2008

The development of non antibiotic resistant recombinant vaccines against mycoplasma hyopneumoniae

Jake Matic
University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
The development of non antibiotic resistant recombinant vaccines against *Mycoplasma hyopneumoniae*

Jake Matic
PhD candidate
University of Wollongong
2008
Declaration of Authenticity

This thesis is submitted in accordance with the regulations of the University of Wollongong in fulfillment of the degree of Doctor of Philosophy. It does not include any material previously published by another person except where due reference is made in the text. The experimental work described in this thesis is original, and has not been submitted for a degree to any other university.

Jake Nicholas Matic
Acknowledgements

This may take a while. But so did the PhD.

Firstly I’d like to thank my supervisors, Mark Walker and Steve Djordjevic. They stuck at the enormous challenge and have taught me so much. Thanks for all your time and support, without that the outcome may have been very different.

Thanks to ALL my family for their more than generous support. You have rescued me more times than I can count. I know families go above and beyond for each other but you have set new precedents. There is no way I could possibly have completed this without you.

Thanks to all my fellow Walker lab PhD students that have served time with me. Thanks to Adam Smith, Nick West, Jason McArthur, Dave McMillan, Jodi Wilton, Tam Stutchbury, Christine Gillen, Jason Cole, Fiona Edwell, Teresa Treweek, Amie Morris, Martina Sanderson-Smith, Vidiya Ramachandran, Anna Henningham, Tracy Burnett, Fay Dawes, Carola Venturini, Amanda Cork, Ania Bazun, Andrew Hollands and Lisa Seymour. You have all left me with some great memories. Thanks for putting up with my occasional grumpiness and random behaviour.

I would also like to thank Rebecca Towers for conducting the initial screening and sequencing of the pyruvate dehydrogenase complex (which formed the basis of her BSc. honours thesis). This previous study formed the foundation for my further characterization of this enzyme complex.

I’d also like to thank other department people that I became good friends with during my lag. James Bower, Karl Hasaan, Somanath Bhat, Nicole Kane-Maguire, Josh Kirk, Blake Cochran, Kara King and Kirsty Brodie. You guys kept my sanity.
I’d also like to thank all my students that I have demonstrated, lectured, tutored and partied with. You have all taught me as much as I have taught you. Also thanks to some of the other academics in the department, Ren Zhang, Mark Dowton, Tony Hulbert and Bill Buttemer. Thanks for having the faith in my teaching abilities, it has allowed me to eat the last couple of years.

To the Rossmore boys; Ed Humphries, Matthew Zovi, Nathan Wiblin and Dave Ferris (even though you aren’t a local). You supported me through thick and thin. Having grown up with you all was one of the best things that could ever have happened to me. Even though we never started that techno band, made the XB falcon movie or drove across the Nullabor in dato’s I will always treasure our friendship.

Finally to my wonderful Pixie. My darling I love you more than words on a page can possibly convey. You took me in when things were at their bleakest and since that moment there has been a light at the end of the tunnel. I honestly believe I would not have finished without the strength of the love we share. My heart and soul are yours, always.
Table of contents

List of figures.. iv
List of tables.. vi
List of abbreviations.. vii
Abstract... 1

1. Chapter 1... 3
 1.1 Mycoplasmas.. 4
 1.1.1 Mycoplasma genomes... 4
 1.1.2 *Mycoplasma hyopneumoniae* genomes..................................... 5
 1.2 Porcine mycoplasmas.. 6
 1.3 Porcine enzootic pneumonia.. 7
 1.3.1 Morphological and histological changes due to *M. hyopneumoniae* infection... 7
 1.3.2 *M. hyopneumoniae* mediated cilial damage............................... 8
 1.4 *M. hyopneumoniae* and its interactions with other porcine pathogens... 10
 1.4.1 *M. hyopneumoniae* and bacterial porcine pathogens 10
 1.4.2 *M. hyopneumoniae*, viral porcine pathogens and the porcine respiratory disease complex.. 10
 1.5 Transmission and duration of *M. hyopneumoniae* infection.................. 12
 1.5.1 Transmission of *M. hyopneumoniae*.. 12
 1.5.2 Duration of *M. hyopneumoniae* infection.................................. 13
 1.6 Host responses to *M. hyopneumoniae* infection.................................. 14
 1.6.1 The porcine humoral immune response to *M. hyopneumoniae* infection... 16
 1.6.2 The porcine cell-mediated immune response to *M. hyopneumoniae* infection.. 18
 1.6.3 Porcine cytokine production in response to *M. hyopneumoniae* infection... 19
 1.7 Colonisation of *M. hyopneumoniae*... 21
 1.7.1 *In vivo* adherence.. 22
 1.7.2 *In vitro* adherence... 24
 1.8 *M. hyopneumoniae* vaccines... 25
 1.8.1 Current commercial *M. hyopneumoniae* vaccines..................... 25
 1.8.2 Experimental *M. hyopneumoniae* vaccines............................... 27
 1.8.2.1 *M. hyopneumoniae* whole cell and extract vaccines........ 27
 1.8.2.2 Recombinant DNA and *M. hyopneumoniae* subunit vaccines 28
 1.9 Potential *M. hyopneumoniae* vaccine candidates.................................. 29
 1.9.1 Ribonucleotide reductase... 29
 1.9.2 Characterisation of P97 the cilium adhesin protein................... 30
 1.9.3 NrdF and P97 as candidates for a *M. hyopneumoniae* vaccine.... 33
 1.9.3.1 P97 as a vaccine candidate.. 33
 1.9.3.2 NrdF as a vaccine candidate.. 35
 1.9.4 Specific aims of this study... 37
 2. Chapter 2.. 38
List of Figures

1.1 Pig lungs following infection with *M. hyopneumoniae* 8
1.2 Lymphoid hyperplasia of *M. hyopneumoniae* infected pig lungs................. 15
1.3 Electron micrograph images of swine lungs.. 23
2.1 Pyruvate roundhouse mechanism of mollicute species............................... 40
2.2 Physical map of the *pdhCD* operon... 47
2.3 Amino acid homology of the PdhC protein... 48
2.4 Amino acid homology of the PdhD protein... 51
2.5 Electrophoretic analysis of the purification of PdhD and western blot analysis of various porcine mycoplasma strains................................. 54
2.6 Southern hybridisation analysis of two *M. hyopneumoniae* strains using *M. hyopneumoniae* *pdhD* ... 56
3.1 Cloning schematic for the production of pJLA507-AN.............................. 72
3.2 Agarose gel electrophoretic analysis of restriction digested plasmid based expression constructs... 73
3.3 SDS-PAGE and western blot analyses of expression from STM-1 (pJLA507-A)... 74
3.4 Expression profile of STM-1 (pJLA507-N)... 75
3.5 SDS-PAGE and western blot analyses of expression from STM-1 (pJLA507-AN)... 76
3.6 Growth curve analysis of PBE strains performed in LB............................. 77
3.7 ELISA analysis of sera IgG responses against adhesin or NrdF.................. 80
3.8 ELISA analysis of sera IgG responses against whole cell STM-1................. 81
4.1 Cloning schematics for pJMS10Δlux-AN.. 93
4.2 Agarose gel electrophoresis of restriction digested pUC18-AN and pJMS10Δlux-AN... 93
4.3 Colony immunoblotting of Km′ *S. enterica* serovar Typhimurium colonies against rabbit polyclonal α-Adh antisera....................................... 95
4.4 SDS-PAGE and western blot analysis of Km′ *S. enterica* serovar Typhimurium vaccine strains... 95
4.5 Western blot of *S. enterica* serovar Typhimurium whole cell lysates against rabbit polyclonal α-Adh antisera before and after excision of npt gene...... 97
5.1 Cloning schematics for the production of plasmid based and chromosomal based expression constructs... 112
5.2 Agarose gel electrophoresis of NotI restriction digestion of pARS-AN........... 113
5.3 Colony immunoblotting of arsenic resistant *S. enterica* serovar Typhimurium colonies against rabbit polyclonal α-Adh antisera.................... 114
5.4 Summary of the selection procedure for chromosomally based adhesin expressing *S. enterica* serovar Typhimurium colonies for potential use as vaccine candidates... 114
5.5 SDS-PAGE and western blot analyses of whole cell lysates of CBE strains 115
5.6 Southern hybridization and PCR analysis of chromosome from STM-1
 based vaccine strains.. 116
5.7 Agarose gel electrophoresis of inverse PCR products from CBE strains….. 117
5.8 Chromosomal locations of the nrdF-adh operon within STM-1 vaccine
 strains as determined using inverse PCR.. 118
5.9 Growth curve of CBE strains performed in minimal media supplemented
 with aromix... 120
5.10 Serum IgM responses against Adh and NrdF determined using ELISA…… 124
5.11 Serum IgG responses against Adh and NrdF determined using ELISA…… 125
5.12 Serum immunoglobulin responses against whole cell S. enetica serovar
 Typhimurium STM-1 as determined by ELISA............................ 126
5.13 Western blot analysis of pooled, CBE orally immunised mouse sera……. 127
List of tables

1.1. Cytokine changes in porcine respiratory tract after *M. hyopneumoniae* infection………………………………………………………………………………... 20
3.1. Characteristics of the bacterial strains and plasmids used in this chapter………………………………………………………………………………………………………65
3.2. CFU counts of the various vaccine strains performed at an optical density (560nm) of 1…………………………………………………………………………78
4.1. Characteristics of bacterial strains and plasmids used in this chapter……......89
5.1. Bacterial strains and plasmids used in this chapter……………………………..103
5.2. Expression stability of plasmid based and chromosomal based expression constructs…………………………………………………………………………………... 120
5.3 Expression stability following in vivo passage………………………………………...122
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>Ribosome binding site</td>
</tr>
<tr>
<td>BALF</td>
<td>Bronchoalveolar lavage fluid</td>
</tr>
<tr>
<td>BALT</td>
<td>Bronchus associated lymphoid tissue</td>
</tr>
<tr>
<td>CBE</td>
<td>Chromosomal based expression</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>DIG</td>
<td>Digoxigenin</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interlukin</td>
</tr>
<tr>
<td>kb</td>
<td>Kilo basepairs</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Daltons</td>
</tr>
<tr>
<td>Km<sup>r</sup></td>
<td>Kanamycin resistant</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertini</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PBE</td>
<td>Plasmid based expression</td>
</tr>
<tr>
<td>PCV2</td>
<td>Porcine circovirus type 2</td>
</tr>
<tr>
<td>PDH</td>
<td>Pyruvate dehydrogenase</td>
</tr>
<tr>
<td>PE</td>
<td>Pseudomonas exotoxin A</td>
</tr>
<tr>
<td>PEP</td>
<td>Porcine enzootic pneumonia</td>
</tr>
<tr>
<td>PGE2</td>
<td>Prostaglandin E2</td>
</tr>
<tr>
<td>p.i.</td>
<td>Post infection</td>
</tr>
<tr>
<td>PRDC</td>
<td>Porcine respiratory disease complex</td>
</tr>
<tr>
<td>PRRSV</td>
<td>Porcine reproductive respiratory syndrome virus</td>
</tr>
<tr>
<td>PRV</td>
<td>Pseudorabies virus</td>
</tr>
<tr>
<td>RNR</td>
<td>Ribonucleotide reductase</td>
</tr>
<tr>
<td>RR1</td>
<td>Repeat region 1</td>
</tr>
<tr>
<td>RR2</td>
<td>Repeat region 2</td>
</tr>
<tr>
<td>rmB<sub>to</sub></td>
<td>E. coli ribosomal RNA terminator</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SIV</td>
<td>Swine influenza virus</td>
</tr>
<tr>
<td>SPF</td>
<td>Specific pathogen free</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>Th1</td>
<td>T helper cell type 1</td>
</tr>
<tr>
<td>Th2</td>
<td>T helper cell type 2</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tissue necrosis factor alpha</td>
</tr>
<tr>
<td>xg</td>
<td>Times gravity</td>
</tr>
</tbody>
</table>
ABSTRACT

Mycoplasma hyopneumoniae is a respiratory pathogen of pigs that has substantial global economic impact and currently there is no vaccine available that prevents colonisation. This study focuses on the characterisation of novel *M. hyopneumoniae* vaccine candidates and the development of a live, attenuated vaccine expressing heterologous *M. hyopneumoniae* antigens. The putative *M. hyopneumoniae* vaccine antigen, the lipoyl binding domain of the dihydrolipoyl dehydrogenase subunit (PdhD) of the pyruvate dehydrogenase complex, was strongly recognised by porcine hyperimmune sera. Western blot analysis with PdhD antisera detected the protein in geographically diverse *M. hyopneumoniae* isolates. However PdhD was only weakly recognised by convalescent swine sera indicating it is not likely to contribute significantly to the protective convalescent response. Therefore it was not used in further vaccination experiments. Live vaccine delivery systems expressing two antigens from *M. hyopneumoniae*, adhesin (Adh) and ribonucleotide reductase (NrdF), were constructed using either plasmid-based expression (PBE) or chromosomally-based expression (CBE) systems. The PBE system was formed by cloning both antigen genes into pJLA507 to create an operon downstream of temperature-inducible promoters. Constitutive CBE was achieved using a promoter trapping technique whereby the promoterless operon was stably integrated into the chromosome of *Salmonella enterica* serovar Typhimurium *aroA* (STM-1) and the expression of antigens assessed. The chromosomal position of the operon was mapped in four clones. Inducible CBE was obtained using the *in vivo* induced *sspA* promoter and recombining the expression construct into *aroD*. Dual expression of the antigens was
detected in all systems with PBE producing much higher quantities of both antigens. The stability of antigen expression was higher in the CBE system with 60-100% of individual cells still expressing antigen after 60 generations without selection. PBE and CBE strains were selected for comparison in a vaccination trial. The vaccine strains were delivered orally into mice and significant systemic IgM and IgG responses against both antigens amongst all CBE groups were detected. No significant immune response against either antigen was detected using PBE strains. Expression of recombinant antigens in *S. enterica* serovar Typhimurium *aroA* from chromosomally-located strong promoters without the use of antibiotic resistance markers is a reliable and effective method of inducing a significant immune response.