An investigation of the effects locust-control pesticides, fenitrothion and fipronil, on avian development using an in ovo model

Melissa Russ
University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
An investigation of the effects locust-control pesticides, Fenitrothion and Fipronil, on avian development using an *in ovo* model

Melissa Russ, B.Sc.

A dissertation submitted in partial fulfillment of the requirements for the degree of Masters of Science at the University of Wollongong

March 31, 2005
DECLARATION

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person where due reference is not made in the text.
ACKNOWLEDGEMENTS

I would like to thank Lee Astheimer and Bill Buttemer for all of their time and advice, without which I never would have achieved this thesis. I am also grateful to Paul Story at the Australian Plague Locust Commission for all of his information on operational methods and the odd comic relief. I am indebted to Karen Fildes and Stephanie Schmidt for teaching me the ins and outs of running the Ellman assay, as well as to Mike Hooper for helping me understand what the results meant.

I gratefully acknowledge the financial support for this research provided by an Australian Research Council Linkage Grant and by the Australian Plague Locust Commission, Canberra, Australia. I also thank the University of Wollongong Research Committee for the award of a fee-waiver scholarship.

As always, I appreciate the animals that gave their lives to the research so that we may better understand the impacts of our actions.

Lastly, I would like to thank all of my friends and family, especially Andrew Frith and Peter Russ, for all the moral support.
Abstract

Locust control operations, carried out by the Australian Plague Locust Commission (APLC), typically coincide with times of insect abundance as well as the breeding periods of many oviparous Australian vertebrates. Maternal exposure and storage of pesticides can result in the subsequent deposition of these lipophilic chemicals within the yolk lipids. Thus, these chemicals can be sequestered within an egg, exposing the embryo throughout its in ovo development. Fenitrothion and fipronil are pesticides currently in use by the APLC. A few teratogenic studies have been conducted regarding in ovo exposure to fenitrothion, though exposure occur during the later stages of development and was not modeled as maternal deposition in yolk. To date no in ovo study has investigated the effects of fipronil on development.

The lethal effect of fipronil varies widely between species, making toxicity to a given species difficult to predict. Limited research on rats has suggested that fipronil may adversely affect normal thyroid function, causing an increase in thyroid hormone clearance and related changes in thyroid hormone levels and regulation. Using these findings as a starting point, further investigation was warranted into the full extent of fipronil’s interaction with the thyroid system.

Eggs of the domestic chicken were treated in ovo at day 3 of development with either fenitrothion or fipronil over a range of doses. Controls included groups that received the oil vehicle only or that received no injection. Measurements oxygen consumption of embryos were made on days 12, 14, 16, 17 and 18 of incubation. Upon
hatch, body mass and skeletal lengths of the skull and tarsus were measured. Blood was collected and analyzed for either cholinesterase inhibition (a biomarker for fenitrothion exposure) or plasma thyroxine levels (for fipronil treated eggs).

Embryos treated with fenitrothion did not differ significantly between treatments in hatchability, body mass or skeletal measurements. Plasma total, acetylcholinesterase and butyrlcholinesterase activities followed a weak linear pattern, increasing as the dose increased, but were not significantly different from controls. Oxygen consumption for the control group was significantly higher than the fenitrothion 0.1 and 5.0 mg/kg treatment groups, however none of the treatment groups differed significantly from the oil-injected group.

Embryos treated with fipronil in general exhibited lower hatchability at the highest doses, although there were no statistically significant differences between fipronil treated groups and the controls. There were also no statistically significant differences between treatments in body mass or skeletal measurements. While plasma thyroxine levels in general increased with increased dose, there were no statistically significant differences between the fipronil and the oil-treated groups. Oxygen consumption of the embryos in the control group was higher than fipronil-treated groups over time, but there were no statistically significant differences between dose treatments.

In a separate pilot study, I gave breeding female Zebra Finches oral doses of fipronil (100, 200 and 500 mg/kg and control oil) to determine the extent of maternal
transfer of the pesticide to the egg yolk. All eggs laid by these females were collected within a day of laying for 3 weeks after treatment and analysed for fipronil residues. Although the total number of eggs laid by treated females was small, there was a weak dose dependency in fipronil deposition in yolk. The degree to which this may affect embryo development was not examined as part of this thesis.
TABLE OF CONTENTS

Abstract... iii

CHAPTER 1... 1

REVIEW OF THE EFFECTS OF FENITROTHION AND FIPRONIL ON NON-TARGET VERTEBRATES... 1

1.1 Introduction ... 1
1.2 Fenitrothion ... 4
 1.2.1 Chemical Properties... 4
 1.2.2 In vivo Effects of Fenitrothion... 5
 1.2.3 Effects of Fenitrothion in Field Trials.. 7
 1.2.3 Mechanism of Action .. 8
 1.2.4 Invertebrate Toxicity .. 9
 1.2.5 Vertebrate Toxicity ... 10
1.3 Fipronil .. 11
 1.3.1 Chemical Properties... 11
 1.3.2 Fipronil Metabolites... 12
 1.3.3 Mechanism of Action .. 14
 1.3.4 Invertebrate Toxicity .. 15
 1.3.5 Vertebrate Toxicity ... 18
1.4 Thyroid Function and Pesticides ... 20
 1.4.1 Normal thyroid function ... 20
 1.4.2 Thyroid function and development ... 21
 1.4.3 Xenobiotics and Thyroid Hormones... 22
1.5 Maternal Transfer of Fipronil.. 24
1.6 Developmental Risk and Locust Control pesticides: the present study 26
 1.6.1 Study Aims .. 28

CHAPTER 2... 29

METHODS DEVELOPMENT AND FINAL STUDY DESIGN ... 29

2.1 Introduction ... 29
2.2 General Handling Procedures.. 31
 2.2.1 Test Subjects ... 31
 2.2.2 Incubation of Eggs.. 32
 2.2.3 Treatments .. 32
 2.2.5 Post Hatching Procedure ... 33
2.3 Pilot Studies... 33
 2.3.1 Pilot Study Methods... 34
 2.3.2 Pilot Study Results.. 34
 2.3.3 Pilot Study Discussion.. 35
2.4 Final Study Design... 37
 2.4.1 Final Study Methods... 37
 2.4.2 Conclusions.. 39

CHAPTER 3... 40

FIPRONIL: HATCHABILITY, POST-HATCHING MORPHOMETRICS AND THYROID HORMONE STATUS

3.1 Introduction .. 40
3.2 Methods ... 45
 3.2.1 Egg Treatment ... 45
 3.2.2 Plasma Thyroxine Assay ... 45
 3.2.3 Maternal Transfer ... 46
 3.2.4 Statistical Analysis .. 46
3.3 Results .. 47
 3.3.1 Hatchability .. 47
 3.3.2 Morphometric Comparisons ... 50
 3.3.3 Chick Mass Vs. Egg Weight ... 51
 3.3.4 Plasma Thyroxine Levels ... 53
 3.3.4 Maternal Transfer ... 54
3.4 Discussion .. 56

CHAPTER 4

FENITROTHION: HATCHABILITY, POST-HATCHING MORPHOMETRICS AND CHOLINESTERASE INHIBITION

4.1 Introduction .. 61
4.2 Methods ... 64
 4.2.1 Egg Treatment ... 64
 4.2.2 Cholinesterase Activity ... 65
 4.2.3 Statistical Analysis .. 68
4.3 Results .. 69
 4.3.1 Hatchability .. 69
 4.3.2 Morphometric Comparisons ... 71
 4.3.3 Chick Mass vs. Egg Weight ... 72
 4.3.4 Cholinesterase Characterisation .. 74
 4.3.5 Cholinesterase Inhibition ... 76
4.4 Discussion .. 78

CHAPTER 5

THE EFFECT OF FIP OR FEN EXPOSURE ON OXYGEN CONSUMPTION AND METABOLIC RATE

5.1 Introduction .. 81
5.2 Methods ... 83
 5.2.1 Equipment .. 83
 5.2.2 Procedure ... 84
 5.2.3 Data Analysis ... 84
5.3 Results .. 85
 5.3.1 Fenitrothion .. 85
 5.3.2 Fipronil .. 86
5.4 Discussion .. 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 6</td>
<td>89</td>
</tr>
<tr>
<td>CONCLUSIONS AND FUTURE DIRECTIONS</td>
<td>89</td>
</tr>
<tr>
<td>6.1 Conclusions</td>
<td>89</td>
</tr>
<tr>
<td>6.2 Future Directions</td>
<td>92</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>96</td>
</tr>
<tr>
<td>APPENDIX II</td>
<td>98</td>
</tr>
<tr>
<td>APPENDIX III</td>
<td>101</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1.1. Fipronil solubility ... 11

Table 1.2 Fipronil Lethal Dose 50s in avian species 26

Table 2.1 Percent hatchability ... 31

Table 2.2 Proportion of viable eggs post treatment 36

Table 2.3 Proportion of eggs viable after methodology tests 37

Table 2.4 Injection schedule ... 42

Table 3.1 Comparison of hatchability for eggs exposed to Fipronil 54

Table 3.2 Descriptive statistics for chick body measures 56

Table 4.1 Reagents used in a cholinesterase activity 71

Table 4.2 Comparison of hatchability for eggs exposed to Fenitrothion 76

Table 4.3 Descriptive statistics for body measures 77

Table 4.4 ChE activities in Chick plasma 24 hours post-hatch 83

Table 5.1 Mean oxygen consumption for embryos exposed to fenitrothion .. 85

Table 5.2 Mean oxygen consumption for embryos exposed to fipronil 86

Table A1.1 Comparative toxicity of fipronil across invertebrate species 96

Table A1.2 Comparative toxicity of fipronil across vertebrate species 97

Table A2.1 Descriptive Statistics for exised femurs in chicks exposed to fenitrothion .. 100

Table A3.1 Mean oxygen consumption from all embryos alive during incubation in embryos exposed to fenitrothion .. 102

Table A3.2 Mean oxygen consumption from all embryos alive during incubation in embryos exposed to fipronil .. 104
List of Figures

Figure 1.1 Common degradation pathways of fenitrothion.. 4
Figure 1.2 Major metabolic pathways of fipronil .. 13
Figure 1.3 Glutathione-S-transferase metabolism of fipronil 14
Figure 1.4 Effect of fipronil on GABA receptor dynamics...................................... 15
Figure 1.5 Hypothalamic –Pituitary Thyroid Axis .. 20
Figure 3.1 Percent hatchability of control eggs.. 49
Figure 3.2 Chick hatching mass compared to egg mass .. 52
Figure 3.3 Mean residuals hatching mass and egg mass for each fipronil dose…… 53
Figure 3.4 Plasma thyroxine levels in day old chicks ... 54
Figure 3.5 Median Level of Fipronil residues in yolk ... 55
Figure 3.6 Fipronil residues in relation to days after dosing Zebra Finches........... 56
Figure 4.1 Percent hatchability of eggs exposed to fenitrothion............................... 70
Figure 4.2 Regression of chick mass at hatch versus egg mass 73
Figure 4.3 Mean residuals of egg mass versus mass at hatch 74
Figure 4.4 Chick Plasma cholinesterase characterization: determination of iso-OMPA concentration... 75
Figure 4.5 Chick Plasma cholinesterase characterization: Determination of substrate concentration ... 76
Figure 4.6 Mean cholinesterase plasma activities in fenitrothion-exposed chicks.. 78
Figure A2.1 Absolute percent hatchability of chicks exposed to fipronil 98
Figure A2.2 Absolute percent hatchability of chicks exposed to fenitrothion..... 99
Figure A2.3 Hatchability by experimental round .. 100
Figure A3.1 Mean oxygen consumption over time for embryos exposed to fenitrothion... 101
Figure A3.2 Mean oxygen consumption over time for embryos exposed to fipronil... 103