 5 \(\times 10^3\) Hz at 250 K, as shown in Figure 4(c). Hence, the MDC effect is strongly temperature dependent. On the other hand, clear frequency dependence of MDC can be well observed.

Up to now, there are three proposed mechanisms to explain the MDC effect. One is based on intrinsic multiferroic relaxor behaviour, one is based on the Maxwell-Wagner model, and one is based on spin-phonon interaction. Although DyMnO\(_3\) and DyFeO\(_3\) also show multiferroic features, their multiferroic properties can only appear at very low temperature, below 18 K (Ref. 18) and 3.5 K, respectively, because of the inverse Dzyaloshinsky-Moriya interaction and exchange striction, respectively. Hence, near room temperature, the multiferroic relaxor based mechanism is not appropriate for our result. However, the giant MDC can be tentatively explained by the Maxwell-Wagner model at low frequency range below the cut-off frequency 1/RC. To better understand these unique phenomena, we present the frequency dependence of the dynamic magnetization (ML), \(ML = (\text{Loss}_{H=0}/\text{Loss}_{H=0})/\text{Loss}_{H=0}\) as shown in Figures 4(a)–4(c). The significant change of ML can be observed as increasing frequency, and the ML shows the opposite tendency to that of MDC. Considering the ML effect and

To reveal the magnetisation behaviour, a model was developed with the spin-reorientation temperature \(T_{\text{SR}}\) as a fitting parameter. The temperature dependence of the magnetic moment for DyMn\(_{0.33}\)Fe\(_{0.67}\)O\(_3\) above 450 K is plotted in Figure 5(a). The magnetic moment increases linearly with temperature up to \(T_{\text{SR}}\) around 450 K. The theoretical values of \(T_{\text{SR}}\) are 350 K, 400 K, and 450 K, respectively, as shown in Figures 3(a), 3(b), and 3(c). However, the magnetic increase of the magnetic moment at low temperature is due to paramagnetic behaviour of Dy\(^{3+}\). The magnetic property is consistent with the previous work.

![FIG. 1. XRD refinement result of DyMn\(_{0.33}\)Fe\(_{0.67}\)O\(_3\) with \(R_p = 9.9\%\) (star symbols, measured, and solid line, fitted). The difference between the measured and Rietveld refined spectra is plotted with a slight downshift for clarity. The short vertical solid lines are guides for the eyes to mark the corresponding Bragg positions.](image)

![FIG. 2. (a) Temperature dependence of magnetic moment from 10 K to 600 K (black closed triangles: standard mode; red closed circles: oven mode). Inset: magnetic hysteresis loop measured at 5 K. (b) Inverse DC susceptibility versus temperature as measured in an external field of 1000 Oe for the paramagnetic state of DyMn\(_{0.33}\)Fe\(_{0.67}\)O\(_3\) above 450 K (dashed line: Curie-Weiss fit; triangles: the inverse curve from experimental data).](image)
the result in Ref. 16, we could assign this MDC effect to the MR related MDC effects. Above the spin reorientation temperature of 290 K, such as at 310 K, the material shows WFM, but the applied magnetic field suppresses the spin fluctuation in the WFM state.20,21 This results in a negative MR and favours a positive MDC effect according to the Maxwell-Wagner model, similar to the positive MDC effect that occurs in EuNbO$_2$N below the ferromagnetic transition temperature.11 During our experiment measurement, dynamic frequency dependent resistances were obtained. Figure 5 presents the dynamic magneto-resistance in form of $\text{MR} = (R_{H} - R_{H=0})/R_{H=0}$. A negative MR effect is observed at 310 K as shown in Figure 5(a). The result confirms our assumption. On the contrary, when the temperature is 285 K or 250 K, the material experiences a magnetic phase transition from WFM to AFM. The MDC may be contributed by the following possible factors: first, MR effect induced by spin polarized tunnelling between charge depleted grain boundaries;20 second, the intrinsic magnetoelectric effect due to magnetostriction;22 third, the spin pair correlation, as explained in the phenomenological model.23 In our case, the magnetostriction effect should be very small and negligible, as the sample is not a typical magnetostriction material. In addition, the spin pair correlation cannot induce such a giant MDC effect. Hence, the most likely factor is the contribution by MR effect induced by spin polarized
tunnelling, despite the AFM property. This is proved by the positive MR effects are observed at 280 K and 250 K as shown in Figures 5(b) and 5(c), which could induce a negative MDC according to the Maxwell-Wagner model. In the light of this, the MDC at low frequency range below the cut-off frequency $1/\tau_C$ is related to space charge effect, which can be further confirmed by the strong frequency dependence and MR effect. For the case at high frequency range above the cut-off frequency $1/\tau_C$, the MDC effect becomes weaker, which should due to the absence of space charge effect. Different magnetic states will affect the strength and mode of spin-phonon interaction and dielectric constant is consequently modified.

IV. CONCLUSIONS

In summary, we have studied the phase transitions and MDC effect in DyMn$_{0.33}$Fe$_{0.67}$O$_3$. Two magnetic phase transitions are found at 290 K and 450 K, corresponding to spin reorientation and the antiferromagnetism-paramagnetism transition, respectively. MDC show strong temperature and frequency dependence. Giant positive and negative MDC effects are observed in the vicinity of the spin reorientation temperature. Magnetoresistance based Maxwell-Wagner model is employed to explain the MDC at low frequency range below the cut-off frequency $1/\tau_C$ and spin-phonon interaction is responsible for the MDC at high frequency range above the cut-off frequency $1/\tau_C$. These effects make it promising to produce multifunctional devices based on such kinds of materials.

ACKNOWLEDGMENTS

Zhenxiang Cheng thanks the Australian Research Council for support through a Future Fellowship (FT 0990287). The authors also thank Dr. Tania Silver for her kind help in revision of the manuscript.
