Multilayering and Ag-Doping for Properties and Performance Enhancement in YBa2Cu3O7 Films

Alexey Pan
University of Wollongong, pan@uow.edu.au

Serhiy V. Pysarenko
University of Wollongong, serhiy@uow.edu.au

D. Wexler
University of Wollongong, david_wexler@uow.edu.au

S. Rubanov
University of Melbourne

S. X. Dou
University of Wollongong, shi@uow.edu.au

Publication Details

This article was originally published as Pan, AV, Pysarenko, SV, Wexler, D, Rubanov, S, and Dou, SX, Multilayering and Ag-Doping for Properties and Performance Enhancement in YBa2Cu3O7 Films, IEEE Transactions on Applied Superconductivity, 17(2), 2007, 3585-3588. Copyright 2007 IEEE.
Multilayering and Ag-Doping for Properties and Performance Enhancement in YBa$_2$Cu$_3$O$_7$ Films

Alexey V. Pan, Serhiy V. Pysarenko, David Wexler, Sergey Rubanov, and Shi X. Dou

Abstract—Much denser YBa$_2$Cu$_3$O$_7$ (YBCO) superconducting films at least 1 mm thick with smooth surfaces have been obtained after introducing (Y/Nd)BCO multilayered structures. A significant enhancement of current carrying abilities has been achieved in these pulsed laser deposited films. The critical current density (J_c) has been increased by a factor of up to three in the entire field range. The imitation of the (Y/Nd)BCO multilayered structure by using YBCO “interlayers” has also exhibited a considerable improvement in the current carrying ability. Similarities and differences between these two “multilayering” approaches, leading to the observed effects, are discussed. The presence of interfaces even without element variation is likely to be the key to the improvements observed. In order to further promote J_c enhancement, small “multilayered” additions of silver (Ag) to the films and multilayers provide various results: (i) rather strong enhancement for rather thin films and low addition levels, (ii) considerable degradation for large addition levels, and (iii) much less pronounced effect for thicker films. The enhancement of J_c is observed in zero and low magnetic fields, but has almost no effect at higher fields. All these experimental observations are discussed in terms of pinning, transparency and structural modifications introduced during the deposition of the film structures.

I. INTRODUCTION

A n enormous effort has been made to establish viable technologies for the growth of high quality YBa$_2$Cu$_3$O$_7$ (YBCO) films (and coatings). In the case of the coated conductors, the ultimate goal is to obtain YBCO coatings with high total critical current $I_c = J_c A$, where $A = w_d d_p$ is the area through which current flows (w_p and d_p are the width and thickness of the YBCO coating, respectively). The critical current density (J_c) of high quality YBCO films is very high, reaching about 0.3J_0 of the deparing current density (J_0). This makes it very difficult for a further enhancement. A larger width is not technologically favorable. Therefore, the easiest approach would be to increase the thickness of the layers. However, superconducting films generally exhibit the following J_c dependence as a function of thickness: $J_c \propto 1/d_p$ [1]–[4].

In order to enhance the critical current density (J_c) dependence on applied magnetic field B_a and on film thickness d_p, various multilayered structures have been shown to significantly improve the current-carrying ability, microstructure and pinning in the films of relatively large thicknesses [4]–[6]. In addition, a lot of works have recently been dedicated to find effective dopants in YBCO films and coated conductors, which would lead to the $I_c(B_a)$ dependence improvement [7]–[9].

However, the nature of the critical current density enhancement and structure improvement in multilayered films is unclear. No comprehensive analysis of doped YBCO films with different thicknesses is available, nor an unambiguous explanation of the thickness dependence is provided. Moreover, no works have been carried out which would attempt to combine the positive effects of the multilayering and doping.

In this work, we investigate the multilayer deposition approach, focusing on the influence of the interfaces between the different layers on structural and electromagnetic changes. This analysis is expanding our discussion on the origin of the J_c enhancement in multilayered films. We also show the Ag-doping effect in YBa$_2$Cu$_3$O$_7$ films with different thicknesses, as well as the results of our experiments on simultaneous multilayering and Ag-doping in the YBCO films.

II. EXPERIMENTAL DETAILS

High quality YBCO films, (Y/Nd)BCO multilayers and (Y/Y)BCO single element multilayers have been grown by pulsed-laser deposition with the help of KrF Excimer Laser (248 nm) on (100) SrTiO$_3$ substrates in oxygen atmosphere of 40 Pa [4]. The distance (d_{ls}) between the targets and substrates was between 3.5 to 5 cm. The deposition temperature was kept at 780°C. Both types of the multilayers [(Y/Nd)BCO and (Y/Y)BCO] have been grown with exactly the same conditions and time intervals between each layer deposition to enable a meaningful comparison and to clarify the role of the multilayering procedure in defining properties of the films. The thickness of the films considered is 1000 nm unless otherwise specified. The nominal structure of the multilayers is YBCO/(YBCO or NdBCO)/YBCO/(YBCO or NdBCO)/YBCO with the layer thicknesses \(\sim 300 \text{ nm} / 50 \text{ nm} / 300 \text{ nm} / 50 \text{ nm} / 300 \text{ nm} \).

To introduce silver (Ag) addition, the YBCO and Ag targets have alternatively been ablated by the laser with controlled time intervals. This approach also represents a layered deposition technique. Ag-doped YBCO films were obtained with 12.5%, 6%, 2%, 1.25% of silver. The Ag doping level in the films was estimated on the number of laser shots at the silver target. The optimal doping level was chosen for the combined deposition of multilayers and Ag-addition layers.

The samples for transmission electron microscopy (TEM) have been prepared by the dual focused ion-beam technique. The surface morphology of the films has been observed by scanning electron microscopy (SEM) at small angles (\(\sim 10^\circ \) to \(20^\circ \))
to the plane of the surface. Electromagnetic properties of the films have been investigated by magnetization measurements over a wide applied field ($|B_a|\leq 5$ T) and temperature (5 K $\leq T \leq 95$ K) ranges. DC magnetic fields have been applied perpendicular to the film plane. $J_c(B_a, T)$ dependences have been obtained from the width of the magnetization loops, using the critical state model: $J_c = 2\Delta M/[w_p(1-w_p/\chi_p)]$ in A/m2, where $\Delta M = |M^+| + |M^-|$ taken from magnetization loops measured at different temperatures, L_p is the length of the films measured.

III. RESULTS AND DISCUSSIONS

A. Influence of the Multilayering

In Fig. 1, we show the surfaces of a YBCO film and a (Y/Nd)BCO multilayer for 1 μm thick samples observed by SEM. As can be seen, the multilayer (Fig. 1(a)) exhibits a much smoother surface than that in the film (Fig. 1(b)). The film is covered with holes characteristic for the spiral growth. The holes (~ 0.2 μm diameter) and corresponding structural inhomogeneity can extend throughout the entire thickness of the film. In addition, some droplets and ab-phase growth onset islands ≤ 1 μm large can be found on the surface. In contrast, the multilayers exhibit extremely smooth surfaces with only very few (smaller diameter) holes and fewer droplets.

The $J_c(B_a)$ dependences for these samples are provided in Fig. 2(a). For comparison, we also show a 0.4 μm thick YBCO film. The 0.4 μm thick film shows $J_c(0) = 3.2\times 10^{10}$ A/m2 in zero-field at $T = 77$ K. Strikingly, the multilayers outperform both YBCO films in the nearly full field range.

TEM observation can provide a clue to the observed improvements, which is in line with the originally suggested scenario of the crystal lattice mismatch between YBCO and NdBCO materials [4]. The interfaces between the layers are hardly distinguishable at the crystal lattice layer scale (Fig. 3(a)). However, the layers are observed to interrupt dislocations and ab-phase growth, as well as to initiate dislocations (Fig. 3(a), (c)). The largest density of defects is observed at the substrate/film interfaces (the darkest YBCO region between the STO substrate and the first NdBCO-layer in Fig. 3(b)). However, interfaces between the NdBCO/YBCO layers produce considerable number of additional dislocations (Fig. 3(c)). In spite of a similar mismatch between STO/YBCO and NdBCO/YBCO lattices, the number of defects initiated at the latter ones is far smaller than at the STO/YBCO interface.

The reasons proposed for the explanation of the critical current density enhancement in the multilayers with alternating layers of YBCO and NdBCO [4] or CeO$_2$ [5] are (i) the formation of additional mismatch dislocations at the additional interfaces [4], which are known to be effective pinning centers in YBCO films [10]; (ii) improvement of the microstructure and surface quality [4], [5] exhibiting spectacular smoothness compared to monolayer YBCO films [4]; and (iii) the increase of the filling factor due to the disappearance of holes in the films [4]. Overall, the (Y/Nd)BCO multilayers show improvements in the interface microstructures from the bottom to the top layers, as also revealed by the Rutherford backscattering [11].

Fig. 2. (a) Critical current density as a function of applied magnetic field. YBCO monolayer films of different thicknesses and (Y/Nd)BCO multilayer deposited at $d_{la} \approx 46$ nm are shown. (b) $J_c(B_a)$ curves for different types of multilayers compared to YBCO film of the same thickness (1 μm) deposited at $d_{la} \approx 41$ nm.
The first interface between the STO substrate and the YBCO layer was found to be the roughest, whereas the surface was the smoothest. Therefore, the interchanging of the layers removes the crystal lattice stress gradually due to the local mismatch and additional dislocation formation, improving the overall structural order with fewer larger scale defects such as ab-phase growth, smaller misorientations at grain boundaries.

However, it is important to note that the surface morphology smoothness is strongly dependent on the distance between the targets and the substrate. In general it is the most sensitive parameter for production of high quality films. Not only surface morphology can be significantly roughened, but also the electromagnetic properties can be affected. As can be seen in Fig. 4, the superconducting transition T_c and $J_c(B_0)$ show considerable differences depending on the distance d_{film}, which is identified with the precision of \pm0.5 mm. The T_c onset defined at the onset of the diamagnetism is varied from 88.8 K to 91.7 K for the (Y/Nd)BCO multilayers deposited at different d_{film}. The best T_c transition was obtained for the film deposited at $d_{\text{film}} \approx 41$ mm, which assumes the best crystallinity in the film. However, this film does not show either highest J_c at low fields, or the largest pinning at high fields. It does show the longest J_c plateau at $B_0 \rightarrow 0$ T. These results do not contradict to the analysis of the low field behavior provided in [12], [13]. The other parameter affecting $J_c(B_0)$ behavior at large fields but inducing no visible changes to the surface morphology and the T_c transition is the deposition temperature [4]. Growth conditions for the films are optimized to obtain same properties for every deposition, as can be seen for the multilayers deposited with the same parameters at $d_{\text{film}} \approx 46$ mm but with one year interval (Fig. 4).

To shed light on the influence of different interlayers and the presence of the interfaces created by “waiting”, we have merely reproduced the timing of the (Y/Nd)BCO deposition and subsisted NdBCO interlayer by YBCO. In other words, we deposited YBCO film interrupting the deposition by the same interval which was technologically needed to grow (Y/Nd)BCO multilayer. These depositions have been done with $d_{\text{film}} \approx 41$ mm. The surface of the (Y/Y)BCO multilayer (not shown) is only slightly better than the surface of the YBCO films shown in Fig. 1(b) and clearly worse with larger diameter holes than the (Y/Nd)BCO multilayer. The multilayers [(Y/Y)BCO and (Y/Nd)BCO] deposited have exhibited a similar J_c enhancement compared to the YBCO monolayer film of the same thickness $\sim 1 \mu$m (Fig. 2(b)). The similar J_c enhancement which becomes pronounced upon decreasing the field indicates that the microstructures of the both multilayers improves due to the presence of the interfaces. The (Y/Nd)BCO case has been discussed above and in [4], whereas the (Y/Y)BCO interface provides microstructure related improvements which are presumably associated with the extended periods for mobile particles to find “defective” sites during the waiting time between each layer deposition. This extended mobility may result in strain release of the lattice in a similar way as NdBCO interlayers do [4], leading to J_c enhancement and some surface smoothening.

B. Silver “Multilayered” Addition

In a similar way to the multilayers, pure Ag has been added by alternating silver and the superconducting targets. It turns out that YBCO films are very sensitive to the level of the Ag addition. In Fig. 5(a), the T_c transitions for the YBCO films with added Ag are shown. The transition does not change significantly for Ag-doping level $\leq 2\%$. The onset of the critical temperature T_c for the 2\% Ag doped film is \sim90.2 K, which is \sim0.6 K higher than that for the pure films from the same set. In contrast, the other Ag concentrations exhibit a lower T_c and a broader transition width.

The 2\% Ag-doped film shows a quite dramatic, largest enhancement in $J_c(B_0)$ behavior (Fig. 5(b)), whereas the other doped samples experience substantial $J_c(B_0)$ degradation (not shown for clarity). $J_c(0)$ for the 2\% Ag-doped 400 nm thick film outperforms the undoped film by a factor of \sim1.7 at 10 K and \sim2 at 77 K. For the thicker films with $d_p \approx 1000$ nm, the $J_c(B_{0,T})$ behavior has a very similar trend but the Ag influence is significantly smaller. At 77 K, the low field J_c for the
Ag-doped film is by a factor of ~1.5 larger, and at $B_a \geq 0.8$ T, the $J_c(B_a)$ for pure and doped films merge. At 10 K, only marginal J_c enhancement is observed at $B_a < 0.1$ T for thicker films. Above 0.1 T, the pure sample exhibits slightly larger J_c than the Ag-doped one.

The J_c behavior of the pure YBCO films as a function of the thickness at different fields and temperatures is shown in Fig. 6. The results obtained for the 2% Ag-doped samples are indicated by the asterisks. The $J_c(d_p)$ degradation with increasing d_p in YBCO films is usually attributed to microstructural deterioration, surface roughness, porosity, ab-phase growth [1], [4].

Generally, there are two main mechanisms to increase J_c [4], [10], [13]: (i) the enhancement of the transparency for the supercurrent flow; (ii) the reinforcement of pinning. These mechanisms complement one another and also can be competing, since too many pinning sites would imply a low current transparency. In addition, they are likely to affect the different field/temperature ranges. Due to the presence of only few vortices at small fields the transparency could dominate, whereas at large fields strong pinning can be more important.

In our case, we clearly observe the more pronounced enhancement of J_c at small fields, which is in contrast to the nano-particle doping enhancing J_c at large fields only [7], [8]. This trend indicates that Ag-doping improves the transparency of the grains rather than pinning. This is consistent with previous findings of the catalyst effect of Ag in stabilizing the superconducting phase and promoting grain growth [14], [15], which can explain a slight T_c increase for our films with the optimal Ag level.

Moreover, the J_c enhancement (Figs. 5(a) and 6) is slightly larger at 77 K than at 10 K. The coherence length $\xi(T) \propto (1 - T/T_c)^{-\delta}$ is shorter at low temperatures, which means that the scattering of charge carriers is stronger at grain boundaries and structural inhomogeneities. Thus, the Ag doping can effectively rectify the reduced transparency. At higher temperatures, $\xi(T)$ is larger, so that the enhancement of the transparency by Ag would be less dramatic because the overall scattering is smaller.

If we plot the normalized $J_c(B_a)/J_c(0)$ curves (Fig. 5(b)) for the pure and 2% Ag-doped films at 10 K and 77 K, the curves for the corresponding thicknesses and temperatures almost coincide. Presumably, this implies that no change in the pinning mechanism has occurred after Ag-doping, which would have changed the curvature. This also supports our scenario of the supercurrent transparency enhancement promoted by the Ag presence. Importantly, neither Ag nor Ag containing compounds has been detected in the films by x-ray diffraction (XRD) for all doping levels investigated. Either Ag could not be detected by XRD due to the smallness of Ag particles (< 10 nm) or Ag was oxidized and evaporated from the films. Silver oxides have quite low melting temperature ($\sim 1000^\circ$C to 200$^\circ$C) compared to the temperature used for the deposition.

Minimal Ag influence in the thicker films and the both types of the multilayers might be due to a microstructure degradation with increasing thickness or the insufficient 2% Ag addition level for the thick films for which these experiments have been carried out.

IV. Conclusion

In conclusion, the structure related improvements introduced by the multilayered approach at the interfaces are responsible for the enhancement of current-carrying ability in relatively thick films. We have also shown that silver “doping” increases J_c at relatively low fields owing to the enhanced microstructural transparency, which is similar to the effect of Ca-doping [9] and in contrast to the J_c enhancement due to pinning reinforcement usually observed at high fields [7], [8].

REFERENCES